Pioglitazone Phases and Metabolic Effects in Nanoparticle-Treated Cells Analyzed via Rapid Visualization of FLIM Images
Abstract
:1. Introduction
2. Results
2.1. Phases of Pioglitazone (PGZ)
2.2. Phasors of PGZ-Loaded PLGA NPs
2.3. Autofluorescence Characteristics Changes in INS-1E Cell in the Presence of PGZ-Loaded PLGA NPs
3. Discussion and Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis and Characterization of PGZ-Loaded PLGA Nanoparticles
4.3. INS-1E Cell Culture
4.4. FLIM Setup
4.5. Phasor Visualization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitali, M.; Picazo, F.; Prokazov, Y.; Duci, A.; Turbin, E.; Götze, C.; Llopis, J.; Hartig, R.; Visser, A.J.W.G.; Zuschratter, W. Wide-Field Multi-Parameter FLIM: Long-Term Minimal Invasive Observation of Proteins in Living Cells. PLoS ONE 2011, 6, e15820. [Google Scholar] [CrossRef] [PubMed]
- Stringari, C.; Cinquin, A.; Cinquin, O.; Digman, M.A.; Donovan, P.J.; Gratton, E. Phasor Approach to Fluorescence Lifetime Microscopy Distinguishes Different Metabolic States of Germ Cells in a Live Tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 13582–13587. [Google Scholar] [CrossRef]
- Sameni, S.; Syed, A.; Marsh, J.L.; Digman, M.A. The Phasor-FLIM Fingerprints Reveal Shifts from OXPHOS to Enhanced Glycolysis in Huntington Disease. Sci. Rep. 2016, 6, 34755. [Google Scholar] [CrossRef] [PubMed]
- Lakner, P.H.; Monaghan, M.G.; Möller, Y.; Olayioye, M.A.; Schenke-Layland, K. Applying Phasor Approach Analysis of Multiphoton FLIM Measurements to Probe the Metabolic Activity of Three-Dimensional in Vitro Cell Culture Models. Sci. Rep. 2017, 7, 42730. [Google Scholar] [CrossRef] [PubMed]
- Bec, J.; Vela, D.; Phipps, J.E.; Agung, M.; Unger, J.; Margulies, K.B.; Southard, J.A.; Buja, L.M.; Marcu, L. Label-Free Visualization and Quantification of Biochemical Markers of Atherosclerotic Plaque Progression Using Intravascular Fluorescence Lifetime. JACC Cardiovasc. Imaging 2021, 14, 1832–1842. [Google Scholar] [CrossRef]
- Goryashchenko, A.S.; Pakhomov, A.A.; Ryabova, A.V.; Romanishkin, I.D.; Maksimov, E.G.; Orsa, A.N.; Serova, O.V.; Mozhaev, A.A.; Maksimova, M.A.; Martynov, V.I.; et al. FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor. Biosensors 2021, 11, 340. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, L.A.; De Lorenzi, V.; Bernardi, M.; Ghignoli, S.; Tesi, M.; Marchetti, P.; Pesce, L.; Cardarelli, F. Unveiling Nanoscale Optical Signatures of Cytokine-Induced β-Cell Dysfunction. Sci. Rep. 2023, 13, 13342. [Google Scholar] [CrossRef]
- Dai, X.; Yue, Z.; Eccleston, M.E.; Swartling, J.; Slater, N.K.H.; Kaminski, C.F. Fluorescence Intensity and Lifetime Imaging of Free and Micellar-Encapsulated Doxorubicin in Living Cells. Nanomed. Nanotechnol. Biol. Med. 2008, 4, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Saxl, T.; Khan, F.; Matthews, D.R.; Zhi, Z.-L.; Rolinski, O.; Ameer-Beg, S.; Pickup, J. Fluorescence Lifetime Spectroscopy and Imaging of Nano-Engineered Glucose Sensor Microcapsules Based on Glucose/Galactose-Binding Protein. Biosens. Bioelectron. 2009, 24, 3229–3234. [Google Scholar] [CrossRef]
