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Abstract: Solid polymer electrolytes (SPEs) have attracted much attention due to their
excellent flexibility, strong interfacial adhesion, and good processibility. However, the
poor interfacial contact between the separate solid polymer electrolytes and electrodes
leads to large interfacial impedance and, thus, hinders Li transport. In this work, an
ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte
with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV)
photopolymerization. Combining the enhanced interfacial contact and the introduction of
ionic liquid, a continuous and fast Li+ transport channel at the electrolyte–cathode interface
is established, ultimately enhancing the overall performance of solid-state lithium batteries.
The composite solid electrolytes (CSEs) exhibit an ionic conductivity of 0.44 mS cm−1 at
60 ◦C. LiFePO4//Li cells deliver a high discharge capacity (154 mAh g−1 at 0.5 C) and
cycling stability (with a retention rate of more than 80% at 0.5 C after 200 cycles) at 60 ◦C.

Keywords: integrated electrolyte/cathode structure; in situ UV photopolymerization;
composite solid electrolyte; lithium metal batteries; ionic liquid

1. Introduction
Lithium-ion batteries (LIBs) are now widely used as efficient energy storage devices to

fulfill ever-increasing demands for various application scenarios. Due to the exceptionally
high theoretical specific capacity of lithium metal anode (3860 mAh g−1), which surpasses
that of graphite anode (372 mAh g−1), lithium metal batteries (LMBs) are regarded as a
new generation of high energy density lithium battery systems. Nevertheless, the organic
liquid electrolytes used in LMBs are toxic, flammable, volatile, and thermodynamically
unstable to lithium metal, leading to serious safety hazards. Solid-state lithium batteries
(SSLBs) are the most promising candidates for the next-generation energy storage devices,
in which solid-state electrolytes (SSEs) replace traditional separators and liquid electrolytes.
As a type of SSEs, SPEs are considered an ideal solution for the next generation of SSLBs
due to their excellent flexibility, lightweight, low processing costs, and compatibility with
contemporary roll-to-roll fabrication processes for LIBs. These characteristics contribute to
achieving high specific energy, enhanced safety, and long cycle life.

The interfacial contacts between electrolyte/electrode vary significantly between tra-
ditional liquid LIBs and SSLBs. In traditional liquid LIBs, electrolytes effectively wet the
electrode surface, whereas, in SSLBs, the SSEs are in rigid contact with the electrode. This
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difference results in elevated interfacial resistances in SSLBs. Therefore, reducing the
interfacial resistance between the SSEs and the electrode is crucial for the development
of SSLBs. Currently, the traditional preparation methods of SPEs are generally indepen-
dent of electrodes, such as solution casting and electrospinning. The ex situ methods
inevitably lead to poor interfacial contact at the electrolyte–cathode interface, unfavorable
to Li transport. Moreover, these methods exhibit low preparation efficiency. The solution
casting requires a long time to ensure complete solvent evaporation. Furthermore, elec-
trospinning typically has a slow production efficiency. In contrast, solventless in situ UV
polymerization is a promising method for the rapid fabrication of SPEs due to its high
reaction productivity. Hence, the SPEs with electrolyte–electrode integration via in situ UV
polymerization are expected to reduce interfacial impedance and realize the rapid synthesis
of the electrolytes [1–8].

The low ionic conductivity is another obstacle that restricts the application of SPEs.
Researchers have shown that garnet-type oxide solid electrolytes can be used as inorganic
fillers to prepare enhanced mechanical strength and high ionic conductivity CSEs [9–11].
However, the ceramic fillers bring about dilution and a blocking effect, leading to se-
vere agglomeration and the destruction of conducting pathways, impeding the transport
of Li and decreasing the ionic conductivity of CSEs. To tackle the issue, ionic liquids
(ILs) have been adopted in CSEs to create new transport pathways for Li through ce-
ramic fillers and the polymer matrix [12–17]. ILs composed of self-dissociated cations
and anions are low-temperature or room-temperature molten salts that wet interfaces
and act as fast ionic conductors [18–20]. In particular, N-butyl-N-methylpyrrolidinium
bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) shows a wide electrochemical stability
window and lower viscosity, significantly wetting the electrode and reducing contact
impedance. In such CSEs, Li+ transference could be accelerated through various pathways
in the polymer matrix, ceramic fillers, ceramic-polymer interface, and IL-modified phases
of the polymer matrix.

