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Abstract: Bio-based polymers are attracting increasing interest as alternatives to harmful and environ-
mentally concerning non-biodegradable fossil-based products. In particular, bio-based polymers may
be employed as ligands for the preparation of metal nanoparticles (M(0)NPs). In this study, chitosan
(CS) was used for the stabilization of Ru(0) and Rh(0) metal nanoparticles (MNPs), prepared by sim-
ply mixing RhCl3 × 3H2O or RuCl3 with an aqueous solution of CS, followed by NaBH4 reduction.
The formation of M(0)NPs-CS was confirmed by Fourier Transform Infrared Spectroscopy (FT-IR),
Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Mi-
croscopy (SEM), Energy-Dispersive X-ray Analysis (EDX), Transmission Electron Microscopy (TEM)
and X-ray Diffraction (XRD). Their size was estimated to be below 40 nm for Rh(0)-CS and 10nm
for Ru(0)-CS by SEM analysis. M(0)NPs-CS were employed for the hydrogenation of (E)-cinnamic
aldehyde and levulinic acid. Easy recovery by liquid-liquid extraction made it possible to separate
the catalyst from the reaction products. Recycling experiments demonstrated that M(0)NPs-CS were
highly efficient up to four times in the best hydrogenation conditions. The data found in this study
show that CS is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles, allowing
the production of some of the most efficient, selective and recyclable hydrogenation catalysts known
in the literature.

Keywords: chitosan; metal nanoparticles; catalysis; recyclable nanoparticles; platform chemicals

1. Introduction

The environmental impact of fossil-based non-biodegradable materials is pushing for
their substitution with bio-based ones [1–6]. Nevertheless, most products commercialized
today are still produced from virgin naphtha [7,8], and their inadequate disposal has turned
into a major environmental emergency [9,10]. The use of bio-based polymers appears to be
a very interesting and eco-friendly alternative to the use of fossil-based polymers [11–15],
and many examples are reported in the literature regarding the use of renewable and very
abundant biopolymers, such as carboxymethyl cellulose, starch and chitosan, for different
industrial applications [16–23]. In particular, chitosan (CS), is the second most abundant
natural polymer, available in large quantities from food-industry waste, and is a renewable,
environmentally friendly, biodegradable polymer. CS, mostly produced by deacetylation
of chitin derived from the shells of shrimps and other crustaceans [24,25], is widely used
by the food, medical, pharmaceutical and agricultural industries and can also be used for
water treatment [26–30]. Its wide range of applications makes CS an appealing material,
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such that the global market for chitin and derivates is expected to reach US$63 billion by
2024 with production of about 1012–1014 tons/year [31,32].

Due to its a large number of aminic groups and its solubility in water, CS is also a
very interesting biopolymer for the stabilization of transition metals for catalytic reactions.
In fact, CS has been widely studied as a ligand for the preparation of homogeneous and
heterogeneous catalysts employed for carbon-carbon coupling, oxidation, hydrogenation
and click reactions, among others [25,33–39]. Concerning hydrogenation reactions, various
examples have been reported in the literature regarding the use of chitosan as a ligand in
the presence of Pd(0) and Pd(0) nanoparticles supported on silica [33,36,40–42], while Rh(0)
and Ru(0) have been investigated less [43–46].

Based on our interest in the synthesis of fine chemicals by catalytic reactions, we
deemed it interesting to study the efficiency of Rh(0) and Ru(0) chitosan nanoparticles
(Rh(0)-CS, Ru(0)-CS) for the hydrogenation of (E)-cinnamaldehyde (I) and levulinic acid (V)
(Scheme 1) [47–50]. In fact, (I) contains a C=C double bond and a C=O double bond, making
it possible to evaluate both the activity and the selectivity of metal nanoparticles. In fact,
hydrogenation of (I) may be employed either for the production of hydrocinnamaldehyde
(II) or cinnamyl alcohol (III), which are both very interesting products with wide industrial
applications [51–54]. Additionally, catalytic hydrogenation of levulinic acid makes it
possible to produce γ-valerolactone (VI), a promising building block for fuel additives,
resins, herbicides, pharmaceuticals, aromatic substances and chemical intermediates with
wide application potential [47–54]. Therefore, (E)-cinnamaldehyde (I) and levulinic acid (V)
are commonly employed as standard substrates to study the efficiency of hydrogenation
catalysts. It is interesting to note that, although many studies have been reported in
the literature employing both noble and non-noble homogeneous and heterogeneous
catalysts for the hydrogenation of (I) and (V) [55–58], to the best of our knowledge, chitosan
nanoparticles have never been employed for the hydrogenation of (I) or (V) [59–63].
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Scheme 1. Hydrogenation reactions of (a) (E)-cinnamaldehyde (I) and (b) levulinic acid (V).