- Duong, H.T.T.; Hughes, F.; Sagnella, S.; Kavallaris, M.; Macmillan, A.; Whan, R.; Hook, J.; Davis, T.P.; Boyer, C. Functionalizing Biodegradable Dextran Scaffolds Using Living Radical Polymerization: New Versatile Nanoparticles for the Delivery of Therapeutic Molecules. Mol. Pharm. 2012, 9, 3046–3061. [Google Scholar] [CrossRef]
- Cardarelli, F.; Beltram, F.; Tentori, P.; Caracciolo, G.; Pozzi, D. Determination of the Supramolecular Organization of Encapsulated Molecules by Luminescence Lifetime Analysis. US Patent 11,913,882, 8 November 2021. [Google Scholar]
- Zhang, X.; Shastry, S.; Bradforth, S.E.; Nadeau, J.L. Nuclear Uptake of Ultrasmall Gold-Doxorubicin Conjugates Imaged by Fluorescence Lifetime Imaging Microscopy (FLIM) and Electron Microscopy. Nanoscale 2015, 7, 240–251. [Google Scholar] [CrossRef]
- Piccirillo, G.; Bochicchio, B.; Pepe, A.; Schenke-Layland, K.; Hinderer, S. Electrospun Poly-l-Lactide Scaffold for the Controlled and Targeted Delivery of a Synthetically Obtained Diclofenac Prodrug to Treat Actinic Keratosis. Acta Biomater. 2017, 52, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Saari, H.; Lisitsyna, E.; Rautaniemi, K.; Rojalin, T.; Niemi, L.; Nivaro, O.; Laaksonen, T.; Yliperttula, M.; Vuorimaa-Laukkanen, E. FLIM Reveals Alternative EV-Mediated Cellular up-Take Pathways of Paclitaxel. J. Control. Release 2018, 284, 133–143. [Google Scholar] [CrossRef]
- Tentori, P.; Signore, G.; Camposeo, A.; Carretta, A.; Ferri, G.; Pingue, P.; Luin, S.; Pozzi, D.; Gratton, E.; Beltram, F.; et al. Fluorescence Lifetime Microscopy Unveils the Supramolecular Organization of Liposomal Doxorubicin. Nanoscale 2022, 14, 8901–8905. [Google Scholar] [CrossRef] [PubMed]
- Angiolini, L.; Cohen, B.; Douhal, A. Single Crystal FLIM Characterization of Clofazimine Loaded in Silica-Based Mesoporous Materials and Zeolites. Int. J. Mol. Sci. 2019, 20, 2859. [Google Scholar] [CrossRef]
- Bruun, K.; Hille, C. Study on Intracellular Delivery of Liposome Encapsulated Quantum Dots Using Advanced Fluorescence Microscopy. Sci. Rep. 2019, 9, 10504. [Google Scholar] [CrossRef]
- Bernardi, M.; Signore, G.; Moscardini, A.; Pugliese, L.A.; Pesce, L.; Beltram, F.; Cardarelli, F. Fluorescence Lifetime Nanoscopy of Liposomal Irinotecan Onivyde: From Manufacturing to Intracellular Processing. ACS Appl. Bio Mater. 2023, 6, 4277–4289. [Google Scholar] [CrossRef]
- Bowman, A.J.; Huang, C.; Schnitzer, M.J.; Kasevich, M.A. Wide-Field Fluorescence Lifetime Imaging of Neuron Spiking and Subthreshold Activity In Vivo. Science 2023, 380, 1270–1275. [Google Scholar] [CrossRef] [PubMed]
- Liput, D.J.; Nguyen, T.A.; Augustin, S.M.; Lee, J.O.; Vogel, S.S. A Guide to Fluorescence Lifetime Microscopy and Förster’s Resonance Energy Transfer in Neuroscience. Curr. Protoc. Neurosci. 2020, 94, e108. [Google Scholar] [CrossRef]
- Alfonso-Garcia, A.; Bec, J.; Weyers, B.; Marsden, M.; Zhou, X.; Li, C.; Marcu, L. Mesoscopic Fluorescence Lifetime Imaging: Fundamental Principles, Clinical Applications and Future Directions. J. Biophotonics 2021, 14, e202000472. [Google Scholar] [CrossRef]
