Synthesis of 5-(Aryl)amino-1,2,3-triazole-containing 2,1,3-Benzothiadiazoles via Azide–Nitrile Cycloaddition Followed by Buchwald–Hartwig Reaction
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Optical and Electrochemical Investigation
2.3. Electroluminescent Properties of 6d
3. Materials and Methods
3.1. General Information
3.2. Preparation and Characterization of Starting Compounds 2, 3a and 3b
- 4-(4-Methoxyphenyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[c][1,2,5]thiadiazole (2). Under argon in a Schlenk tube with a magnetic stirring bar, 1 (321 mg, 1.0 mmol, 1.0 equiv.), KOAc (294 mg, 3.0 mmol, 3 equiv.) and bis(pinacolato)diboron (279 mg, 1.1 mmol, 1.1 equiv.) were added followed by dry dioxane (15 mL). The solution was degassed by argon before adding PdCl2(dppf) (14 mg, 0.02 equiv.). Then, the reaction mixture was stirred at 95 °C (oil bath temperature) for 24 h. After cooling to room temperature, the mixture was poured into water and extracted with dichloromethane (3 × 10 mL). The combined organic phases were washed with brine, dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. Purification by chromatography (eluent–hexane: ethyl acetate 5:1) gave 2 (233 mg, 63%) as a white solid. 1H NMR (400 MHz, chloroform-d) δ 8.23 (d, J = 7.0 Hz, 1H), 7.91 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 7.0 Hz, 1H), 7.04 (d, J = 8.3 Hz, 2H), 3.86 (s, 3H), 1.44 (s, 12H). 13C NMR (101 MHz, chloroform-d) δ 160.1, 158.2, 153.4, 139.3, 136.9, 130.7, 129.8, 126.3, 114.1, 84.3, 55.4, 25.0, missing one carbon (C-B) due to interaction with the boron atom. HRMS (ESI) of C19H21BN2O3S, m/z: calcd for [M+H]+: 369.1442, found: 369.1448.
- 2-(4-(7-(4-Methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)acetonitrile (3a). The title compound was synthesized according to the literature procedure [33] from 1 and 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetonitrile as a yellow solid (67% yield). 1H NMR (400 MHz, chloroform-d) δ 7.98 (d, J = 8.3 Hz, 2H), 7.94 (d, J = 8.9 Hz, 2H), 7.75 (d, J = 4.1 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.9 Hz, 2H), 3.90 (s, 3H), 3.85 (s, 2H). 13C NMR (101 MHz, chloroform-d) δ 160.1, 154.3, 154.1, 137.5, 133.6, 131.7, 130.6, 130.0, 129.9, 128.4, 128.3, 127.3, 117.8, 114.3, 110.1, 55.5, 23.6. HRMS (ESI) of C21H15N3OS, m/z: calcd for [M+H]+ 358.1008, found: 358.1009.
- 2-(2-(7-(4-Methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)acetonitrile (3b). The title compound was synthesized according to the literature procedure [33] from 2 and 2-(2-bromophenyl)acetonitrile as a yellow solid (66% yield). 1H NMR (400 MHz, chloroform-d) δ 7.96 (d, J = 8.7 Hz, 2H), 7.77 (d, J = 7.2 Hz, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 7.2 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.44 (d, J = 7.3 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 3.91 (s, 3H), 3.66 (s, 2H). 13C NMR (101 MHz, chloroform-d) δ 160.2, 154.3, 153.7, 137.4, 134.3, 131.3, 131.3, 130.7, 130.5, 129.6, 129.4, 129.2, 129.1, 128.5, 127.1, 118.1, 114.3, 55.6, 22.7. HRMS (ESI) of C21H15N3OS, m/z: calcd for [M+H]+ 358.1009, found: 358.1005.
3.3. Preparation and Characterization of Novel Compounds
3.3.1. General Procedure A for Preparation of BTD-Containing 5-Amino-1,2,3-triazoles 4a–g via Dipolar Azide–Nitrile Cycloaddition (DCR)
- 1-Benzyl-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1H-1,2,3-triazol-5-amine (4a). Compound 4a was synthesized according to the general procedure A (yield 94%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.00 (d, J = 8.2 Hz, 2H), 7.89 (d, J = 8.7 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 7.4 Hz, 1H), 7.69 (d, J = 7.2 Hz, 1H), 7.39–7.31 (m, 4H), 7.24 (d, J = 5.4 Hz, 1H), 7.05 (d, J = 8.5 Hz, 2H), 5.45 (s, 2H), 3.86 (s, 3H), 3.76 (s, 2H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.2, 137.7, 136.1, 134.2, 133.1, 132.1, 131.6, 130.6, 130.0, 129.9 (d, J = 7.8 Hz), 129.4, 128.8, 128.2, 127.4, 127.4, 125.8, 114.2, 55.5, 50.9. HRMS (ESI) of C28H23N6OS, m/z: calcd for [M+H]+ 491.1649, found: 491.1652.
- 4-(4-(7-(4-Methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1-phenethyl-1H-1,2,3-triazol-5-amine (4b). Compound 4b was synthesized according to the general procedure A (yield 64%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.03 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.8 Hz, 2H), 7.82–7.74 (m, 4H), 7.31 (q, J = 5.9 Hz, 3H), 7.14–7.08 (m, 4H), 4.46 (t, J = 6.6 Hz, 2H), 3.91 (s, 3H), 3.24 (t, J = 6.5 Hz, 2H), 3.09 (s, 2H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.2, 138.0, 137.8, 136.1, 133.1, 132.2, 131.8, 131.0, 130.6, 130.0, 129.8, 129.2, 129.1, 128.2, 127.4, 126.0, 114.3, 55.5, 48.4, 36.5. HRMS (ESI) of C29H24N6OS, m/z: calcd for [M+H]+ 505.1805, found: 505.1806.
- 1-Cinnamyl-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1H-1,2,3-triazol-5-amine (4c). Compound 4c was synthesized according to the general procedure A (yield 62%) as a red solid. 1H NMR (400 MHz, chloroform-d) δ 8.07 (d, J = 8.3 Hz, 2H), 7.94 (d, J = 8.8 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.81 (d, J = 7.3 Hz, 1H), 7.76 (s, 1H), 7.41–7.38 (m, 2H), 7.36–7.33 (m, 2H), 7.32–7.30 (m, 1H), 7.09 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 15.9 Hz, 1H), 6.40–6.34 (m, 1H), 5.10 (d, J = 6.2 Hz, 2H), 4.00 (s, 2H), 3.90 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.2, 137.9, 136.2, 135.5, 134.4, 133.1, 132.2, 131.7, 131.0, 130.6, 130.0, 129.9, 128.9, 128.7, 128.2, 127.5, 126.8, 125.9, 121.9, 114.3, 55.5, 49.4. HRMS (ESI) of C30H24N6OS, m/z: calcd for [M+H]+ 517.1805, found: 517.1807.
- 1-(4-Methoxyphenyl)-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1H-1,2,3-triazol-5-amine (4d). Compound 4d was synthesized according to the general procedure A (yield 81%) as a red solid. 1H NMR (400 MHz, DMSO-d6) δ 8.11 (d, J = 8.4 Hz, 2H), 8.00 (t, J = 7.9 Hz, 5H), 7.91 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 8.6 Hz, 2H), 7.20–7.10 (m, 4H), 5.83 (s, 2H), 3.86 (s, 6H). 13C NMR (101 MHz, DMSO-d6) δ 159.6, 159.5, 153.5, 153.4, 139.7, 134.2, 132.6, 132.0, 131.7, 131.2, 130.3, 129.3, 129.2, 129.2, 129.0, 128.0, 128.80, 127.6, 127.5, 126.6, 124.7, 55.6, 55.3. HRMS (ESI) of C28H22N6O2S, m/z: calcd for [M+H]+ 507.1598, found: 507.1593.