Herein, by incorporating garnet-type Li6.5La3Zr1.5Ta0.5O12 (LLZTO) nanopowder as
inorganic fillers and nonflammable ILs as fast ionic conductors, we designed pyrrolidinium-
type ILs-modified CSEs with electrolyte–cathode integrated structure via in situ UV-
initiated polymerization. Attributed to the multiple Li+ transport channels derived from
ILs, the CSEs exhibit a high ionic conductivity of 0.44 mS cm−1 at 60 ◦C. LiFePO4//Li cells
with this electrolyte deliver a high discharge capacity (154 mAh g−1 at 0.5 C) and cycling
stability (with a retention rate of more than 80% at 0.5 C after 200 cycles) at 60 ◦C. In addi-
tion, the electrolyte–cathode integration through in situ UV polymerization significantly
reduces the impedance of CSEs (70 Ω cm2) than that of ex situ structure (125 Ω cm2). The
fabrication method not only simplifies the preparation process but also enhances the inter-
facial contact. This work may provide new insights into the advancement of efficient SSLBs
from the perspective of both processibility and multiple ion conductive channel design.

2. Results and Discussion
2.1. Design and Preparation of Electrolytes

The preparation process of the electrolyte–cathode integrated ionic liquid gel elec-
trolyte by blade coating combined with in situ UV polymerization is illustrated in Figure 1a.
Equipped with shear thinning and tunable viscosity properties, the resulting slurry can
be directly coated onto the cathode electrodes and then cured into CSEs under a UV lamp,
which can realize facile and scalable CSEs fabrication and construct a continuous and fast
Li+ transport channel. Figure 1b illustrates the polymer molecule structure synthesized
by the two-stage solventless UV polymerization strategy. Poly(ethylene glycol) acrylates
(PEGAs) are a promising polymer matrix for SPEs due to their low crystallization and
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high lithium salt dissociation ability. PEGAs are able to realize rapid UV-induced gela-
tion in the presence of a photoinitiator, which features efficient and rapid fabrication of
SPEs [21–26]. In order to optimize Li+ transport channels, tetrahydrofurfuryl acrylate
(THFA) is utilized to copolymerize with PEGAs for polymer molecule structure design.
The cyclic tetrahydrofurfuryl active group in THFA tends to bond with Li+ more effectively
than the C–O–C group of the PEG side chain, which helps to disrupt the ordered structure
of polymer chain segments and decrease the glass transition temperature (Tg) [26]. Firstly,
to prepare the electrolyte, poly(ethylene glycol) methyl ether acrylate (PEGMEA), THFA,
and photoinitiators are mixed. Part of the monomers undergo C=C double bonds poly-
condensation reactions under the 1st UV-initiated polymerization; the mixture converts
to viscous rheology-tuning slurry with THFA (RTS-TH) slurry. After rheology-tuning,
the RTS-TH slurry is evenly mixed with polyethylene glycol diacrylate (PEGDA), lithium
bis(trifluoromethanesulphonyl)imide (LiTFSI), Pyr14TFSI, LLZTO and additional photoini-
tiators, fully polymerized and finally cured into ILs-modified CSEs with a comb-like
crosslinked network structure under the 2nd UV-initiated polymerization.