- Gouzou, D.; Taimori, A.; Haloubi, T.; Finlayson, N.; Wang, Q.; Hopgood, J.R.; Vallejo, M. Applications of Machine Learning in Time-Domain Fluorescence Lifetime Imaging: A Review. Methods Appl. Fluoresc. 2024, 12, 022001. [Google Scholar] [CrossRef] [PubMed]
- Stringari, C.; Nourse, J.L.; Flanagan, L.A.; Gratton, E. Phasor Fluorescence Lifetime Microscopy of Free and Protein-Bound NADH Reveals Neural Stem Cell Differentiation Potential. PLoS ONE 2012, 7, e48014. [Google Scholar] [CrossRef] [PubMed]
- Theurey, P.; Connolly, N.M.C.; Fortunati, I.; Basso, E.; Lauwen, S.; Ferrante, C.; Moreira Pinho, C.; Joselin, A.; Gioran, A.; Bano, D.; et al. Systems Biology Identifies Preserved Integrity but Impaired Metabolism of Mitochondria Due to a Glycolytic Defect in Alzheimer’s Disease Neurons. Aging Cell 2019, 18, e12924. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.T.; Yao, R.; Sinsuebphon, N.; Rudkouskaya, A.; Un, N.; Mazurkiewicz, J.; Barroso, M.; Yan, P.; Intes, X. Fast Fit-Free Analysis of Fluorescence Lifetime Imaging via Deep Learning. Proc. Natl. Acad. Sci. USA 2019, 116, 24019–24030. [Google Scholar] [CrossRef] [PubMed]
- Oasa, S.; Krmpot, A.J.; Nikolić, S.N.; Clayton, A.H.A.; Tsigelny, I.F.; Changeux, J.-P.; Terenius, L.; Rigler, R.; Vukojević, V. Dynamic Cellular Cartography: Mapping the Local Determinants of Oligodendrocyte Transcription Factor 2 (OLIG2) Function in Live Cells Using Massively Parallel Fluorescence Correlation Spectroscopy Integrated with Fluorescence Lifetime Imaging Microscopy (mpFCS/FLIM). Anal. Chem. 2021, 93, 12011–12021. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-I.; Chang, Y.-J.; Liao, S.-C.; Nguyen, T.D.; Yang, J.; Kuo, Y.-A.; Hong, S.; Liu, Y.-L.; Rylander, H.G.; Santacruz, S.R.; et al. Generative Adversarial Network Enables Rapid and Robust Fluorescence Lifetime Image Analysis in Live Cells. Commun. Biol. 2022, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Ragan, C.I.; Garland, P.B. The Intra-Mitochondrial Localization of Flavoproteins Previously Assigned to the Respiratory Chain. Eur. J. Biochem. 1969, 10, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R.; Szmacinski, H.; Nowaczyk, K.; Johnson, M.L. Fluorescence Lifetime Imaging of Free and Protein-Bound NADH. Proc. Natl. Acad. Sci. USA 1992, 89, 1271–1275. [Google Scholar] [CrossRef]
- Ferri, G.; Tesi, M.; Massarelli, F.; Marselli, L.; Marchetti, P.; Cardarelli, F. Metabolic Response of Insulinoma 1E Cells to Glucose Stimulation Studied by Fluorescence Lifetime Imaging. FASEB BioAdv. 2020, 2, 409–418. [Google Scholar] [CrossRef]
- Azzarello, F.; Pesce, L.; De Lorenzi, V.; Ferri, G.; Tesi, M.; Del Guerra, S.; Marchetti, P.; Cardarelli, F. Single-Cell Imaging of α and β Cell Metabolic Response to Glucose in Living Human Langerhans Islets. Commun. Biol. 2022, 5, 1232. [Google Scholar] [CrossRef]
- Malacrida, L. Phasor Plots and the Future of Spectral and Lifetime Imaging. Nat. Methods 2023, 20, 965–967. [Google Scholar] [CrossRef] [PubMed]
- SIMFCS. Available online: https://Www.Lfd.Uci.Edu/Globals/ (accessed on 30 April 2024).