With all this in mind, in this work, metal nanoparticles supported on chitosan (M(0)NPs-
CS) were prepared by simply mixing RhCl3 × 3H2O or RuCl3 with an aqueous solution of
CS, followed by NaBH4 reduction in analogy to the protocol previously reported by Harrad
and co-workers for the preparation of Ni(0)-MNPs [64]. The formation of M(0)NPs-CS
was verified by Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning
Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy
(SEM), Energy-Dispersive X-ray Analysis (EDX), Transmission Electron Microscopy (TEM)
and X-ray Diffraction (XRD). Thus, the catalytic activity and selectivity of the Rh(0) and
Ru(0)-CS nanoparticles was tested in water or water/organic medium for the hydrogenation
of (I) and (V). Preliminary hydrogenation reactions in the presence of (I) were carried out to
find the best operational conditions, to verify the selectivity of the MNPs towards C=C or
C=O hydrogenation and to compare the efficiency of the MNPs studied in this work with
data from the literature [65–69].
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2. Materials and Methods
2.1. General Remarks

All commercially available reagents, solvents and chemicals were provided by Merck
(Milan, Italy) and used as received. Chitosan (MW 90,000 Da), with a deacetylation degree
of 0.90, was purchased from G.T.C. Bio Corporation (Qingdao, China). The catalysts and
products were characterized by different analytical and spectroscopic analyses such as SEM,
EDX, XRD, FT-IR, NMR and GC-MS. Scanning electron microscopy (SEM) was carried
out using a FE-SEM LEO 1525 ZEISS (Jena, Germany). The acceleration potential voltage
was maintained at 15 keV, and measurements were carried out using an in-lens detector.
Samples were deposited on conductive carbon adhesive tape and metallized by sputtering
with chromium (8 nm). Elemental composition and chemical mapping were determined
using a Bruker Quantax EDX (Karlsruhe, Germany). TEM images were obtained using a
Philips 208 transmission electron microscope (FEI, Hillsboro, OR, USA). The samples were
prepared by putting one drop of an ethanol dispersion of the sample powder on a copper
grid pre-coated with a Formvar film and dried in air. The average size distribution of
droplets was determined with ImageJ software (LOCI, University of Wisconsin, Madison,
WI, USA) using both SEM and TEM images.

FT-IR spectra were recorded on a Spectrum One (Perkin Elmer) in the 500–4000 cm−1

range. The samples were prepared using the KBr pellet method. TGA and DSC analysis
were performed with a Linseis STA PT-1000 instrument (Messgeraete GmbH, Selb, Ger-
many). XRD patterns were collected with a diffractometer in Bragg–Brentano geometry
(Bruker D8 Advance, Bruker AXS GmbH, Karlsruhe, Germany), provided with a Lynxeye
XE-T fast detector; CuKα radiation was used (operative conditions: 40 keV and 40 mA,
step size 0.014◦ 2θ, step scan 10 s). Bruker DIFFRAC.EVA V5 software (Karlsruhe, Ger-
may) equipped with the COD was used for the phase identification. The samples were
prepared by placing the catalyst powder on a copper grid pre-coated with a Formvar film.
The 1H and 13C NMR spectra of the products were registered on a Bruker UltraShield
400 spectrometer (Karlsruhe, Germany) operating at 400.0 and 101.0 MHz, respectively.
The samples were prepared by dissolving reagents and products in deuterated chloroform
(CDCl3). Gas-liquid chromatography analyses were performed on an Agilent 6850 gas
chromatograph; gas chromatography–mass spectrometry analyses were performed on an
HP 5890 series II gas chromatograph interfaced to a HP 5971 quadrupole mass detector.
The samples were prepared by dissolving 3 drops of analyte in 2 mL of diethyl ether. ICP
analyses were performed with the ICP MS OES DV 5300, Perkin Elmer (Milan, Italy).

2.2. Preparation of M(0)NPs-CS

The preparation of Rh(0) and Ru(0) nanoparticles stabilized with CS using NaBH4
as a reductant was carried out according to the same procedure for both metals, starting
from RhCl3 × 3H2O and RuCl3 respectively. For example, the preparation of Rh(0)-CS
(M/CS: 1/8 mol/mol) nanoparticles was as follows: 10 mL of distilled water and 367.0 mg
(1.86 mmol) of chitosan hydrochloride were added into a 150 mL two-neck flask, equipped
with a magnetic stirring bar, under nitrogen flow and left under stirring until a homo-
geneous solution was formed (about 1 h). Then, 61.0 mg (0.23 mmol) of RhCl3 × 3H2O
and a solution of 200 mg (0.53 mmol) of NaBH4 dissolved in 50 mL of water were added
under nitrogen into the reaction flask. The solution was left under stirring for 24 h and
then centrifuged, and the solid was dried under vacuum overnight at RT. Ru(0)-CS was
prepared analogously, using 47.7 mg (0.23 mmol) of RuCl3.