Molecules 2025, 30, x FOR PEER REVIEW 3 of 13 
 

 

slurry can be directly coated onto the cathode electrodes and then cured into CSEs under 
a UV lamp, which can realize facile and scalable CSEs fabrication and construct a 
continuous and fast Li+ transport channel. Figure 1b illustrates the polymer molecule 
structure synthesized by the two-stage solventless UV polymerization strategy. 
Poly(ethylene glycol) acrylates (PEGAs) are a promising polymer matrix for SPEs due to 
their low crystallization and high lithium salt dissociation ability. PEGAs are able to 
realize rapid UV-induced gelation in the presence of a photoinitiator, which features 
efficient and rapid fabrication of SPEs [21–26]. In order to optimize Li+ transport channels, 
tetrahydrofurfuryl acrylate (THFA) is utilized to copolymerize with PEGAs for polymer 
molecule structure design. The cyclic tetrahydrofurfuryl active group in THFA tends to 
bond with Li+ more effectively than the C–O–C group of the PEG side chain, which helps 
to disrupt the ordered structure of polymer chain segments and decrease the glass 
transition temperature (Tg) [26]. Firstly, to prepare the electrolyte, poly(ethylene glycol) 
methyl ether acrylate (PEGMEA), THFA, and photoinitiators are mixed. Part of the 
monomers undergo C=C double bonds polycondensation reactions under the 1st UV-
initiated polymerization; the mixture converts to viscous rheology-tuning slurry with 
THFA (RTS-TH) slurry. After rheology-tuning, the RTS-TH slurry is evenly mixed with 
polyethylene glycol diacrylate (PEGDA), lithium bis(trifluoromethanesulphonyl)imide 
(LiTFSI), Pyr14TFSI, LLZTO and additional photoinitiators, fully polymerized and finally 
cured into ILs-modified CSEs with a comb-like crosslinked network structure under the 
2nd UV-initiated polymerization. 

 

Figure 1. (a) Schematic diagram of the preparation process of electrolyte–cathode integrated ionic 
liquid gel electrolyte; (b) schematic diagram of polymer molecule structure. 
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liquid gel electrolyte; (b) schematic diagram of polymer molecule structure.

2.2. Physicochemical Characterization of CSEs

The digital photograph of free-standing RTS-TH CSE with IL (RTS-TH-IL CSE) is
presented in Figure 2a,b. The CSEs not only exhibit a flat, smooth, and compact surface
without any cracks, but they also possess excellent bend-resistant characteristics. Figure 2c
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demonstrates that the LLZTO is uniformly distributed with no obvious agglomeration.
Furthermore, the energy dispersive spectrometer (EDS) mapping images are shown in
Figure 2d. The C, O, F, S, La, Zr, and Ta elements in RTS-TH-IL CSE are evenly distributed,
further indicating that LLZTO, LiTFSI, and Pyr14TFSI are uniformly dispersed within the
CSEs. As shown in Figure 2e,f, the cross-sectional scanning electron microscope (SEM)
image and the EDS mapping image of the in situ synthesized RTS-TH-IL CSE on LiFePO4

were obtained to verify and evaluate the interface between the cathode and the electrolyte.
The electrolyte–cathode integrated structure can provide a tight, effective, and void-free
interfacial contact, which eliminates separated and rough interfaces, constructing a well-
connected and continuous Li+ transport channel, and remarkably reduces the interface
impedance. The cross-section SEM image reveals that the final thickness of blade-coated in
situ RTS-TH-IL CSE is about 70 µm. Compared to some free-standing CSEs with thickness
above 100 µm, these thinner CSEs have a shorter Li+ diffusion distance and smaller mass
and volume, which can be favorable for improving the comprehensive electrochemical
performance and reducing the overall cost [27].
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Figure 2. (a,b) Digital photograph of free-standing RTS-TH-IL CSE; (c) SEM image of free-standing
RTS-TH-IL CSE surface; (d) EDS mapping image of C, O, F, S, La, Zr and Ta elements in CSE;
(e) Cross-section SEM image of in situ synthesized RTS-TH-IL CSE on LiFePO4; (f) Corresponding
EDS mapping image of the distribution of Fe element.