- Gottlieb, D.; Asadipour, B.; Kostina, P.; Ung, T.P.L.; Stringari, C. FLUTE: A Python GUI for Interactive Phasor Analysis of FLIM Data. Biol. Imaging 2023, 3, e21. [Google Scholar] [CrossRef] [PubMed]
- Hanley, Q.S.; Lidke, K.A.; Heintzmann, R.; Arndt-Jovin, D.J.; Jovin, T.M. Fluorescence Lifetime Imaging in an Optically Sectioning Programmable Array Microscope (PAM). Cytometry A 2005, 67, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.; Cardarelli, F. Phasor Identifier: A Cloud-Based Analysis of Phasor-FLIM Data on Python Notebooks. Biophys. Rep. 2023, 3, 100135. [Google Scholar] [CrossRef] [PubMed]
- Makadia, H.K.; Siegel, S.J. Poly Lactic-Co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011, 3, 1377–1397. [Google Scholar] [CrossRef] [PubMed]
- Alsaab, H.O.; Alharbi, F.D.; Alhibs, A.S.; Alanazi, N.B.; Alshehri, B.Y.; Saleh, M.A.; Alshehri, F.S.; Algarni, M.A.; Almugaiteeb, T.; Uddin, M.N.; et al. PLGA-Based Nanomedicine: History of Advancement and Development in Clinical Applications of Multiple Diseases. Pharmaceutics 2022, 14, 2728. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cheng, D.; Niu, B.; Wang, X.; Wu, X.; Wang, A. Properties of Poly (Lactic-Co-Glycolic Acid) and Progress of Poly (Lactic-Co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals 2023, 16, 454. [Google Scholar] [CrossRef] [PubMed]
- Patil, Y.B.; Toti, U.S.; Khdair, A.; Ma, L.; Panyam, J. Single-Step Surface Functionalization of Polymeric Nanoparticles for Targeted Drug Delivery. Biomaterials 2009, 30, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Todaro, B.; Ottalagana, E.; Luin, S.; Santi, M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023, 15, 1648. [Google Scholar] [CrossRef]
- Abd Ellah, N.H.; Abouelmagd, S.A. Surface Functionalization of Polymeric Nanoparticles for Tumor Drug Delivery: Approaches and Challenges. Expert Opin. Drug Deliv. 2017, 14, 201–214. [Google Scholar] [CrossRef]
- Hickey, J.W.; Santos, J.L.; Williford, J.-M.; Mao, H.-Q. Control of Polymeric Nanoparticle Size to Improve Therapeutic Delivery. J. Control. Release 2015, 219, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-Based Nanoparticles: An Overview of Biomedical Applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Ghitman, J.; Biru, E.I.; Stan, R.; Iovu, H. Review of Hybrid PLGA Nanoparticles: Future of Smart Drug Delivery and Theranostics Medicine. Mater. Des. 2020, 193, 108805. [Google Scholar] [CrossRef]
- Ding, D.; Zhu, Q. Recent Advances of PLGA Micro/Nanoparticles for the Delivery of Biomacromolecular Therapeutics. Mater. Sci. Eng. C 2018, 92, 1041–1060. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Wang, L.; Deng, G.; Liu, J.; Chen, Q.; Chen, Z. Systemic Delivery to Central Nervous System by Engineered PLGA Nanoparticles. Am. J. Transl. Res. 2016, 8, 749–764. [Google Scholar]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sun, X.; Yin, M.; Shen, J.; Yan, S. Recent Advances in Nanoparticle-Mediated Co-Delivery System: A Promising Strategy in Medical and Agricultural Field. Int. J. Mol. Sci. 2023, 24, 5121. [Google Scholar] [CrossRef] [PubMed]