2.3. General Procedure for the Hydrogenation Reactions with M(0)NPs-CS

Hydrogenation experiments were carried out in a magnetically stirred stainless steel
autoclave (total volume 150 mL) connected to a thermostatic bath in order to keep the
reaction temperature constant within ± 1 ◦C. The same experimental protocol was used for
hydrogenation reactions and recycling experiments, with all different substrates tested. For
example, the procedure for the hydrogenation of (E)-cinnamaldehyde (I) was as follows
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(entry 1, Table 1). Under an inert atmosphere, in a 50 mL vial equipped with a small
magnetic bar, we introduced 2 mL of water, 2 mL of THF, 104 mg (0.79 mmol) of (I),
10.3 mg (7.9 × 10−3 mmol) of catalyst and 12 mg (0.08 mmol) of undecane as an internal
standard. Then, the vial was placed in a pre-purged 150 mL autoclave, and 10 atm of H2 was
added. The autoclave was then heated at 80 ◦C and kept under constant magnetic stirring.
After 16 h, the autoclave was cooled to room temperature and the residual gas vented
off, and the reaction mixture was analysed by gas chromatography to calculate reaction
conversion. Products were recovered from the reaction mixture by extraction with diethyl
ether, then dried with anhydrous Na2SO4, followed by organic evaporation. Products were
characterized by GC-MS, FT-IR and 1H and 13C NMR, and the data were compared to
the literature [68–71]. The water solution was kept under nitrogen and used for recycling
experiments. All experiments were performed in triplicate. All recycling experiments were
carried out in the same reaction conditions as the first run, unless otherwise specified.

Table 1. Hydrogenation of (I) in the presence of Rh(0) and Ru(0)-CS.

Entry MNP(0)-CS p(H2) (atm) T (◦C) Conv. (%) a II(%) a III(%) a IV(%) a

1

Rh(0)-CS 10 80

100 84 3 13
1r1 100 82 0 18
1r2 96 71 15 14
1r3 97 71 14 15
2 b Rh(0)-CS 10 80 32 91 3 6
3 Rh(0)-CS 5 80 52 81 13 6
4 Rh(0)-CS 10 50 25 96 0 4

5 c Rh(0)-CS 10 80 19 100 0 0
6 Ru(0)-CS 10 80 45 78 9 13
7 Ru(0)-CS 20 80 53 60 17 23
8 Ru(0)-CS 10 100 62 52 21 27
9

Ru(0)-CS 20 100

97 20 23 57
9r1 97 19 22 56
9r2 95 13 0 87
9r3 97 14 2 84
9r4 96 13 5 82

Reaction conditions: substrate (I): 25.4 mg (0.79 mmol); Rh/(I): 1/100 mol/mol; solvent: 2.0 mL H2O and 2.0 mL
THF; t: 16 h, r: recycling experiment. a Data determined by GLC with undecane as internal standard. b t: 6 h. c
Rh/(I): 1/200 (mol/mol).

Cinnamaldehyde (I): 1H NMR (300 MHz, CDCl3): δ = 9.46 (d, 1 H), 7.30–7.36 (m, 2 H),
7.16–7.22 (m, 4 H), 6.48 (dd, 1 H); 13C NMR (101 MHz, CDCl3): δ = 193.8 (CH), 152.9 (CH),
134.1 (Cquat), 131.4 (CH), 129.2 (CH), 128.7 (CH), 128.6 (CH); GC-MS m/z 132.06 (M+, 100),
133.06 (M+, 9.9), 103 (M+ − CHO, 45), 77 (C6H5, 27).

3-Phenylpropanal (II): 1H NMR (CDCl3): δ = 9.74 (s, CHO, 1H), 7.24–7.10 (m, 5H),
2.91–2.86 (t, 2H), 2.72–2.67 (m, 2H); 13C NMR (101 MHz, CDCl3): δ = 201.5, 140.3, 128.6,
128.2, 126.3, 45.2, 28.1; GC-MS m/z: 134 [M]+; 105 [M − CHO]+; 91; 78 [M − C3H4O]+.