In the Fourier transform infrared (FTIR) spectra of Figure 3a, the peak at 1635 cm−1

corresponds to the adsorption of the C=C double bond vibration. After part of the PEGMEA
and THFA monomers underwent polycondensation reaction, we can see that the adsorption
peak at 1635 cm−1 of RTS-TH still exists, but the intensity of this peak is slightly weaker
than that of monomers. Under the 2nd UV-initiated polymerization, the adsorption peak
at 1635 cm−1 of RTS-TH-IL CSE and RTS-TH CSE without IL (RTS-TH CSE) disappears,
which indicates that the fully polymerized CSEs with crosslinked networks are obtained.
In this architecture, a comb-like crosslinked molecular network structure of CSEs with
oligoethylene oxide pendants swinging freely is established. The X-ray diffractometer
(XRD) data in Figure 3b shows that the cubic garnet crystalline phase of LLZTO remains
stable in RTS-TH-IL CSE, indicating that the addition of ILs does not destroy the LLZTO
structure. The interaction between Li+ and TFSI− in the RTS-TH-IL CSE and RTS-TH
CSE was further explored by Raman spectroscopy of Figure 3c. The characteristic peaks
in a sharp range of 740 cm−1−744 cm−1 can be used to distinguish free state TFSI−

(TFSI−non) at 740 cm−1−741 cm−1 and the bound state [Li+−TFSI−] or the cluster state [Li
(TFSI−)2] − (TFSI−coor) at 743 cm−1−744 cm−1. According to x = Anon/(Anon + Acoor),
in which x represents the proportion of the TFSI−non region that occupies the region of
all LiTFSI existence forms, the percentage of TFSI−non is 64.3% with ILs and 54% without
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ILs. The increase in the TFSI−non and the decrease in the TFSI−coor indicate that TFSI−

is released from the bound state or cluster state, further demonstrating that the addition
of ILs facilitates the dissociation of LiTFSI. Studies show that TFSI− coor can hinder Li+

conducting, while the increase in free Li+ contributes to improving Li+ carrying capacity,
the ionic conductivity, and the Li+ transference number [28].
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Figure 3. (a) FTIR spectra of PEGMEA/THFA monomer, RTS-TH, RTS-TH CSE, and RTS-TH-IL CSE;
(b) XRD spectra of LLZTO powder and RTS-TH-IL CSE; (c) Raman spectra of TFSI anion in RTS-TH
CSE and RTS-TH-IL CSE; (d) FTIR spectra of RTS-TH CSE and RTS-TH-IL CSE; (e) DSC curves of
RTS-TH CSE and RTS-TH-IL CSE; (f) Stress–strain curves of RTS-TH-IL CSE and RTS-TH CSE.

As shown in the FTIR spectra of Figure 3d, the intensity of the C-H stretching char-
acteristic peak in RTS-TH-IL CSE is weakened, which indicates that the addition of ILs
is beneficial to reducing the crystallinity of the CSEs [29]. In the Differential Scanning
Calorimetry (DSC) curves of Figure 3e, the Tg values of RTS-TH CSE and RTS-TH-IL CSE
are −43.2 ◦C and −46.7 ◦C, respectively, indicating that the addition of ILs effectively re-
duces the crystallinity, provides more free volume of the amorphous region, and promotes
the chain segment movement. As shown in the stress–strain curves of Figure 3f, after
adding the ILs, the elongation at break of CSEs is increased from 31% to 43%, while the
tensile strength of the CSEs decreases slightly but remains at 0.4 MPa. Thus, the results
indicate that the addition of ILs can enhance the mechanical performance of the CSEs,
which contributes to improving the flexibility and deformation capability of the CSEs and
reduces the possibility of structural fracture and lithium dendrite penetration.