- Taghavizadeh Yazdi, M.E.; Qayoomian, M.; Beigoli, S.; Boskabady, M.H. Recent Advances in Nanoparticle Applications in Respiratory Disorders: A Review. Front. Pharmacol. 2023, 14, 1059343. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Islam, M.R.; Akash, S.; Harun-Or-Rashid, M.; Ray, T.K.; Rahaman, M.S.; Islam, M.; Anika, F.; Hosain, M.K.; Aovi, F.I.; et al. Recent Advancements of Nanoparticles Application in Cancer and Neurodegenerative Disorders: At a Glance. Biomed. Pharmacother. 2022, 153, 113305. [Google Scholar] [CrossRef]
- Todaro, B.; Begarani, F.; Sartori, F.; Luin, S. Is Raman the Best Strategy towards the Development of Non-Invasive Continuous Glucose Monitoring Devices for Diabetes Management? Front. Chem. 2022, 10, 994272. [Google Scholar] [CrossRef]
- Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; Cañizo-Gómez, F.J.D. Update on the Treatment of Type 2 Diabetes Mellitus. World J. Diabetes 2016, 7, 354. [Google Scholar] [CrossRef] [PubMed]
- Todaro, B.; Moscardini, A.; Luin, S. Pioglitazone-Loaded PLGA Nanoparticles: Towards the Most Reliable Synthesis Method. Int. J. Mol. Sci. 2022, 23, 2522. [Google Scholar] [CrossRef] [PubMed]
- Modena, M.M.; Rühle, B.; Burg, T.P.; Wuttke, S. Nanoparticle Characterization: What to Measure? Adv. Mater. 2019, 31, 1901556. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, S.F.; Bharadwaj, P.; Leblond Chain, J.; Roullin, V.G. Purification Processes of Polymeric Nanoparticles: How to Improve Their Clinical Translation? J. Control. Release 2023, 360, 591–612. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, X.; Mi, Y.; Zhang, B.; Gu, S.; Liu, G.; Li, X. PLGA Nanoparticles for the Oral Delivery of Nuciferine: Preparation, Physicochemical Characterization and in Vitro/in Vivo Studies. Drug Deliv. 2017, 24, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, J.; Melendres, J.; Almada, M.; Burboa, M.G.; Taboada, P.; Juárez, J.; Valdez, M.A. Synthesis and Characterization of Magnetite/PLGA/Chitosan Nanoparticles. Mater. Res. Express 2015, 2, 095010. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [PubMed]
- Todaro, B.; Santi, M. Characterization and Functionalization Approaches for the Study of Polymeric Nanoparticles: The State of the Art in Italian Research. Micro 2022, 3, 9–21. [Google Scholar] [CrossRef]
- Cho, E.J.; Holback, H.; Liu, K.C.; Abouelmagd, S.A.; Park, J.; Yeo, Y. Nanoparticle Characterization: State of the Art, Challenges, and Emerging Technologies. Mol. Pharm. 2013, 10, 2093–2110. [Google Scholar] [CrossRef]
- Pandit, V.; Gorantla, R.; Devi, K.; Pai, R.; Sarasija, S. Preparation and Characterization of Pioglitazone Cyclodextrin Inclusion Complexes. J. Young Pharm. JYP 2011, 3, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Ranjit, S.; Malacrida, L.; Jameson, D.M.; Gratton, E. Fit-Free Analysis of Fluorescence Lifetime Imaging Data Using the Phasor Approach. Nat. Protoc. 2018, 13, 1979–2004. [Google Scholar] [CrossRef] [PubMed]