Cinnamic alcohol (III) 1H NMR (300 MHz, CDCl3): δ = 7.38–7.35 (m, 2H), 7.27–7.24
(m, 3H), 6.62–6.58 (m, 1H), 6.33–6.28 (m, 1H), 4.26–4.25 (m, 2H), 2.58 (s, 1H). 13C NMR
(101 MHz, CDCl3): δ = 142.0, 128.6, 128.5, 126.0, 62.4, 34.4, 32.2; GC-MS m/z 134 [M]+; 116
[M − H2O]+; 91 [M − C2H3O]+; 78 [M − C3H4O]+;

3-Phenylpropanol (IV): 1H NMR (300 MHz, CDCl3): δ = 7.31–7.28 (m, 2H), 7.21–7.18 (m,
3H), 3.69–3.67 (t, 2H), 2.73–2.71 (m, 2H), 1.93–1.88 (m, 2H). 13C NMR (101 MHz, CDCl3):
δ = 142.0, 128.6, 128.5, 126.0, 62.4, 34.4, 32.2; GC-MS m/z 136 [M]+; 118 [M − H2O]+; 105 [M
− CH2OH]+; 91 [M − C2H5O]+; 77 [MC3H7O]+;

Levulinic acid (V): 1H NMR (300 MHz, CDCl3): δ = 11.01 (br s, 1H), 2.74 (t, J = 6.5 Hz,
2H), 2.62 (t, J = 6.5 Hz, 2H), 2.19 (s, 3H) ppm; 13C NMR (101 MHz, CDCl3): δ = 206.6, 178.7,
37.8, 29.9, 27.9 ppm; GC-MS m/z 116 [M]+; 87 [M − CHO]+; 73 [M − C2H3O]+;

Γ-Valerolactone: 1H NMR (300 MHz, CDCl3): δ = 82.06 (s.3H), 2.2 (m, 1H), 2.4 (m, 1H),
2.9 (m, 1H), 4.25 (m, 2H), 4.38 (m, 2H); 13C NMR (101 MHz, CDCl3): 821.1, 26.3, 39.8, 63.1,
67.4, 171.1, 177.1; GC-MS m/z 100 [M]+; 85 [M − CH3]+; 56 [M − C2H4O]+; 28 [C2H4]+.
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3. Results and Discussion
3.1. Preparation and Characterization of M(0)NPs-CS

M(0)NPs-CS were easily prepared by adding the RhCl3 × 3H2O or RuCl3 catalyst
precursor to an aqueous solution of CS at room temperature, followed by reduction with
NaBH4 [64]. Pre-reduction with NaBH4 was carried out following a similar procedure
to the one reported by Harrad and co-workers to prepare Ni(0) carboxymethylcellulose
nanoparticles in a highly efficient manner [64,72]. Additionally, it may be supposed that
formation of Rh(0) and Ru(0)-CS nanoparticles occurs in a similar manner to that reported
by Xiao [73] for M(0)NPs and CMCNa (Scheme 2).
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Scheme 2. Proposed scheme of MNP formation by coordination of the metal to −COONa groups.

3.1.1. Fourier Transform Infrared Spectroscopy (FT-IR) of MNP(0)-CS and Chitosan

Commercially available CS, Rh(0) and Ru(0)-CS nanoparticles were characterized by
FT-IR (Figure 1). The intense band at 3420 cm−1 in the FT-IR spectrum of CS is characteristic
of −OH functional group stretching, while stretching of the intramolecular hydrogen
bonds of the polysaccharide and the axial −CH stretching are evidenced at 2917 cm−1.
In this region, Rh(0)-CS and Ru(0)-CS nanoparticles show a similar FT-IR pattern, yet the
signals are weaker and broader. This behaviour suggests a decrease in the intra-molecular
hydrogen bonds between the chitosan chains, probably due to the presence of M(0)NPs.
At 1630 cm−1, the typical absorption of the primary amide (C=O stretching) is identifiable,
while adsorption bands between 1093–1083 cm−1 are attributed to the stretching of the
polysaccharide skeleton. Signals of NH2 groups are present between 960–910 cm−1. Since
only moderate differences were observed between CS and Rh(0) or Ru(0)-CS, further
characterizations were carried out by DSC, TGA, SEM, EDX and XRD.

Molecules 2024, 29, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 1. FTIR spectra of CS (black), Rh(0)−CS (purple) and Ru(0)−CS (green) in KBr. 

3.1.2. Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) 
of MNP(0)−CS and Chitosan 

In agreement with the literature, TGA analysis of CS showed three characteristic 
temperature intervals with weight loss % between 10 and 50% (Figure 2). The first 
degradation occurs between 45 °C and 150 °C with 10–15% weight loss, corresponding to 
the evaporation of water physically adsorbed in CS. The second weight loss (about 50%) 
occurs between 220 °C and 300 °C, due to depolymerization or decomposition of polymer 
chains through deacetylation and cleavage of glycosidic linkages [74,75]. Finally, at 
temperatures above 300 °C, the residual carbon backbone and the chains of the 
polysaccharide collapse loosing further 10–15% weight [75,76] due to the pyrolytic 
degradation of chitosan, as well assessed in the literature [76]. In agreement with the 
literature, Rh(0)−CS and Ru(0)−CS showed lower decomposition rates, providing higher 
thermal stabilities than CS (Figure 2). 