2.3. Electrochemical Behaviors of CSEs

The Nyquist curves of CSEs in Figure 4a,b show that RTS-TH-IL CSE exhibit higher
ionic conductivity than RTS-TH CSE at all temperatures. From Tables S1 and S2, the ionic
conductivities of RTS-TH-IL CSE are 7.8 × 10−5 S cm−1 at 30 ◦C and 4.37 × 10−4 S cm−1

at 60 ◦C, respectively, which are approximately 3.7 times higher than those of RTS-TH
CSE (1.6 × 10−5 S cm−1 at 30 ◦C and 1.2 × 10−4 S cm−1 at 60 ◦C). On the one hand, the
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porosity and the interaction of the PEGAs/LLZTO network can act as a host for the per-
meation and retention of ILs so as to form a continuous and rapid Li+ diffusion pathway,
which significantly enhances ionic conductivity [27]. On the other hand, ILs can wet the
interface to reduce the interfacial impedance. According to the Arrhenius plots of CSEs
shown in Figure 4c and the Arrhenius equation σ (T) = A exp (−Ea/RT), the activation
energies (Ea) for RTS-TH-IL CSE and RTS-TH CSE calculated in Figure 4d are 0.4148 eV
and 0.5357 eV, respectively, indicating a lower diffusion barrier for Li+ migration in the
RTS-TH-IL CSE. The cycling profiles of Li//Li symmetric cells with CSEs were tested at
0.1 mA cm−2 @ 0.1 mAh cm−2, as shown in Figure 4e, indicating that the Li/RTS-TH-IL
CSE/Li cells exhibit excellent electrochemical performance with an overpotential of under
60 mV and stable cycling for over 2000 h without short circuits. This indicates the stable
interface during the Li deposition and stripping processes. In addition, the overpotential of
Li/RTS-TH-IL CSE/Li cells is lower than that of RTS-TH CSE, which can be attributed to
the enhanced ionic conductivity of the CSEs. Therefore, the addition of ILs inhibits dendrite
growth and builds a continuous and rapid Li+ diffusion pathway. The critical current
density (CCD) test of CSEs in Figure S4b demonstrates that Li/RTS-TH-IL CSE/Li cells
keep stable cycling at 0.8 mA cm−2, while the overpotential of RTS-TH CSE increases dra-
matically at 0.6 mA cm−2. The increased CCD indicates that the solid electrolyte interface
(SEI) between the lithium metal and the RTS-TH-IL CSE is highly stable, and there are no
additional side reactions with ILs. Moreover, Figure S5 indicates that the Li+ transference
number (tLi

+) of RTS-TH-IL CSE is about 0.22, higher than that of RTS-TH-CSE (tLi
+ = 0.10),

benefiting for alleviating the concentration polarization inside the battery and providing a
uniform Li+ flux for even Li plating and stripping. In addition, the introduction of LLZTO
can promote the dissociation of TFSI− from ILs. The adsorption energy of Pyrr+ on the
surface of inorganic particles is lower than that of TFSI−. The results indicate that Pyrr+ is
prone to absorb onto the surface of LLZTO, contributing to the dissociation of the TFSI−

and Pyrr+. Studies show that the free state TFSI− form ILs and LiTFSI migrating to anode
primarily undergoes the transformation of a twenty-electrons reductive decomposition
reaction ((CF3SO2)2N− + 21 Li+ + 20 e−→Li3N + 2 Li2S + 4 Li2O + 6 LiF) and eventually
generates the LiF-rich SEI layer at the anode interface, which facilitates the uniform deposi-
tion of Li+ for inhibition of growth of lithium dendrites to prolong the battery cycling and
improves the electrochemical stability of CSEs [30].

2.4. Electrochemical Performance of CSE-Based Cells

The cycling stability of the Li/CSEs/LiFePO4 cells at 0.5 C in Figure 5a and the
corresponding charge/discharge curves of different cycles in Figure S6 shows that the cell
adopting ex situ RTS-TH-IL CSE displays a low initial discharge capacity of 101 mAh g−1

and experiences rapid capacity degradation up until the 20th cycle. In addition, the cell
with in situ RTS-TH CSE shows a slightly higher initial discharge capacity due to the
improved interfacial contact but still displays rapid capacity degradation until the 20th
cycle because of low Li+ mobility. Comparatively, the cells with in situ RTS-TH-IL CSE
exhibit an initial discharge capacity of 144 mAh g−1 and can reach the highest capacity
of 154 mAh g−1 after the activation process during the first few cycles. Furthermore, the
specific capacity of the cells employing in situ RTS-TH-IL CSE retains at 125.1 mAh g−1