- 4-(4-(7-(4-Methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1-p-tolyl-1H-1,2,3-triazol-5-amine (4e). Compound 4e was synthesized according to the general procedure A (yield 75%) as a red solid. 1H NMR (400 MHz, chloroform-d) δ 8.08 (d, J = 7.8 Hz, 2H), 7.93 (t, J = 6.6 Hz, 4H), 7.81 (d, J = 7.2 Hz, 1H), 7.74 (d, J = 7.4 Hz, 1H), 7.50 (d, J = 7.8 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 4.15 (s, 2H), 3.90 (s, 3H), 2.46 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.2, 139.9, 137.9, 136.0, 133.1, 132.6, 132.1, 131.6, 130.6, 130.6, 129.9, 129.4, 128.2, 127.5, 125.7, 124.5, 114.2, 110.2, 55.5, 21.4. HRMS (ESI) of C28H23N6OS, m/z: calcd for [M+H]+ 491.1649, found: 491.1654.
- 1-Benzyl-4-(2-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1H-1,2,3-triazol-5-amine (4f). Compound 4f was synthesized according to the general procedure A (yield 84%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.85 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.5 Hz, 1H), 7.64 (d, J = 8.5 Hz, 1H), 7.53 (d, J = 5.2 Hz, 3H), 7.48 (d, J = 7.4 Hz, 1H), 7.19 (d, J = 4.8 Hz, 3H), 7.08 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 7.4 Hz, 2H), 5.19 (s, 2H), 3.91 (s, 3H), 2.83 (s, 2H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.4, 153.7, 137.4, 136.7, 134.1, 133.0, 132.3, 131.3, 131.0, 130.6, 130.5, 130.3, 129.7, 129.2, 128.9, 128.4, 128.4, 127.2, 126.9, 114.2, 55.5, 50.6. HRMS (ESI) of C28H22N6OS, m/z: calcd for [M+H]+ 491.1649, found: 491.1644.
- 4-(2-(7-(4-Methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1-p-tolyl-1H-1,2,3-triazol-5-amine (4g). Compound 4g was synthesized according to the general procedure A (yield 71%) as a red solid. 1H NMR (400 MHz, chloroform-d) δ 7.91 (d, J = 7.1 Hz, 2H), 7.76 (d, J = 7.0 Hz, 1H), 7.68 (d, J = 7.0 Hz, 1H), 7.62 (dd, J = 7.3, 1.5 Hz, 1H), 7.59–7.53 (m, 3H), 7.21 (d, J = 7.5 Hz, 2H), 7.15 (d, J = 6.9 Hz, 2H), 7.06 (d, J = 7.2 Hz, 2H), 3.88 (s, 3H), 3.33 (s, 2H), 2.35 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.6, 153.9, 139.4, 137.7, 136.9, 133.1, 132.7, 132.4, 131.5, 130.9, 130.6, 130.4, 129.8, 128.9, 128.4, 127.3, 124.0, 114.2, 55.5, 21.3. HRMS (ESI) of C28H23N6OS, m/z: calcd for [M+H]+ 491.1649, found: 491.1645.
3.3.2. General Procedure B for Preparation of N-Monosubstituted Arylamino-1,2,3-triazole- 2,1,3-Benzothiadiazoles 5a–f via BHA Reaction
- 1-Benzyl-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-N-phenyl-1H-1,2,3-triazol-5-amine (5a). Compound 5a was synthesized according to the general procedure B (yield 91%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.99 (d, J = 8.2 Hz, 2H), 7.95–7.88 (m, 4H), 7.73 (d, J = 7.4 Hz, 1H), 7.69 (d, J = 7.4 Hz, 1H), 7.35–7.28 (m, 3H), 7.25–7.17 (m, 4H), 7.07 (d, J = 8.7 Hz, 2H), 6.90 (t, J = 7.4 Hz, 1H), 6.57 (d, J = 7.9 Hz, 2H), 5.39 (s, 2H), 5.18 (s, 1H), 3.89 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.1, 143.6, 140.9, 137.1, 134.7, 133.2, 132.1, 131.8, 130.6, 130.2, 130.0, 129.6, 129.1, 128.6, 128.2, 128.0, 127.4, 126.1, 120.8, 114.3, 114.2, 55.5, 51.6. HRMS (ESI) of C34H26N6OS, m/z: calcd for [M+H]+ 567.1962, found: 567.1962.
- 1-Benzyl-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-N-o-tolyl-1H-1,2,3-triazol-5-amine (5b). Compound 5b was synthesized according to the general procedure B (yield 61%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.97 (d, J = 2.3 Hz, 4H), 7.92 (d, J = 8.6 Hz, 2H), 7.76 (d, J = 7.5 Hz, 1H), 7.71 (d, J = 7.3 Hz, 1H), 7.33–7.30 (m, 3H), 7.18 (t, J = 7.6 Hz, 3H), 7.07 (d, J = 8.6 Hz, 2H), 7.02 (t, J = 8.6 Hz, 1H), 6.86 (t, J = 7.5 Hz, 1H), 6.32 (d, J = 8.0 Hz, 1H), 5.37 (s, 2H), 4.87 (s, 1H), 3.89 (s, 3H), 2.17 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.1, 141.5, 140.7, 137.1, 134.7, 133.2, 132.1, 131.1, 130.6, 130.3, 130.0, 129.6, 129.1, 128.6, 128.2, 127.9, 127.7, 127.4, 126.1, 123.4, 120.9, 114.3, 112.9, 55.6, 51.8, 17.5. HRMS (ESI) of C35H28N6OS, m/z: calcd for [M+H]+ 581.2118, found: 581.2117.
- 1-Benzyl-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-N-p-tolyl-1H-1,2,3-triazol-5-amine (5c). Compound 5c was synthesized according to the general procedure B (yield 88%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.02 (d, J = 8.3 Hz, 2H), 7.96 (d, J = 8.4 Hz, 2H), 7.92 (d, J = 8.6 Hz, 2H), 7.76 (d, J = 7.4 Hz, 1H), 7.72 (d, J = 7.4 Hz, 1H), 7.32 (dd, J = 4.8, 1.8 Hz, 3H), 7.22 (dd, J = 6.5, 2.8 Hz, 2H), 7.08 (d, J = 8.6 Hz, 2H), 7.03 (d, J = 8.1 Hz, 2H), 6.50 (d, J = 8.2 Hz, 2H), 5.39 (s, 2H), 4.95 (s, 1H), 3.89 (s, 3H), 2.28 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.1, 141.2, 140.6, 137.0, 134.8, 133.1, 132.3, 132.1, 130.5, 130.4, 129.5, 129.0, 128.5, 128.2, 128.0, 127.4, 126.1, 120.7, 114.4, 114.2, 55.5, 51.5, 20.6. HRMS (ESI) of C35H28N6OS, m/z: calcd for [M+H]+ 581.2118, found: 581.2114.