 
Figure 2. TGA (a) and DSC (b) profiles of CS (black), Rh(0)−CS (magenta) and Ru(0)−CS (green). 

The DSC results of Rh(0)−CS and Ru(0)−CS were very similar to those of CS (Figures 
S1–S3), except for Ru(0)−CS, where the second endothermic peak occurred at higher 
temperatures than for CS (350 °C versus 250 °C), probably due to higher stability of the 
catalyst compared to CS and Rh(0)−CS. 

3.1.3. Scanning Electron Microscopy (SEM), Energy−Dispersive X-Ray Analysis (EDX), 
Transmission Electron Microscopy (TEM) of MNP(0)−CS 

Figure 1. FTIR spectra of CS (black), Rh(0)-CS (purple) and Ru(0)-CS (green) in KBr.



Molecules 2024, 29, 2083 6 of 16

3.1.2. Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) of
MNP(0)-CS and Chitosan

In agreement with the literature, TGA analysis of CS showed three characteristic
temperature intervals with weight loss % between 10 and 50% (Figure 2). The first degra-
dation occurs between 45 ◦C and 150 ◦C with 10–15% weight loss, corresponding to the
evaporation of water physically adsorbed in CS. The second weight loss (about 50%) occurs
between 220 ◦C and 300 ◦C, due to depolymerization or decomposition of polymer chains
through deacetylation and cleavage of glycosidic linkages [74,75]. Finally, at temperatures
above 300 ◦C, the residual carbon backbone and the chains of the polysaccharide collapse
loosing further 10–15% weight [75,76] due to the pyrolytic degradation of chitosan, as well
assessed in the literature [76]. In agreement with the literature, Rh(0)-CS and Ru(0)-CS
showed lower decomposition rates, providing higher thermal stabilities than CS (Figure 2).
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The DSC results of Rh(0)-CS and Ru(0)-CS were very similar to those of CS (Figures
S1–S3), except for Ru(0)-CS, where the second endothermic peak occurred at higher tem-
peratures than for CS (350 ◦C versus 250 ◦C), probably due to higher stability of the catalyst
compared to CS and Rh(0)-CS.

3.1.3. Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Analysis (EDX),
Transmission Electron Microscopy (TEM) of MNP(0)-CS

Further characterizations were carried out by SEM and EDX. Mapping carried out on
Rh(0)-CS and Ru(0)-CS by EDX (Figures 3 and 4) evidenced a homogeneous dispersion of
the metal within the polymeric matrix, and no regions with higher metal concentrations
were observed, denoting the absence of nanoparticle aggregation.
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Figure 4. SEM images (100 nm and 20 nm) of Rh(0)-CS (top) and Ru(0)-CS (bottom).

SEM analysis further evidence that the metal particles have dimensions <40 nm in the
case of Rh(0), suggesting the formation of aggregates, and <10 nm for Ru(0), confirming
the homogeneous distribution within the polymer matrix (Figure 4).

In order to obtain a clear size evaluation of M(0)NPs (Figure 5), TEM images of the
freshly prepared catalysts were acquired. Transmission electron microscopes are, in fact,
capable of imaging at a significantly higher resolution than SEM devices and can be crucial
for the size determination of M(0)-CS nanoparticles.
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Figure 5. TEM images (50 nm) of Rh(0)-CS (a) and Ru(0)-CS (b).

From TEM images on the fresh catalysts, the size of Rh(0)-CS was estimated to be
around 2.1 nm, while Ru(0)-CS gave smaller nanoparticles of an average size of 1.4 nm.
It was also evident that both Rh(0)-CS and Ru(0)-CS nanoparticles were homogeneously
distributed in the chitosan, but the Rh(0)-CS nanoparticles tended to aggregate into 20 to
50 nm aggregates, confirming SEM results.
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3.1.4. X-ray Diffraction (XRD) of MNP(0)-CS

X-ray diffraction (XRD) analysis results obtained for Rh(0)-CS and Ru(0)-CS are re-
ported in Figure 5. Both graphs have in common the two characteristic peaks of chitosan
(2θ = 10◦, 19◦), which indicate the high degree of crystallinity of the polymer. The absence of
peaks below 2θ = 10◦ confirms the high deacetylation degree of the chitosan employed [77].
As regards Rh(0)-CS nanoparticles (Figure 6), typical peaks of nanometric-sized metallic
Rh(0) are present at 2θ = 40◦, 70◦ and 85◦ [78] (JCPDS card number 5-685).
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In XRD of Ru(0)-CS, a peak at 2θ = 40◦, characteristic of nanometric-sized metallic
Ru(0), was present, while other relevant peaks were not evidenced [79].

