Efficient Solvent-Free Synthesis of Indolizines Using CuBr Catalyst from Pyridine, Acetophenone, and Electron-Deficient Alkenes
Abstract
:1. Introduction
2. Results and Discussions
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Test Methods
3.2.2. Synthesis Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadowski, B.; Klajn, J.; Gryko, D.T. Recent advances in the synthesis of indolizines and their pi-expanded analogues. Org. Biomol. Chem. 2016, 14, 7804–7828. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhou, S.; Li, Y.; Guo, M.; Zhao, W.; Tang, X.; Wang, G. Synthesis of Indolizines from Pyridinium Salts and Ethyl Bromodifluoroacetate. Org. Lett. 2020, 22, 9313–9318. [Google Scholar] [CrossRef] [PubMed]
- Wiench, J.W.; Stefaniak, L.; Webb, G.A. Structure and protonation of some indolizine derivatives studied by ab initio MO calculations. J. Mol. Struct. 2002, 605, 33–39. [Google Scholar] [CrossRef]
- Mizuno, S.; Nishiyama, T.; Endo, M.; Sakoguchi, K.; Yoshiura, T.; Bessho, H.; Motoyashiki, T.; Hatae, N.; Choshi, T. Novel Approach to the Construction of Fused Indolizine Scaffolds: Synthesis of Rosettacin and the Aromathecin Family of Compounds. Molecules 2023, 28, 4059. [Google Scholar] [CrossRef] [PubMed]
- Dawood, K.M.; Abbas, A.A. Inhibitory activities of indolizine derivatives: A patent review. Expert Opin. Ther. Pat. 2020, 30, 695–714. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, E.; Zhang, Z.; Yang, D.; Li, G.; Cao, H.; Huang, H. A Novel Indolizine Derivative Induces Apoptosis Through the Mitochondria p53 Pathway in HepG2 Cells. Front. Pharmacol. 2019, 10, 762–774. [Google Scholar] [CrossRef]
- Arvin-Berod, M.; Desroches-Castan, A.; Bonte, S.; Brugiere, S.; Coute, Y.; Guyon, L.; Feige, J.J.; Baussanne, I.; Demeunynck, M. Indolizine-Based Scaffolds as Efficient and Versatile Tools: Application to the Synthesis of Biotin-Tagged Antiangiogenic Drugs. ACS Omega 2017, 2, 9221–9230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, W.; Zhu, X.; Chen, L.; Luo, H.; Guo, M.; Liu, D.; Liu, F.; Zhang, H.; Li, Q.; et al. Synthesis of Indolizines via Tf2O-Mediated Cascade Reaction of Pyridyl-enaminones with Thiophenols/Thioalcohols. Org. Lett. 2023, 25, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Ranga, P.K.; Fatma, S.; Kumar, A.; Vijaya Anand, R. Cu(II)-Catalyzed [3 + 2]-Annulation of 2-Pyridinyl-substituted p-Quinone Methides with Enaminones: Access to Functionalized Indolizine Derivatives. Adv. Synth. Catal. 2023, 365, 3271–3276. [Google Scholar] [CrossRef]
- Huckaba, A.J.; Giordano, F.; McNamara, L.E.; Dreux, K.M.; Hammer, N.I.; Tschumper, G.S.; Zakeeruddin, S.M.; Grätzel, M.; Nazeeruddin, M.K.; Delcamp, J.H. Indolizine-Based Donors as Organic Sensitizer Components for Dye-Sensitized Solar Cells. Adv. Energy Mater. 2015, 5, 1401629–1401636. [Google Scholar] [CrossRef]
- Cheema, H.; Baumann, A.; Loya, E.K.; Brogdon, P.; McNamara, L.E.; Carpenter, C.A.; Hammer, N.I.; Mathew, S.; Risko, C.; Delcamp, J.H. Near-Infrared-Absorbing Indolizine-Porphyrin Push-Pull Dye for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 16474–16489. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, Y.; Ni, Y.; Shi, F.; Guo, X.; Li, C. Hydroxylated organic semiconductors for efficient photovoltaics and photocatalytic hydrogen evolution. Energy Environ. Sci. 2023, 16, 4065–4072. [Google Scholar] [CrossRef]
- Priyanka; Rani, P.; Kiran; Sindhu, J. Indolizine: A Promising Framework for Developing a Diverse Array of C–H Functionalized Hybrids. ChemistrySelect 2023, 8, e202203531. [Google Scholar] [CrossRef]