- N-(1-Benzyl-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1H-1,2,3-triazol-5-yl)pyridin-3-amine (5d). Compound 5d was synthesized according to the general procedure B (yield 55%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.06 (s, 2H), 7.91–7.86 (m, 5H), 7.66–7.62 (m, 2H), 7.54–7.43 (m, 1H), 7.25–7.21 (m, 3H), 7.19 (s, 2H), 7.05 (d, J = 8.5 Hz, 2H), 7.00–6.95 (m, 1H), 6.58 (d, J = 8.3 Hz, 1H), 6.16 (s, 1H), 5.41 (s, 2H), 3.88 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.2, 154.0, 141.4, 141.1, 140.4, 137.3, 136.9, 134.3, 133.2, 132.1, 131.8, 130.7, 130.6, 129.7, 129.6, 129.1, 128.7, 128.3, 128.0, 127.3, 126.1, 124.2, 120.4, 114.2, 55.5, 51.8. HRMS (ESI) of C33H25N7OS, m/z: calcd for [M+H]+ 568.1914, found: 568.1906.
- 1-Benzyl-N-(4-methoxyphenyl)-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1H-1,2,3-triazol-5-amine (5e). Compound 5e was synthesized according to the general procedure B (yield 59%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.01–7.93 (m, 4H), 7.91 (d, J = 8.7 Hz, 2H), 7.74 (d, J = 7.4 Hz, 1H), 7.69 (d, J = 7.3 Hz, 1H), 7.32–7.29 (m, 3H), 7.21 (dd, J = 6.8, 2.8 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.77 (d, J = 8.8 Hz, 2H), 6.53 (d, J = 8.8 Hz, 2H), 5.38 (s, 2H), 5.05 (s, 1H), 3.89 (s, 3H), 3.75 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.4, 154.3, 154.1, 140.2, 137.1, 137.1, 134.7, 133.2, 132.9, 132.1, 130.6, 130.0, 129.6, 129.0, 128.6, 128.2, 128.0, 127.4, 126.2, 116.0, 115.3, 114.3, 55.8, 55.5, 51.6. HRMS (ESI) of C35H28N6O2S, m/z: calcd for [M+H]+ 597.2067, found: 597.2064.
- 4-(4-(7-(4-Methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1-phenethyl-N-p-tolyl-1H-1,2,3-triazol-5-amine (5f). Compound 5f was synthesized according to the general procedure B (yield 53%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.96–7.90 (m, 6H), 7.72 (q, J = 7.4 Hz, 2H), 7.34–7.30 (m, 3H), 7.08 (d, J = 8.8 Hz, 2H), 7.06–7.03 (m, 2H), 6.98 (d, J = 8.0 Hz, 2H), 6.33 (d, J = 8.4 Hz, 2H), 4.40 (t, J = 6.8 Hz, 2H), 4.21 (s, 1H), 3.89 (s, 3H), 3.20 (t, J = 6.8 Hz, 2H), 2.24 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.1, 141.2, 140.1, 138.0, 136.9, 133.1, 132.5, 132.2, 130.6, 130.4, 130.4, 130.0, 129.9, 129.5, 129.2, 129.0, 128.2, 127.4, 127.4, 126.2, 114.2, 114.1, 55.5, 48.9, 36.8, 20.6. HRMS (ESI) of C36H30N6OS, m/z: calcd for [M+H]+ 595.2275, found: 595.2272.
3.3.3. General Procedure C for Preparation N,N-Disubstituted-arylamino-1,2,3-triazole- 2,1,3-Benzothiadiazoles 6a–l and 7a–d via BHA Reaction
- 1-Benzyl-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-N,N-diphenyl-1H-1,2,3-triazol-5-amine (6a). Compound 6a was synthesized according to the general procedure C (yield 96%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.0–7.9 (m, 3H), 7.9–7.9 (m, 3H), 7.7 (d, J = 4.0 Hz, 2H), 7.2–7.2 (m, 3H), 7.2–7.1 (m, 6H), 7.1 (d, J = 8.8 Hz, 2H), 7.0 (t, J = 7.4 Hz, 2H), 6.9 (d, J = 7.6 Hz, 4H), 5.2 (s, 2H), 3.9 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.1, 143.9, 140.6, 137.0, 135.5, 134.3, 133.1, 132.1, 130.5, 130.0, 129.7, 129.3, 129.1, 128.8, 128.4, 128.2, 127.4, 126.1, 123.5, 120.7, 114.2, 55.5, 51.8. HRMS (ESI) of C40H30N6OS, m/z: calcd for [M+H]+ 643.2275, found: 643.2275.
- 4-(4-(7-(4-Methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-N,N-diphenyl-1-p-tolyl-1H-1,2,3-triazol-5-amine (6b). Compound 6b was synthesized according to the general procedure C (yield 67%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.06 (d, J = 8.4 Hz, 2H), 7.94–7.89 (m, 4H), 7.73 (d, J = 7.4 Hz, 1H), 7.69 (d, J = 7.3 Hz, 1H), 7.25–7.23 (m, 2H), 7.17 (t, J = 7.9 Hz, 4H), 7.10 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 8.7 Hz, 2H), 6.97 (d, J = 8.3 Hz, 6H), 3.87 (s, 3H), 2.32 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.1, 144.2, 140.6, 139.7, 137.2, 135.7, 133.2, 133.2, 132.1, 130.6, 130.0, 129.8, 129.6, 129.5, 128.3, 127.4, 126.2, 124.5, 123.4, 120.7, 114.2, 55.5, 21.3. HRMS (ESI) of C40H30N6OS, m/z: calcd for [M+H]+ 643.2275, found: 643.2267; calcd for [M+Na]+ 665.2094, found: 665.2092.
- 1-(4-Methoxyphenyl)-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-N,N-diphenyl-1H-1,2,3-triazol-5-amine (6c). Compound 6c was synthesized according to the general procedure C (yield 62%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.06 (d, J = 8.1 Hz, 2H), 7.95–7.90 (m, 4H), 7.76–7.69 (m, 2H), 7.25 (s, 2H), 7.18 (t, J = 7.8 Hz, 4H), 7.07 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 7.6 Hz, 6H), 6.80 (d, J = 8.5 Hz, 2H), 3.88 (s, 3H), 3.78 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.4, 160.0, 154.3, 144.2, 137.2, 135.9, 132.1, 130.6, 130.0, 129.7, 129.5, 128.3, 127.4, 126.3, 126.1, 123.4, 120.7, 114.4, 114.3, 55.7, 55.6. HRMS (ESI) of C40H30N6O2S, m/z: calcd for [M+H]+ 659.2224, found: 659.2224.
- 4-(4-(7-(4-Methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1-phenethyl-N,N-diphenyl-1H-1,2,3-triazol-5-amine (6d). Compound 6d was synthesized according to the general procedure C (yield 83%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.98 (d, J = 8.5 Hz, 2H), 7.93–7.87 (m, 4H), 7.70 (q, J = 7.3 Hz, 2H), 7.28–7.20 (m, 8H), 7.06 (d, J = 8.9 Hz, 2H), 7.01 (d, J = 8.5 Hz, 7H), 4.29–4.22 (t, J = 7.6 Hz, 2H), 3.87 (s, 3H), 3.02–2.93 (t, J = 7.5 Hz, 2H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.1, 144.2, 140.4, 137.2, 137.1, 135.4, 133.1, 132.1, 130.5, 129.9, 129.7, 129.4, 129.0, 128.8, 128.2, 127.4, 127.0, 126.0, 123.6, 120.6, 114.2, 55.5, 49.1, 35.6. HRMS (ESI) of C41H32N6OS, m/z: calcd for [M+H]+ 657.2431, found: 657.2433; calcd for [M+K]+ 695.1990, found: 695.1990.