3.2. Catalytic Hydrogenation in the Presence of M(0)NPs-CS

To study the activity of M(0)NPs-CS and optimize hydrogenation reaction conditions,
preliminary experiments were carried out using (E)-cinnamaldehyde (I) as a model sub-
strate and relevant data are reported in Table 1. As previously mentioned, the hydrogena-
tion of (I) is challenging due to the possible formation of several by-products [44,80–85] and
is often chosen as model reaction considering both its scientific and industrial relevance [84–87].

Preliminary hydrogenation reactions of (I) were performed in the presence of Rh(0)-CS
with Rh/(I) mol/mol ratio = 1/100 at 80 ◦C and p(H2) = 10 atm for 16 h (entries 1–1r3,
Table 1). Since (I) is not completely soluble in water, a solvent mixture 1/1 (vol/vol) of
water/THF was used, the former to solubilize the catalyst and the latter as a solvent for the
substrate and products.

Then, the influence of NaBH4 pre-reduction on Rh and Ru nanoparticles was investi-
gated. A set of experiments were performed employing metal/CS solutions prepared in the
absence of NaBH4, referred to as Rh(II)-CS and Ru(II)-CS, respectively. At 80 ◦C and p(H2)
10 atm, Rh(II)-CS gave decreased substrate conversions (<75%) and reduced selectivity in II
(<50%) compared to nanoparticles pre-reduced with NaBH4 (see run 1, Table 1). A similar
trend was observed employing Ru(II)-CS. Interestingly, recycling experiments showed that
nanoparticles prepared without pre-reduction with NaBH4 totally lost catalytic activity, in
contrast to pre-reduced M(0)NPs-CS. Although hydrogen employed during the catalytic
reaction should reduce the metal centre with “in situ” generation of the M(0)NPs-CS,
recycling experiments clearly show that this is not the case and that pre-reduction with
NaBH4 is necessary to achieve highly active M(0)NPs-CS nano-catalysts. Further studies
are ongoing to gain deeper understanding of this finding.

The data reported in Table 1 show that, in the reaction condition tested, Rh(0)-CS makes
it possible to achieve total conversion of I and high selectivity towards C=C hydrogenation
to aldehyde (II) even after one recycling experiment, the second most abundant product
being 3-phenylpropanol (IV). From the second recycling experiment, both activity and
selectivity decreased (entries 1–1r3, Table 1). According to Scheme 3, IV may be formed
by hydrogenation of II or III. The data reported in Table 1 show that in the presence
of the Rh(0)-CS nanoparticles tested, the increase in III formed from runs 1 to 1r3 was
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predominantly at the expense of II and might be due to partial deactivation and loss of
selectivity of recycled Rh(0)-CS nanoparticles.
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Further recycling led to the formation of increasing quantities of cinnamyl alcohol
(III), probably as a consequence of partial catalyst deactivation. Reducing reaction time
(entry 2, Table 1), a drastic drop in conversion was recorded, a drop that was also observed
by decreasing either hydrogen pressure (entry 3, Table 1) or temperature (entry 4, Table 1)
or by reducing catalyst loading (catalyst/substrate molar ratio 1/200) (entry 5, Table 1). It
should be noted that, despite the reduced activity of the catalyst in these reaction conditions,
higher selectivity towards the carbon–carbon double bond hydrogenation product was
nevertheless obtained, and in the best reaction conditions, total selectivity in (II) was
achieved (entry 5, Table 1).

Hydrogenation of (I) with Ru(0)-CS, carried out in the same reaction conditions
employed in the presence of Rh(0)-CS, highlighted the reduced activity of this catalytic
species compared to analogous Rh(0)-CS, albeit with comparable selectivity (compare
entries 1 and 6, Table 1). Similar results were obtained when increasing p(H2) pressure
from 10 to 20 atm (compare entries 6 and 7, Table 1), while at higher temperatures (100
◦C), higher conversion could be achieved at the expense of selectivity (entry 8, Table 1).
When p(H2) was raised to 20 atm, conversion was almost complete (97%), with higher
selectivity towards 3-phenylpropanol (IV) (57%). Interestingly, recycling of the catalyst
lead to an increase in selectivity in the fully hydrogenated product (IV) from 57% in the first
experiment to 82% after the third recycling (compare entries 9–9r3, Table 1). Further, the
high conversion obtained for all rounds of recycling confirms the stability of the Ru(0)-CS
catalytic species. In agreement with the literature, Ru(0)-CS nanoparticles were active
in more extreme conditions than Rh(0)-CS nanoparticles but were more recyclable than
the latter [44].