- Reed, M.; Deore, P.S. Multicomponent Synthesis of Fluorescent Indolizine Tetracycles. Synfacts 2022, 18, 0362. [Google Scholar]
- Chai, W.; Kwok, A.; Wong, V.; Carruthers, N.I.; Wu, J. A practical parallel synthesis of 2-substituted indolizines. Synlett 2003, 13, 2086–2088. [Google Scholar] [CrossRef]
- Lakshmikanth, K.; Saini, S.M.; Dorai, S.T.; Chandrashekharappa, S. Tandem-Michael-cyclization cascade to make pyridines: Use of electron-deficient acetylenes for the synthesis of indolizines in aqueous media. Tetrahedron 2023, 142, 133516. [Google Scholar] [CrossRef]
- González-Soria, M.J.; Alonso, F. Substrate-Controlled Divergent Synthesis of Enaminones and Pyrroles from Indolizines and Nitroso Compounds. Adv. Synth. Catal. 2019, 361, 5005–5017. [Google Scholar] [CrossRef]
- Li, J.; Yang, D.; Wang, H.; Zhu, B.; Cao, H. Zn-Catalyzed [3 + 2]-Annulation Strategy: Straightforward Access to Aminoalkyl Indolizines. Eur. J. Org. Chem. 2019, 2019, 6611–6617. [Google Scholar] [CrossRef]
- Lu, C.-J.; Yu, X.; Chen, Y.-T.; Song, Q.-B.; Wang, H. Indolizine synthesis via copper-catalyzed cyclization of gem-difluoroalkenes and 2-(pyridin-2-yl)acetate derivatives. Org. Chem. Front. 2020, 7, 2313–2318. [Google Scholar] [CrossRef]
- Wang, C.; Hu, H.; Xu, J.; Kan, W. One-pot synthesis of indolizine via 1,3-dipolar cycloaddition using a sub-equivalent amount of K2Cr2O7 as an efficient oxidant under base free conditions. RSC Adv. 2015, 5, 41255–41258. [Google Scholar] [CrossRef]
- Bora, U.; Saikia, A.; Boruah, R.C. A novel microwave-mediated one-pot synthesis of indolizines via a three-component reaction. Org. Lett. 2003, 5, 435–438. [Google Scholar] [CrossRef]
- Yuan, Y.C.; Liu, T.Z.; Zhao, B.X. Metal-Free Catalyzed Synthesis of Fluorescent Indolizine Derivatives. J. Org. Chem. 2021, 86, 12737–12744. [Google Scholar] [CrossRef] [PubMed]
- Uppar, V.; Chandrashekharappa, S.; Mohan, M.K.; Basarikattia, A.I.; Rachotimath, B.B.; Chougala, M.; Mudnakudu-Nagaraju, K.K.; Bhanuprakash, G.; Venugopala, K.N.; Ningegowda, R.; et al. Synthesis and characterization of indolizine and 5,6-benzo-fused indolizine derivatives with their pharmacological applications. Chem. Data Collect. 2020, 29, 100524–100534. [Google Scholar] [CrossRef]
- Zinoveva, A.D.; Borisova, T.N.; Politova, P.A.; Titov, A.A.; Varlamov, A.V.; Voskressensky, L.G.; Nguyen, V.T.; Le, T.A. Facile Synthesis and Biological Evaluation of New Thieno [2, 3-g]indolizine Derivatives. ChemistrySelect 2020, 5, 10821–10826. [Google Scholar] [CrossRef]
- Arun, V.; Choi, S.-K.; Han, J.H.; Choi, H.; Kim, H.-M.; Kim, W.; Choi, J.; Kim, J.; Kim, E. Harnessing aggregation-induced emission property of indolizine derivative as a fluorogenic bioprobe for endoplasmic reticulum. Dyes Pigment. 2022, 200, 110118. [Google Scholar] [CrossRef]
- Zeoly, L.A.; Acconcia, L.V.; Rodrigues, M.T., Jr.; Santos, H.; Cormanich, R.A.; Paniagua, J.C.; Moyano, A.; Coelho, F. One-pot organocatalyzed synthesis of tricyclic indolizines. Org. Biomol. Chem. 2023, 21, 3567–3581. [Google Scholar] [CrossRef]
- Lv, X.; Gao, P.; Zhao, X.; Jiang, Z. Metal-Free Construction of Multisubstituted Indolizines via Intramolecular Amination of Allylic Alcohols. J. Org. Chem. 2023, 88, 9459–9468. [Google Scholar] [CrossRef]
- Nam, S.; Lee, S.; Kim, W.; Kim, I. Divergent synthesis of two types of indolizines from pyridine-2-acetonitrile, (hetero)arylglyoxal, and TMSCN. Org. Biomol. Chem. 2023, 21, 3881–3895. [Google Scholar] [CrossRef]