- 1-Benzyl-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-N,N-di(p-tolyl)-1H-1,2,3-triazol-5-amine (6e). Compound 6e was synthesized according to the general procedure C (yield 97%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.91 (dt, J = 24.0, 8.4 Hz, 7H), 7.70 (d, J = 4.3 Hz, 2H), 7.24–7.22 (m, 2H), 7.16 (t, J = 4.0 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.2 Hz, 4H), 6.78 (d, J = 8.2 Hz, 4H), 5.22 (s, 2H), 3.89 (s, 3H), 2.24 (s, 6H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.1, 141.7, 140.3, 136.9, 135.8, 134.5, 133.0, 132.8, 132.2, 130.5, 130.2, 129.2, 128.7, 128.4, 128.3, 128.1, 127.4, 126.1, 120.6, 114.2, 55.5, 51.7, 20.8. HRMS (ESI) of C42H34N6OS, m/z: calcd for [M+H]+ 671.2588, found: 671.2584; calcd for [M+Na]+ 693.2407, found: 693.2405.
- 4-(4-(7-(4-Methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-N,N,1-tri(p-tolyl)-1H-1,2,3-triazol-5-amine (6f). Compound 6f was synthesized according to the general procedure C (yield 67%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.08 (d, J = 8.2 Hz, 2H), 7.95–7.91 (m, 4H), 7.76 (d, J = 7.6 Hz, 1H), 7.71 (d, J = 7.5 Hz, 1H), 7.28 (d, J = 8.7 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 7.09 (s, 2H), 6.97 (d, J = 8.5 Hz, 4H), 6.85 (d, J = 8.1 Hz, 4H), 3.90 (s, 3H), 2.34 (s, 3H), 2.24 (s, 6H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.1, 141.9, 139.5, 137.1, 135.9, 133.4, 133.1, 132.7, 130.6, 130.2, 129.8, 129.7, 129.5, 128.3, 127.4, 126.2, 124.4, 120.5, 114.3, 110.2, 109.9, 55.6, 21.4, 20.8. HRMS (ESI) of C42H34N6OS, m/z: calcd for [M+H]+ 671.2588, found: 671.2580.
- 1-Benzyl-4-(2-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-N,N-diphenyl-1H-1,2,3-triazol-5-amine (6g). Compound 6g was synthesized according to the general procedure C (yield 67%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.94 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 7.2 Hz, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.31 (d, J = 7.7 Hz, 1H), 7.24 (d, J = 5.9 Hz, 3H), 7.10 (d, J = 8.8 Hz, 3H), 7.01–6.97 (m, 3H), 6.80 (t, J = 7.5 Hz, 4H), 6.76–6.71 (m, 2H), 6.10 (d, J = 7.8 Hz, 4H), 4.96 (s, 2H), 3.91 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 159.9, 154.9, 154.0, 143.8, 141.8, 138.1, 136.7, 134.6, 132.9, 132.4, 131.2, 130.6, 130.5, 130.1, 129.4, 128.5, 128.4, 128.2, 127.7, 123.2, 123.1, 120.9, 120.8, 114.3, 55.5, 52.3. HRMS (ESI) of C40H30N6OS, m/z: calcd for [M+H]+ 643.2275, found: 643.2273.
- 4-(2-(7-(4-Methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-N,N-diphenyl-1-p-tolyl-1H-1,2,3-triazol-5-amine (6h). Compound 6h was synthesized according to the general procedure C (yield 71%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.93 (d, J = 8.9 Hz, 2H), 7.63 (d, J = 7.3 Hz, 1H), 7.58–7.52 (m, 3H), 7.39 (d, J = 6.4 Hz, 1H), 7.22 (d, J = 8.3 Hz, 3H), 7.09 (d, J = 8.6 Hz, 2H), 6.98 (d, J = 8.2 Hz, 2H), 6.86 (t, J = 7.6 Hz, 4H), 6.74 (t, J = 7.3 Hz, 2H), 6.45 (d, J = 7.9 Hz, 4H), 3.90 (s, 3H), 2.22 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 155.0, 154.0, 144.0, 141.9, 139.0, 138.0, 133.5, 133.0, 132.6, 131.2, 131.1, 130.6, 130.1, 129.6, 129.3, 128.8, 128.4, 127.9, 126.9, 123.3, 123.0, 120.8, 114.3, 55.6, 21.2. HRMS (ESI) of C40H30N6OS, m/z: calcd for [M+H]+ 643.2275, found: 643.2271.
- 1-Benzyl-N,N-bis(4-methoxyphenyl)-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1H-1,2,3-triazol-5-amine (6i). Compound 6i was synthesized according to the general procedure C (yield 98%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.94–7.86 (m, 7H), 7.70 (d, J = 5.6 Hz, 2H), 7.25–7.24 (m, 2H), 7.18–7.15 (m, 2H), 7.07 (d, J = 9.0 Hz, 2H), 6.79 (d, J = 9.0 Hz, 4H), 6.69 (d, J = 9.1 Hz, 4H), 5.23 (s, 2H), 3.88 (s, 3H), 3.72 (s, 6H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 155.6, 154.3, 154.1, 140.1, 137.8, 136.9, 136.1, 134.6, 133.0, 132.2, 130.5, 130.0, 129.8, 129.2, 128.8, 128.3, 128.3, 128.1, 127.4, 126.1, 121.9, 114.9, 114.2, 110.1, 55.6, 55.5, 51.7. HRMS (ESI) of C42H34N6O3S, m/z: calcd for [M+H]+ 703.2486, found: 703.2480; calcd for [M+K]+ 741.2045, found: 741.2051.
- 1-Benzyl-N,N-bis(4-tert-butylphenyl)-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1H-1,2,3-triazol-5-amine (6j). Compound 6j was synthesized according to the general procedure C (yield 64%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.97 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.7 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 2.5 Hz, 2H), 7.17 (dd, J = 7.6, 4.1 Hz, 6H), 7.06 (t, J = 7.0 Hz, 4H), 6.87 (d, J = 8.6 Hz, 4H), 5.27 (s, 2H), 3.89 (s, 3H), 1.26 (s, 18H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.1, 146.1, 141.6, 140.5, 136.9, 135.8, 134.3, 133.1, 132.3, 130.6, 130.0, 129.9, 129.3, 128.7, 128.4, 128.2, 128.1, 127.4, 126.4, 126.1, 55.5, 51.4, 34.4, 31.5. HRMS (ESI) of C48H46N6OS, m/z: calcd for [M+H]+ 755.3527, found: 755.3534; calcd for [M+Na]+ 777.3346, found: 777.3333; calcd for [M+K]+ 793.3086, found: 793.3090.
- N1-(1-Benzyl-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1H-1,2,3-triazol-5-yl)-N1-(4-(dimethylamino)phenyl)-N4,N4-dimethylbenzene-1,4-diamine (6k). Compound 6k was synthesized according to the general procedure C (yield 65%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.96 (d, J = 8.5 Hz, 2H), 7.91 (d, J = 8.8 Hz, 2H), 7.86 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 5.2 Hz, 2H), 7.26–7.24 (m, 3H), 7.20–7.18 (m, 2H), 7.07 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 9.0 Hz, 4H), 6.55 (d, J = 8.9 Hz, 4H), 5.22 (s, 2H), 3.89 (s, 3H), 2.86 (s, 12H). 13C NMR (101 MHz, chloroform-d) δ 159.9, 154.3, 154.1, 146.9, 139.8, 136.6, 135.1, 134.9, 132.9, 132.4, 130.5, 130.1, 130.0, 129.2, 128.7, 128.5, 128.2, 128.1, 127.4, 126.2, 121.8, 114.2, 113.9, 55.5, 51.5, 41.2. HRMS (ESI) of C44H40N8OS, m/z: calcd for [M]+ 728.3046, found: 728.3035.