- Gómez, C.A.; Sutin, J.; Wu, W.; Fu, B.; Uhlirova, H.; Devor, A.; Boas, D.A.; Sakadžić, S.; Yaseen, M.A. Phasor Analysis of NADH FLIM Identifies Pharmacological Disruptions to Mitochondrial Metabolic Processes in the Rodent Cerebral Cortex. PLoS ONE 2018, 13, e0194578. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne, J.; Pepin, É.; Peyot, M.-L.; Joly, É.; Ruderman, N.B.; Poitout, V.; Madiraju, S.R.M.; Nolan, C.J.; Prentki, M. Pioglitazone Acutely Reduces Insulin Secretion and Causes Metabolic Deceleration of the Pancreatic β-Cell at Submaximal Glucose Concentrations. Endocrinology 2009, 150, 3465–3474. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne, J.; Jalbert-Arsenault, É.; Pepin, É.; Peyot, M.-L.; Ruderman, N.B.; Nolan, C.J.; Joly, E.; Madiraju, S.R.M.; Poitout, V.; Prentki, M. Pioglitazone Acutely Reduces Energy Metabolism and Insulin Secretion in Rats. Diabetes 2013, 62, 2122–2129. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, U.; Elumalai, S.; Moon, J.S.; Won, K.C. Pioglitazone-Induced AMPK-Glutaminase-1 Prevents High Glucose-Induced Pancreatic β-Cell Dysfunction by Glutathione Antioxidant System. Redox Biol. 2021, 45, 102029. [Google Scholar] [CrossRef]
- Rossetta, A.; Bernardi, M.; Cardarelli, F. Fluorescence Lifetime Analysis (FLA) for the Screening of Healthcare Nanoformulations: Towards a Compact and Versatile Device. In Proceedings of the Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications XVI, San Francisco, CA, USA, 30–31 January 2024; Volume 12862, pp. 37–40. [Google Scholar]
- Merglen, A.; Theander, S.; Rubi, B.; Chaffard, G.; Wollheim, C.B.; Maechler, P. Glucose Sensitivity and Metabolism-Secretion Coupling Studied during Two-Year Continuous Culture in INS-1E Insulinoma Cells. Endocrinology 2004, 145, 667–678. [Google Scholar] [CrossRef]
Size (nm) | PDI | ζ Potential (mV) | EE % | ||
---|---|---|---|---|---|
PGZ-loaded PLGA NPs | Average | 143.32 | 0.25 | −11.27 | 27.37 |
SEM | 2.61 | 0.02 | 0.21 | 0.67 | |
Empty NPs | Average | 131.92 | 0.12 | −13.76 | / |
SEM | 3.76 | 0.01 | 2.11 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todaro, B.; Pesce, L.; Cardarelli, F.; Luin, S. Pioglitazone Phases and Metabolic Effects in Nanoparticle-Treated Cells Analyzed via Rapid Visualization of FLIM Images. Molecules 2024, 29, 2137. https://doi.org/10.3390/molecules29092137
Todaro B, Pesce L, Cardarelli F, Luin S. Pioglitazone Phases and Metabolic Effects in Nanoparticle-Treated Cells Analyzed via Rapid Visualization of FLIM Images. Molecules. 2024; 29(9):2137. https://doi.org/10.3390/molecules29092137
Chicago/Turabian StyleTodaro, Biagio, Luca Pesce, Francesco Cardarelli, and Stefano Luin. 2024. "Pioglitazone Phases and Metabolic Effects in Nanoparticle-Treated Cells Analyzed via Rapid Visualization of FLIM Images" Molecules 29, no. 9: 2137. https://doi.org/10.3390/molecules29092137
APA StyleTodaro, B., Pesce, L., Cardarelli, F., & Luin, S. (2024). Pioglitazone Phases and Metabolic Effects in Nanoparticle-Treated Cells Analyzed via Rapid Visualization of FLIM Images. Molecules, 29(9), 2137. https://doi.org/10.3390/molecules29092137