Since no data are available on the hydrogenation of (I) with CS nanoparticles, in order
to evaluate the efficiency of Rh(0) and Ru(0)-CS as tested in this work, was comparison with
heterogeneous Rh(0) and Ru(0) catalysts reported in the literature was carried out [44,88].
According to a very recent work by Patil and co-workers, results achieved with Rh(0)
and Ru(0)-CS are particularly interesting, since, in most cases, heterogeneous catalysts
reported in the literature have modest activity and selectivity, requiring harsh conditions
and environmentally unfriendly organic solvents [44,86–95].

For example, Liu reported the use of Rh@MIL-101 (Cr), a metal–organic framework
(MOF) with high surface area and porosity, for the hydrogenation of (I) [89]. At 30 ◦C,
p(H2) 10 atm, with a Rh/(I) molar ratio of 1/400, in ethanol as a solvent, conversion rates
of up to 98% of (I) were achieved by 5 h, with selectivity in (II) of 99%. In analogous
reaction conditions, commercially available Rh/C gave significantly lower conversions
(53%) and selectivity in (II) (89%) [44]. Although Rh@MIL-101 (Cr) can be recycled up
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to two times with almost no change in activity and selectivity, its sustainability is low
considering that MIL is synthesized using toxic chemicals such as N,N-dimethylformamide
(DMF) or hydrofluoric acid (HF) [94]. Alternatively, Rh(0) porphyrins have been used for
the hydrogenation of (I), but with modest selectivity in (II) (≤80%). Additionally, toluene
was used together with water as reaction solvent and NEt3 had to be added to promote the
solubility in water of the Rh porphyrin complex [93].

To widen the scope of the reaction further hydrogenation tests were carried out in
the presence of levulinic acid (V) (Scheme 1). Levulinic acid is commonly employed as
standard substrate to verify the efficiency of new protocols intending to valorise bio-based
feedstocks to produce sustainable, bio-based building blocks in alternative to fossil-based
ones. It is important to note that in 2004 the US Department of Energy, ranked levulinic
acid as one of the twelve most important platform chemicals derived from biomass [94,95].

For example, several studies have been reported in the literature for the use ruthenium
supported on carbon [96], ZrO2 [63], TiO2 [65] or alumina [97] as catalysts for the synthesis
of (VI) from levulinic acid.

Since (V) is soluble in water, hydrogenation reactions were carried out in water as
solvent and at the end of the reaction the products were extracted from the water solution
with diethyl ether, the catalyst remaining confined in the aqueous phase, ready to be reused.

The catalytic tests reported in Table 2 showed complete conversion for the substrate
(VI) at 80 ◦C, p(H2) 20 atm for 16 h, using Rh(0)-CS with a Rh(0)/(V) ratio of 1/100 (entry 1,
Table 2). Total conversion was also obtained at lower hydrogen pressure and temperature
(see entries 2 and 3, Table 2). However, in these reaction conditions, a significant decrease
in the Rh(0)-CS activity was registered upon recycling (entry 3r1, Table 2). In order to verify
whether the loss of the Rh(0)-CS activity could be a consequence of catalyst leaching, ICP
analysis of the organic solution was carried out, revealing negligible traces of metal (<0.1%).
If hydrogen pressure was further decreased from 10 to 5 atm at 50 ◦C, conversion into (VI)
was reduced (36%), although total selectivity was maintained (entry 5, Table 2).

Table 2. Hydrogenation of levulinic acid in the presence of M(0)NPs-CS.

Entry MNP(0)-CS M/S t(h) p(H2) (atm) T (◦C) Conv (%) a VI (%) a

1 Rh(0)-CS 1/100 16 20 80 100 100
2 Rh(0)-CS 1/100 16 10 80 100 100
3

Rh(0)-CS
1/100

16 10 50
100 100

3r1 1/100 68 68
4 Rh(0)-CS 1/100 16 5 50 36 36
5 Ru(0)-CS 1/100 16 5 50 100 100
6 Ru(0)-CS 1/100 4 5 50 100 100
7