- 1-Benzyl-N,N-bis(3,5-dimethylphenyl)-4-(4-(7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-1H-1,2,3-triazol-5-amine (6l). Compound 6l was synthesized according to the general procedure C (yield 58%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.98 (d, J = 8.4 Hz, 2H), 7.93–7.87 (m, 4H), 7.74–7.69 (m, 2H), 7.26–7.23 (m, 3H), 7.20–7.17 (m, 2H), 7.07 (d, J = 8.8 Hz, 2H), 6.59 (s, 2H), 6.49 (s, 4H), 5.23 (s, 2H), 3.89 (s, 3H), 2.14 (s, 12H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.3, 154.1, 144.1, 140.5, 139.3, 139.2, 136.9, 135.9, 134.5, 133.1, 132.3, 130.5, 130.0, 129.9, 129.2, 128.7, 128.5, 128.4, 128.2, 127.4, 126.2, 125.2, 118.8, 114.2, 55.5, 51.7, 21.5. HRMS (ESI) of C35H28N6O2S, m/z: calcd for [M+H]+ 699.2901, found: 699.2896; calcd for [M+Na]+ 721.2720, found: 721.2714.
- 4-(4-(1-Benzyl-5-(9H-carbazol-9-yl)-1H-1,2,3-triazol-4-yl)phenyl)-7-(4-methoxyphenyl) benzo[c][1,2,5]thiadiazole (7a). Compound 7a was synthesized according to the general procedure C (yield 54%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.14 (d, J = 7.6 Hz, 2H), 7.88 (d, J = 8.6 Hz, 2H), 7.78 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 9.0 Hz, 4H), 7.31 (dt, J = 12.8, 7.4 Hz, 4H), 7.05 (d, J = 8.8 Hz, 3H), 6.95 (t, J = 7.6 Hz, 2H), 6.80 (d, J = 7.9 Hz, 2H), 6.71 (d, J = 7.5 Hz, 2H), 5.22 (s, 2H), 3.87 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.2, 154.0, 133.3, 133.2, 131.8, 130.5, 129.9, 129.1, 128.6, 128.4, 128.2, 128.1, 127.6, 127.3, 126.9, 125.9, 124.3, 121.6, 120.8, 114.2, 110.0, 55.5, 52.6. HRMS (ESI) of C40H28N6OS, m/z: calcd for [M+H]+ 641.2118, found: 641.2120.
- 4-(4-(1-Benzyl-5-(2,3,6,7-tetramethoxy-9H-carbazol-9-yl)-1H-1,2,3-triazol-4-yl)phenyl)-7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazole (7b). Compound 7b was synthesized according to the general procedure C (yield 48%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.89 (d, J = 8.9 Hz, 2H), 7.81 (d, J = 8.6 Hz, 2H), 7.68–7.61 (m, 4H), 7.48 (s, 2H), 7.14 (d, J = 7.4 Hz, 1H), 7.05 (d, J = 8.0 Hz, 4H), 6.82 (d, J = 7.6 Hz, 2H), 6.15 (s, 2H), 5.21 (s, 2H), 4.05 (s, 6H), 3.88 (s, 3H), 3.63 (s, 6H). 13C NMR (101 MHz, chloroform-d) δ 160.0, 154.2, 154.0, 149.0, 145.7, 142.8, 137.7, 134.4, 133.5, 133.3, 131.8, 130.5, 129.9, 129.7, 129.0, 128.6, 128.5, 128.3, 127.9, 127.3, 125.8, 116.5, 114.2, 102.3, 93.7, 56.8, 56.3, 55.5, 52.4. HRMS (ESI) of C44H36N6O5S, m/z: calcd for [M+H]+ 761.2541, found: 761.2534.
- 4-(4-(5-(9H-Carbazol-9-yl)-1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)phenyl)-7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazole (7c). Compound 7c was synthesized according to the general procedure C (yield 31%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.13 (d, J = 7.3 Hz, 2H), 7.89 (d, J = 8.8 Hz, 2H), 7.81 (d, J = 8.5 Hz, 2H), 7.68–7.63 (m, 4H), 7.39–7.30 (m, 4H), 7.17 (d, J = 9.0 Hz, 2H), 7.09–7.05 (m, 4H), 6.68 (d, J = 9.0 Hz, 2H), 3.88 (s, 3H), 3.68 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 160.3, 160.0, 154.3, 154.0, 142.6, 140.2, 137.7, 133.3, 131.9, 130.6, 129.9, 129.6, 129.0, 128.3, 127.3, 127.1, 126.1, 124.5, 124.3, 121.7, 120.9, 114.7, 114.2, 110.2, 55.5, 55.5. HRMS (ESI) of C40H28N6O2S, m/z: calcd for [M+H]+ 657.2067, found: 657.2070.
- 4-(2-(1-benzyl-5-(9H-carbazol-9-yl)-1H-1,2,3-triazol-4-yl)phenyl)-7-(4-methoxyphenyl)benzo[c][1,2,5]thiadiazole (7d). Compound 7d was synthesized according to the general procedure C (yield 51%) as a yellow solid. 1H NMR (400 MHz, chloroform-d) δ 7.85 (d, J = 7.7 Hz, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 7.8 Hz, 2H), 7.47 (m, 1H), 7.36 (m, 1H), 7.29 (d, J = 7.3 Hz, 1H), 7.23 (d, J = 7.8 Hz, 1H), 7.07 (d, J = 8.7 Hz, 5H), 6.96–6.90 (m, 3H), 6.81 (t, J = 7.5 Hz, 2H), 6.43 (d, J = 7.8 Hz, 2H), 6.22 (d, J = 7.9 Hz, 2H), 5.10 (s, 2H), 3.92 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 159.8, 153.9, 153.3, 138.3, 136.8, 133.3, 132.6, 131.7, 130.8, 130.7, 129.8, 129.5, 128.8, 128.6, 128.4, 128.2, 127.6, 126.5, 126.2, 123.6, 121.3, 120.0, 114.0, 109.0, 55.5, 53.0. HRMS (ESI) of C40H28N6OS, m/z: calcd for [M+H]+ 641.2118, found: 641.2118.