- Tiwari, J.; Tarale, P.; Sivanesan, S.; Bafana, A. Environmental persistence, hazard, and mitigation challenges of nitroaromatic compounds. Environ. Sci. Pollut. Res. Int. 2019, 26, 28650–28667. [Google Scholar] [CrossRef]
- Kumar, S.; Padala, K. The recent advances in K2S2O8-mediated cyclization/coupling reactions via an oxidative transformation. Chem. Commun. 2020, 56, 15101–15117. [Google Scholar] [CrossRef]
- Hu, H.; Feng, J.; Zhu, Y.; Gu, N.; Kan, Y. Copper Acetate Monohydrate: A Cheap But Efficient Oxidant for Synthesizing Multi-substituted Indolizines from Pyridinium Ylides and Electron Deficient Alkenes. RSC Adv. 2012, 2, 8637–8644. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Han, J.; Guo, X.; Chen, B. CuBr-Catalyzed Synthesis of Indolizines from Pyridine, Acetophenone and Chalcone under Solvent-Free Conditions. ChemistrySelect 2018, 3, 3014–3017. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, L.; Liu, X.; Xu, W.; Wang, Y.; He, Q.; Liu, H.; Ye, M.; Luo, G.; Chen, Z. I2-Catalyzed Intermolecular Cyclization to Synthesis of 3-Acylated Indolizines. ChemistrySelect 2020, 5, 13198–13201. [Google Scholar] [CrossRef]
- Tang, D.; Wu, P.; Liu, X.; Chen, Y.X.; Guo, S.B.; Chen, W.L.; Li, J.G.; Chen, B.H. Synthesis of multisubstituted imidazoles via copper-catalyzed [3 + 2] cycloadditions. J. Org. Chem. 2013, 78, 2746–2750. [Google Scholar] [CrossRef] [PubMed]
Entry | Cat. | Oxidant (x Equiv) | T (°C) | t (h) | Yield [%] b |
---|---|---|---|---|---|
4a (4a’) | |||||
1 | CuBr | PIDA (2.0) | 110 | 12 | 34 (30) |
2 | CuCl | PIDA (2.0) | 110 | 12 | 26 (20) |
3 | Cu2O | PIDA (2.0) | 110 | 12 | 24 (22) |
4 | Cu2S | PIDA (2.0) | 110 | 12 | 24 (25) |
5 | CuBr | O2 | 110 | 12 | 36 (30) |
6 | CuBr | IBX (2.0) | 110 | 12 | 35 (31) |
7 | CuBr | (NH4)2S2O8 (2.0) | 110 | 12 | 65 (14) |
8 | CuBr | (NH4)2S2O8 (1.0) | 110 | 12 | 71 (15) |
9 | CuBr | (NH4)2S2O8 (3.0) | 110 | 12 | 63 |
10 | CuBr | (NH4)2S2O8 (4.0) | 110 | 12 | 56 |
11 | CuBr | (NH4)2S2O8 (1.0) | 120 | 12 | 72 |
12 | CuBr | (NH4)2S2O8 (1.0) | 130 | 12 | 76 |
13 | CuBr | (NH4)2S2O8 (1.0) | 140 | 12 | 73 |
14 | CuBr | (NH4)2S2O8 (1.0) | 130 | 10 | 75 |
15 | CuBr | (NH4)2S2O8 (1.0) | 130 | 8 | 76 |
16 | CuBr | (NH4)2S2O8 (1.0) | 130 | 6 | 78 |
17 | CuBr | (NH4)2S2O8 (1.0) | 130 | 5 | 80 (<5) |
18 | CuBr | (NH4)2S2O8 (1.0) | 130 | 4 | 78 |
19 c | CuBr | (NH4)2S2O8 (1.0) | 130 | 5 | 76 |
20 d | CuBr | (NH4)2S2O8 (1.0) | 130 | 5 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, J.; Liu, Z.; Bi, W.; Shen, J.; Li, G. Efficient Solvent-Free Synthesis of Indolizines Using CuBr Catalyst from Pyridine, Acetophenone, and Electron-Deficient Alkenes. Molecules 2024, 29, 2061. https://doi.org/10.3390/molecules29092061
Zhang X, Zhang J, Liu Z, Bi W, Shen J, Li G. Efficient Solvent-Free Synthesis of Indolizines Using CuBr Catalyst from Pyridine, Acetophenone, and Electron-Deficient Alkenes. Molecules. 2024; 29(9):2061. https://doi.org/10.3390/molecules29092061
Chicago/Turabian StyleZhang, Xueguo, Jianpeng Zhang, Zhengyi Liu, Wenxuan Bi, Jian Shen, and Guang Li. 2024. "Efficient Solvent-Free Synthesis of Indolizines Using CuBr Catalyst from Pyridine, Acetophenone, and Electron-Deficient Alkenes" Molecules 29, no. 9: 2061. https://doi.org/10.3390/molecules29092061
APA StyleZhang, X., Zhang, J., Liu, Z., Bi, W., Shen, J., & Li, G. (2024). Efficient Solvent-Free Synthesis of Indolizines Using CuBr Catalyst from Pyridine, Acetophenone, and Electron-Deficient Alkenes. Molecules, 29(9), 2061. https://doi.org/10.3390/molecules29092061