Ru(0)-CS 1/100 4 2 50
100 100

7r1 100 100
8 Ru(0)-CS 1/100 4 2 50 100 100
9

Ru(0)-CS 1/100 4 1 50

100 100
9r1 99 99
9r2 99 99
9r3 99 99
10

Ru(0)-CS 1/200 4 5 50

100 100
10r1 87 87
10r2 85 85
10r3 85 85
11

Ru(0)-CS 1/500 16 20 80

100 100
11r1 100 100
11r2 100 100
11r3 100 100

Reaction conditions: substrate: 0.59 mmol; solvent: 4.0 mL H2O. a Data determined by GLC with undecane as
internal standard. r: recycling experiment.
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Interestingly, experiments carried out in the same reaction conditions reported in entry
5 of Table 2, but in the presence of Ru(0)-CS, clearly demonstrate that Ru(0)-CS is highly
active for the hydrogenation of (V), giving total selectivity towards the desired product (VI),
such that it was possible not only to lower p(H2) to 1 atm but also to recycle the catalyst
up to three times with no loss of activity or selectivity (see entries 7–9r3, Table 2). With
the aim of minimizing the consumption of Ru(0)-CS, further experiments were performed
with a Ru/(V) ratio of 1/200 mol/mol, at 50 ◦C, p(H2) 5 atm, for 4 h, yet in these reaction
conditions, the activity of the Ru(0)-CS catalyst upon recycling decreased to 87% (see entries
10–10r3, Table 1).

Thus, further hydrogenation reactions were performed in more drastic conditions
(entries 11–11r3, Table 2), but with an even lower Ru/(V) mol/mol ratio (1/500). These
experiments showed that at 80 ◦C, p(H2) 20 atm by 16 h, even lower catalyst concentra-
tions could be used, making it possible to achieve total substrate conversion and product
selectivity even after three recycling tests.

As in the case of (E)-cinnamyl aldehyde (I) (see Table 1), the data achieved for the
hydrogenation of levulinic acid (V) with Ru(0)-CS (see Table 2) are extremely interesting and
reveal high performance compared to data in the literature [61,98,99]. In fact, Ndolomingo
and co-workers recently reported a comparison between the efficiency values of different
MNPs employed for the hydrogenation of (V) [91], and from this work it emerged that
Ru@Meso-SiO2 nanoparticles are among most efficient hydrogenation catalysts, leading
to total substrate conversion and selectivity in (VI) at moderate p(H2) (10 atm) and in a
short time (5 h), yet very high temperatures are required (150 ◦C), and dioxane is used
as a solvent [100]. Ru/SiO2, Ru/Al2O3, Ru/ZnO2 and Ru/TiO2 have been reported by
Tan for the hydrogenation of (V), but in this case as well, high temperatures are required
to achieve high product yields [67]. It should also be noted that in agreement with the
literature, Rh(0)-CS nanoparticles gave the highest activity and selectivity for the synthesis
of (II), i.e., towards C=C hydrogenation, in contrast to Ru(0)-CS nanoparticles, which gave
the best results for the hydrogenation of C=O to give (VI).

4. Conclusions

In this work, water-soluble M(0)NPs-CS were prepared starting from RhCl3 × 3H2O
or RuCl3 in an aqueous environment using chitosan (CS) as a ligand, pre-reduced before
use with NaBH4. FT-IR of M(0)NPs-CS showed no substantial differences from CS, while
TGA highlighted higher stabilization of Rh(0)-CS and Ru(0)-CS than CS. As regards EDX
analysis, Rh(0)-CS and Ru(0)-CS appeared to be homogeneously dispersed within the
polymer matrix, and no areas of higher metal concentration were noted, as would be
observed in the case of nanoparticle aggregation. SEM and XRD analyses further confirmed
that the particles had dimensions on the order of nanometres.

The catalytic efficiency of Rh(0)-CS and Ru(0)-CS nanoparticles was tested in hydro-
genation reactions of model substrates such as (E)-cinnamaldehyde (I) and levulinic acid
(V), important platform chemicals of strong industrial interest. Rh(0)-CS made it possible
to achieve complete conversions of (I) at 80 ◦C and p(H2) 10 atm by 16 h, with selectivity in
(II) of up to 84%, although the latter detectably decreased upon recycling. Additionally, for
the hydrogenation of levulinic acid (V), complete conversions were obtained with Rh(0)-CS
at lower reaction temperatures (50 ◦C).

In contrast, Ru(0)-CS was less active for the hydrogenation of (I), requiring higher
reaction temperatures than Rh(0)-CS, yet leading to higher selectivity in (III) (91–100%).
Interestingly, Ru(0)-CS was more efficient for the hydrogenation of levulinic acid (V),
giving total conversion and selectivity in γ-valerolactone (VI) even after three recycling
tests. Comparison with literature data highlighted that M(0)NPs-CS have very high per-
formances compared to the best heterogeneous catalysis known for the hydrogenation
of (E)-cinnamaldehyde and levulinic acid. Further studies are ongoing in the presence
of other water-soluble bio-derived substrates, bearing suitable functional groups for the
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anchoring of M(0)NPs, in order to compare their catalytic efficiency to those of M(0)NPs-CS
as reported in this work.
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