3.4. Optical and Electrochemical Investigation
3.5. Voltammetry Studies
3.6. OLED Fabrication and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anthony, J.E. The larger acenes: Versatile organic semiconductors. Angew. Chem. Int. Ed. 2008, 47, 452–483. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.D.; Fechtenkotter, A.; Mullen, K. Big is beautiful—“aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem. Rev. 2001, 101, 1267–1300. [Google Scholar] [CrossRef]
- Mitschke, U.; Bäuerle, P. The electroluminescence of organic materials. J. Mater. Chem. 2000, 10, 1471–1507. [Google Scholar] [CrossRef]
- Sukhikh, T.S.; Ogienko, D.S.; Bashirov, D.A.; Konchenko, S.N. Luminescent complexes of 2,1,3-benzothiadiazole derivatives. Russ. Chem. Bull. 2019, 68, 651–661. [Google Scholar] [CrossRef]
- Muller, C.D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Multi-colour organic light-emitting displays by solution processing. Nature 2003, 421, 829–833. [Google Scholar] [CrossRef]
- Kato, S.; Matsumoto, T.; Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Ishi-i, T.; Mataka, S. Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections. Chem. Eur. J. 2006, 12, 2303–2317. [Google Scholar] [CrossRef]
- Tsao, H.N.; Cho, D.M.; Park, I.; Hansen, M.R.; Mavrinskiy, A.; Yoon, D.Y.; Graf, R.; Pisula, W.; Spiess, H.W.; Mullen, K. Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 2011, 133, 2605–2612. [Google Scholar] [CrossRef]
- Zhang, M.; Tsao, H.N.; Pisula, W.; Yang, C.; Mishra, A.K.; Mullen, K. Field-effect transistors based on a benzothiadiazole-cyclopentadithiophene copolymer. J. Am. Chem. Soc. 2007, 129, 3472–3473. [Google Scholar] [CrossRef] [PubMed]
- Sonar, P.; Singh, S.P.; Li, Y.; Soh, M.S.; Dodabalapur, A. A low-bandgap diketopyrrolopyrrole-benzothiadiazole-based copolymer for high-mobility ambipolar organic thin-film transistors. Adv. Mater. 2010, 22, 5409–5413. [Google Scholar] [CrossRef]
- Velusamy, M.; Justin Thomas, K.R.; Lin, J.T.; Hsu, Y.C.; Ho, K.C. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. Org. Lett. 2005, 7, 1899–1902. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Li, X.; Chen, J.; Wang, Z.s.; Tian, H. Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response. Adv. Funct. Mater. 2010, 21, 756–763. [Google Scholar] [CrossRef]
- Li, Y. Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Biewer, M.C.; Stefan, M.C. Benzothiadiazole building units in solution-processable small molecules for organic photovoltaics. J. Mater. Chem. A 2016, 4, 15771–15787. [Google Scholar] [CrossRef]
- Liu, Q.; Zhan, H.; Ho, C.L.; Dai, F.R.; Fu, Y.; Xie, Z.; Wang, L.; Li, J.H.; Yan, F.; Huang, S.P.; et al. Oligothiophene-bridged bis(arylene ethynylene) small molecules for solution-processible organic solar cells with high open-circuit voltage. Chem. Asian J. 2013, 8, 1892–1900. [Google Scholar] [CrossRef] [PubMed]
- Patrizi, B.; Iagatti, A.; Abbondanza, L.; Bussotti, L.; Zanardi, S.; Salvalaggio, M.; Fusco, R.; Foggi, P. Ultrafast Intramolecular and Solvation Dynamics in 4,7-Bis (4,5-dibutylbenzo[1,2-b:4,3-b′]bisthiophene[1,2-b:4,3-b′]bisthiophen-2-yl)-2,1,3-benzothiadiazole. J. Phys. Chem. C 2019, 123, 5840–5852. [Google Scholar] [CrossRef]
- Neto, B.A.; Carvalho, P.H.; Correa, J.R. Benzothiadiazole Derivatives as Fluorescence Imaging Probes: Beyond Classical Scaffolds. Acc. Chem. Res. 2015, 48, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, S.; Dai, N.; Teo, Y.N.; Kool, E.T. Multispectral labeling of antibodies with polyfluorophores on a DNA backbone and application in cellular imaging. Proc. Natl. Acad. Sci. USA 2011, 108, 3493–3498. [Google Scholar] [CrossRef]
- Li, C.; Tang, J.; Xie, J. Synthesis of crosslinking amino acids by click chemistry. Tetrahedron 2009, 65, 7935–7941. [Google Scholar] [CrossRef]
- Moro, A.V.; Ferreira, P.C.; Migowski, P.; Rodembusch, F.S.; Dupont, J.; Lüdtke, D.S. Synthesis and photophysical properties of fluorescent 2,1,3-benzothiadiazole-triazole-linked glycoconjugates: Selective chemosensors for Ni(II). Tetrahedron 2013, 69, 201–206. [Google Scholar] [CrossRef]
- Kim, O.-K.; Lee, K.-S.; Woo, H.Y.; Kim, K.-S.; He, G.S.; Swiatkiewicz, J.; Prasad, P.N. New Class of Two-Photon-Absorbing Chromophores Based on Dithienothiophene. Chem. Mater. 2000, 12, 284–286. [Google Scholar] [CrossRef]
- Li, C.; Henry, E.; Mani, N.K.; Tang, J.; Brochon, J.C.; Deprez, E.; Xie, J. Click Chemistry to Fluorescent Amino Esters: Synthesis and Spectroscopic Studies. Eur. J. Org. Chem. 2010, 2010, 2395–2405. [Google Scholar] [CrossRef]
- Dyrager, C.; Vieira, R.P.; Nyström, S.; Nilsson, K.P.R.; Storr, T. Synthesis and evaluation of benzothiazole-triazole and benzothiadiazole-triazole scaffolds as potential molecular probes for amyloid-β aggregation. New J. Chem. 2017, 41, 1566–1573. [Google Scholar] [CrossRef]
- da Cruz, E.H.G.; Carvalho, P.H.P.R.; Corrêa, J.R.; Silva, D.A.C.; Diogo, E.B.T.; de Souza Filho, J.D.; Cavalcanti, B.C.; Pessoa, C.; de Oliveira, H.C.B.; Guido, B.C.; et al. Design, synthesis and application of fluorescent 2,1,3-benzothiadiazole-triazole-linked biologically active lapachone derivatives. New J. Chem. 2014, 38, 2569. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; He, M.; Huang, J. Synthesis of a Benzothiadiazole-Based D−A Molecule with Aggregation-Induced Emission and Controlled Assembly Properties. Processes 2021, 9, 1094. [Google Scholar] [CrossRef]
- Brombosz, S.M.; Appleton, A.L.; Zappas, A.J., 2nd; Bunz, U.H. Water-soluble benzo- and naphtho-thiadiazole-based bistriazoles and their metal-binding properties. Chem. Commun. 2010, 46, 1419–1421. [Google Scholar] [CrossRef] [PubMed]
- Lieber, E.; Chao, T.S.; Rao, C.N.R. Synthesis and Isomerization of Substituted 5-Amino-1,2,3-triazoles1. J. Org. Chem. 1957, 22, 654–662. [Google Scholar] [CrossRef]
- Cottrell, I.F.; Hands, D.; Houghton, P.G.; Humphrey, G.R.; Wright, S.H.B. An improved procedure for the preparation of 1-benzyl-1H-1,2,3-triazoles from benzyl azides. J. Heterocycl. Chem. 2009, 28, 301–304. [Google Scholar] [CrossRef]
- Pokhodylo, N.T.; Matiychuk, V.S.; Obushak, N.B. Synthesis of 1H-1,2,3-triazole derivatives by the cyclization of aryl azides with 2-benzothiazolylacetonone, 1,3-benzo-thiazol-2-ylacetonitrile, and (4-aryl-1,3-thiazol-2-yl)acetonitriles. Chem. Heterocycl. Compd. 2009, 45, 483–488. [Google Scholar] [CrossRef]
- Krishna, P.M.; Ramachary, D.B.; Peesapati, S. Azide–acetonitrile “click” reaction triggered by Cs2CO3: The atom-economic, high-yielding synthesis of 5-amino-1,2,3-triazoles. RSC Adv. 2015, 5, 62062–62066. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, T.; Fang, W.; Zhang, G.; Li, Y.; Li, Y. Synthesis of Functionalized Triazoles on DNA via Azide-Acetonitrile “Click” Reaction. Org. Lett. 2023, 25, 8326–8331. [Google Scholar] [CrossRef]
- Gribanov, P.S.; Atoian, E.M.; Philippova, A.N.; Topchiy, M.A.; Asachenko, A.F.; Osipov, S.N. One-Pot Synthesis of 5-Amino-1,2,3-triazole Derivatives via Dipolar Azide−Nitrile Cycloaddition and Dimroth Rearrangement under Solvent-Free Conditions. Eur. J. Org. Chem. 2021, 2021, 1378–1384. [Google Scholar] [CrossRef]
- Gribanov, P.S.; Philippova, A.N.; Topchiy, M.A.; Minaeva, L.I.; Asachenko, A.F.; Osipov, S.N. General Method of Synthesis of 5-(Het)arylamino-1,2,3-triazoles via Buchwald-Hartwig Reaction of 5-Amino- or 5-Halo-1,2,3-triazoles. Molecules 2022, 27, 1999. [Google Scholar] [CrossRef] [PubMed]
- Gribanov, P.S.; Lypenko, D.A.; Dmitriev, A.V.; Pozin, S.I.; Topchiy, M.A.; Asachenko, A.F.; Loginov, D.A.; Osipov, S.N. Synthesis and optical properties of novel unsymmetrically substituted benzothiadiazole-based luminophores. Mendeleev Commun. 2021, 31, 33–35. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, Z.; Huang, Z.; Liu, S.; Lu, P.; Wang, Y. Expression of anti-Kasha’s emission from amino benzothiadiazole and its utilization for fluorescent chemosensors and organic light emitting materials. J. Mater. Chem. C 2018, 6, 7864–7873. [Google Scholar] [CrossRef]
- Heravi, M.M.; Kheilkordi, Z.; Zadsirjan, V.; Heydari, M.; Malmir, M. Buchwald-Hartwig reaction: An overview. J. Organomet. Chem. 2018, 861, 17–104. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Wang, C.-L.; Bai, Y.-J.; Han, N.; Jiao, J.-P.; Qi, X.-L. A Facile Total Synthesis of Imatinib Base and Its Analogues. Org. Process Res. Dev. 2008, 12, 490–495. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Averin, A.D. Metal-catalyzed reactions for the C(sp2)–N bond formation: Achievements of recent years. Russ. Chem. Rev. 2021, 90, 1359–1396. [Google Scholar] [CrossRef]
- Dorel, R.; Grugel, C.P.; Haydl, A.M. The Buchwald-Hartwig Amination After 25 Years. Angew. Chem. Int. Ed. 2019, 58, 17118–17129. [Google Scholar] [CrossRef] [PubMed]
- Forero-Cortés, P.A.; Haydl, A.M. The 25th Anniversary of the Buchwald–Hartwig Amination: Development, Applications, and Outlook. Org. Process Res. Dev. 2019, 23, 1478–1483. [Google Scholar] [CrossRef]
- Ouyang, J.-S.; Liu, S.; Pan, B.; Zhang, Y.; Liang, H.; Chen, B.; He, X.; Chan, W.T.K.; Chan, A.S.C.; Sun, T.-Y.; et al. A Bulky and Electron-Rich N-Heterocyclic Carbene–Palladium Complex (SIPr)Ph2Pd(cin)Cl: Highly Efficient and Versatile for the Buchwald–Hartwig Amination of (Hetero)aryl Chlorides with (Hetero)aryl Amines at Room Temperature. ACS Catal. 2021, 11, 9252–9261. [Google Scholar] [CrossRef]
- Astakhov, A.V.; Chernenko, A.Y.; Kutyrev, V.V.; Ranny, G.S.; Minyaev, M.E.; Chernyshev, V.M.; Ananikov, V.P. Selective Buchwald–Hartwig arylation ofC-amino-1,2,4-triazoles and other coordinating aminoheterocycles enabled by bulky NHC ligands and TPEDO activator. Inorg. Chem. Front. 2023, 10, 218–239. [Google Scholar] [CrossRef]
- Moss, T.; Addie, M.; Nowak, T.; Waring, M. Room-Temperature Palladium-Catalyzed Coupling of Heteroaryl Amines with Aryl or Heteroaryl Bromides. Synlett 2012, 2012, 285–289. [Google Scholar] [CrossRef]
- Ouyang, J.S.; Zhang, X.; Pan, B.; Zou, H.; Chan, A.S.C.; Qiu, L. Solvent-Free Buchwald-Hartwig Amination of Heteroaryl Chlorides by N-Heterocyclic Carbene-Palladium Complex (SIPr)(Ph2)Pd(cin)Cl at Room Temperature. Org. Lett. 2023, 25, 7491–7496. [Google Scholar] [CrossRef]
- Semeniuchenko, V.; Sharif, S.; Day, J.; Chandrasoma, N.; Pietro, W.J.; Manthorpe, J.; Braje, W.M.; Organ, M.G. (DiMeIHept(Cl))Pd: A Low-Load Catalyst for Solvent-Free (Melt) Amination. J. Org. Chem. 2021, 86, 10343–10359. [Google Scholar] [CrossRef]
- Olsen, E.P.K.; Arrechea, P.L.; Buchwald, S.L. Mechanistic Insight Leads to a Ligand Which Facilitates the Palladium-Catalyzed Formation of 2-(Hetero)Arylaminooxazoles and 4-(Hetero)Arylaminothiazoles. Angew. Chem. Int. Ed. 2017, 56, 10569–10572. [Google Scholar] [CrossRef]
- Khadra, A.; Mayer, S.; Organ, M.G. Pd-PEPPSI-IPent(Cl): A Useful Catalyst for the Coupling of 2-Aminopyridine Derivatives. Chem. Eur. J. 2017, 23, 3206–3212. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.K.; Anusha, G.; Reddy, P.V.G. Sterically enriched bulky 1,3-bis(N,N′-aralkyl)benzimidazolium based Pd-PEPPSI complexes for Buchwald–Hartwig amination reactions. New J. Chem. 2020, 44, 11694–11703. [Google Scholar] [CrossRef]
- Topchiy, M.A.; Asachenko, A.F.; Nechaev, M.S. Solvent-Free Buchwald–Hartwig Reaction of Aryl and Heteroaryl Halides with Secondary Amines. Eur. J. Org. Chem. 2014, 2014, 3319–3322. [Google Scholar] [CrossRef]
- Topchiy, M.A.; Dzhevakov, P.B.; Rubina, M.S.; Morozov, O.S.; Asachenko, A.F.; Nechaev, M.S. Solvent-Free Buchwald–Hartwig (Hetero)arylation of Anilines, Diarylamines, and Dialkylamines Mediated by Expanded-Ring N-Heterocyclic Carbene Palladium Complexes. Eur. J. Org. Chem. 2016, 2016, 1908–1914. [Google Scholar] [CrossRef]
- Flahaut, A.; Roland, S.; Mangeney, P. Allylic alkylation and amination using mixed (NHC)(phosphine) palladium complexes under biphasic conditions. J. Organomet. Chem. 2007, 692, 5754–5762. [Google Scholar] [CrossRef]
- Kim, M.; Shin, T.; Lee, A.; Kim, H. Synergistic Ligand Effect between N-Heterocyclic Carbene (NHC) and Bicyclic Phosphoramidite (Briphos) Ligands in Pd-Catalyzed Amination. Organometallics 2018, 37, 3253–3258. [Google Scholar] [CrossRef]
- Chen, M.-T.; Vicic, D.A.; Turner, M.L.; Navarro, O. (N-Heterocyclic Carbene)PdCl2(TEA) Complexes: Studies on the Effect of the “Throw-Away” Ligand in Catalytic Activity. Organometallics 2011, 30, 5052–5056. [Google Scholar] [CrossRef]
- Yang, J.; Li, P.; Zhang, Y.; Wang, L. A new library of arsine, stibine-stabilized N-heterocyclic carbene palladium complexes: Synthesis, structures and activities in C-C and C-N coupling reactions. Dalton. Trans. 2014, 43, 14114–14122. [Google Scholar] [CrossRef] [PubMed]
- Ageshina, A.A.; Sterligov, G.K.; Rzhevskiy, S.A.; Topchiy, M.A.; Chesnokov, G.A.; Gribanov, P.S.; Melnikova, E.K.; Nechaev, M.S.; Asachenko, A.F.; Bermeshev, M.V. Mixed er-NHC/phosphine Pd(ii) complexes and their catalytic activity in the Buchwald-Hartwig reaction under solvent-free conditions. Dalton Trans. 2019, 48, 3447–3452. [Google Scholar] [CrossRef] [PubMed]
- Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107, 953–1010. [Google Scholar] [CrossRef] [PubMed]
- Sallenave, X.; Bucinskas, A.; Salman, S.; Volyniuk, D.; Bezvikonnyi, O.; Mimaite, V.; Grazulevicius, J.V.; Sini, G. Sensitivity of Redox and Optical Properties of Electroactive Carbazole Derivatives to the Molecular Architecture and Methoxy Substitutions. J. Phys. Chem. C 2018, 122, 10138–10152. [Google Scholar] [CrossRef]
- Riedmuller, S.; Nachtsheim, B.J. Palladium-catalyzed synthesis of N-arylated carbazoles using anilines and cyclic diaryliodonium salts. Beilstein J. Org. Chem. 2013, 9, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Kerner, L.; Gmucová, K.; Kožíšek, J.; Petříček, V.; Putala, M. Easily oxidizable triarylamine materials with naphthalene and binaphthalene core: Structure–properties relationship. Tetrahedron 2016, 72, 7081–7092. [Google Scholar] [CrossRef]
- Seino, Y.; Inomata, S.; Sasabe, H.; Pu, Y.J.; Kido, J. High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W(-1). Adv. Mater. 2016, 28, 2638–2643. [Google Scholar] [CrossRef]
- Kolychev, E.L.; Asachenko, A.F.; Dzhevakov, P.B.; Bush, A.A.; Shuntikov, V.V.; Khrustalev, V.N.; Nechaev, M.S. Expanded ring diaminocarbene palladium complexes: Synthesis, structure, and Suzuki–Miyaura cross-coupling of heteroaryl chlorides in water. Dalton Trans. 2013, 42, 6859. [Google Scholar] [CrossRef]
- Vallee, M.R.; Artner, L.M.; Dernedde, J.; Hackenberger, C.P. Alkyne phosphonites for sequential azide-azide couplings. Angew. Chem. Int. Ed. 2013, 52, 9504–9508. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S.G.; Alvarez, M.T. A Practical Procedure for the Synthesis of Alkyl Azides at Ambient Temperature in Dimethyl Sulfoxide in High Purity and Yield. Synthesis 1997, 1997, 413–414. [Google Scholar] [CrossRef]
- Okuda, Y.; Imafuku, K.; Tsuchida, Y.; Seo, T.; Akashi, H.; Orita, A. Process-Controlled Regiodivergent Copper-Catalyzed Azide-Alkyne Cycloadditions: Tailor-made Syntheses of 4- and 5-Bromotriazoles from Bromo(phosphoryl)ethyne. Org. Lett. 2020, 22, 5099–5103. [Google Scholar] [CrossRef] [PubMed]
- Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R.F.; Bässler, H.; Porsch, M.; Daub, J. Efficient two layer leds on a polymer blend basis. Adv. Mater. 2004, 7, 551–554. [Google Scholar] [CrossRef]
- Gribanov, P.S.; Loginov, D.A.; Lypenko, D.A.; Dmitriev, A.V.; Pozin, S.I.; Aleksandrov, A.E.; Tameev, A.R.; Martynov, I.L.; Chernyadyev, A.Y.; Osipov, S.N. New Unsymmetrically Substituted Benzothiadiazole-Based Luminophores: Synthesis, Optical, Electrochemical Studies, Charge Transport, and Electroluminescent Characteristics. Molecules 2021, 26, 7596. [Google Scholar] [CrossRef]
Compound | λabs, nm | λem, nm | QY, Air, % | HOMO, eV | LUMO, eV | Gap, eV |
---|---|---|---|---|---|---|
4b | 407 | 562 | 89 | −5.54 | −3.49 | 2.05 |
5f | 405 | 550 | 86 | −5.59 | −3.48 | 2.11 |
6d | 405 | 546 | 95 | −5.78 | −3.48 | 2.30 |
6g | 391 | 529 | 54 | −5.78 | −3.47 | 2.31 |
7a | 404 | 540 | 95 | −5.83 | −3.49 | 2.34 |
Light-Emitting Layer | Uon, V | Max. Brightness, cd/m2 | Max. Efficiency | CIE | λmax EL, nm | ||
---|---|---|---|---|---|---|---|
CE, cd/A | PE, lm/W | x | y | ||||
6d/mCP | 4.0 | 8000 | 3.29 | 1.78 | 0.319 | 0.561 | 555 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gribanov, P.S.; Philippova, A.N.; Topchiy, M.A.; Lypenko, D.A.; Dmitriev, A.V.; Tokarev, S.D.; Smol’yakov, A.F.; Rodionov, A.N.; Asachenko, A.F.; Osipov, S.N. Synthesis of 5-(Aryl)amino-1,2,3-triazole-containing 2,1,3-Benzothiadiazoles via Azide–Nitrile Cycloaddition Followed by Buchwald–Hartwig Reaction. Molecules 2024, 29, 2151. https://doi.org/10.3390/molecules29092151
Gribanov PS, Philippova AN, Topchiy MA, Lypenko DA, Dmitriev AV, Tokarev SD, Smol’yakov AF, Rodionov AN, Asachenko AF, Osipov SN. Synthesis of 5-(Aryl)amino-1,2,3-triazole-containing 2,1,3-Benzothiadiazoles via Azide–Nitrile Cycloaddition Followed by Buchwald–Hartwig Reaction. Molecules. 2024; 29(9):2151. https://doi.org/10.3390/molecules29092151
Chicago/Turabian StyleGribanov, Pavel S., Anna N. Philippova, Maxim A. Topchiy, Dmitry A. Lypenko, Artem V. Dmitriev, Sergey D. Tokarev, Alexander F. Smol’yakov, Alexey N. Rodionov, Andrey F. Asachenko, and Sergey N. Osipov. 2024. "Synthesis of 5-(Aryl)amino-1,2,3-triazole-containing 2,1,3-Benzothiadiazoles via Azide–Nitrile Cycloaddition Followed by Buchwald–Hartwig Reaction" Molecules 29, no. 9: 2151. https://doi.org/10.3390/molecules29092151
APA StyleGribanov, P. S., Philippova, A. N., Topchiy, M. A., Lypenko, D. A., Dmitriev, A. V., Tokarev, S. D., Smol’yakov, A. F., Rodionov, A. N., Asachenko, A. F., & Osipov, S. N. (2024). Synthesis of 5-(Aryl)amino-1,2,3-triazole-containing 2,1,3-Benzothiadiazoles via Azide–Nitrile Cycloaddition Followed by Buchwald–Hartwig Reaction. Molecules, 29(9), 2151. https://doi.org/10.3390/molecules29092151