after 200 cycles, and the capacity retentions at 100th and 200th cycles are 90% and 80%,
indicating that the synergistic effect of in situ UV polymerization and the introduction of
ILs can effectively improve the performance of cells.
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Figure 4. Nyquist curves in the temperature range from 30 ◦C to 80 ◦C of (a) RTS-TH-ILCSE and
(b) RTS-TH CSE; (c) Arrhenius plots of ionic conductivities of RTS-TH-IL CSE and RTS-TH CSE;
(d) activation energy of RTS-TH-IL CSE and RTS-TH CSE; (e) galvanostatic charge–discharge cycling
curves of Li//Li symmetric cells with RTS-TH CSE and RTS-TH-IL CSE at 60 ◦C at 0.1 mA cm−2 @
0.1 mAh cm−2.
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LED light row powered by the LiFePO4//Li pouch cells employing in situ RTS-TH-IL CSE.



Molecules 2025, 30, 395 8 of 12

Compared to in situ RTS-TH CSE and ex situ RTS-TH-IL CSE, the initial charge/discharge
voltage profiles of Li/CSEs/LiFePO4 cells in Figure 5b show that the cell with in situ
RTS-TH-IL CSE exhibits a higher specific capacity and smaller polarization voltage due to
the continuous and fast Li+ transport channel and sufficient utilization of active materials.
In addition, the cell with in situ RTS-TH CSE exhibits a smaller polarization voltage than
that with ex situ RTS-TH-IL CSE, indicating that the electrolyte–cathode interfacial contact
is a critical factor for the electrochemical performance of cells.

Figure 5c shows that the rate capability of the cells employing in situ RTS-TH-IL CSE
is highly improved, and the discharge capacities are 157, 132.5, and 116.4 mAh g−1 at 0.2,
0.5, and 1 C, respectively. Moreover, the discharge-specific capacity can return to its original
value along with the return of current densities, indicating better cycling stability and
reversibility. The electrochemical impedance spectroscopy (EIS) results in Figure 5d reveal
that the bulk resistance of the cells with in situ RTS-TH-IL CSE is approximately 56% of
that of the cells with ex situ RTS-TH-IL CSE (70 Ω cm2 vs. 125 Ω cm2), which is consistent
with the blade-coatable film being significantly thinner (75 µm vs. 150 µm). Moreover,
the interfacial resistance of the cells with in situ RTS-TH-IL CSE also yields a 32.7% lower
interfacial impedance than that with ex situ RTS-TH-IL CSE (142 Ω cm2 vs. 211 Ω cm2),
resulting in a lower overall cell impedance for higher energy density and better cycling
stability. In addition, the impedance of CSEs can be decreased by reducing the thickness. It
is found that the in situ polymerization can fabricate thinner and more conformable CSEs
to meet the demand for bending and adapting better to deformation, while the ex situ CSEs
need to achieve a self-standing thickness for assembly and may be more likely to delaminate
from the electrodes under uneven forces, which can severely degrade battery performance.
Furthermore, ILs may penetrate from CSEs into the porous electrodes during the battery
operation, benefiting from wetting the electrodes and accelerating the mass transport and
charge transfer kinetics [31]. Due to the high viscosity property of ILs, IL-modified CSEs
with the electrolyte/cathode integrated structure can construct a viscoelastic interface
between the electrode and the electrolyte, and provide sufficient penetration and diffusion
pathways for Li+, which can significantly mitigate the interfacial and overall cell impedance
and accommodate the large volume changes in cathode during cycling. Figure 5e illustrates
that the pouch cell, which is paired together with in situ RTS-TH-IL CSE and a 250 µm
lithium foil wrapped in an Al-plastic film, effectively powers up a red LED bulb and a blue
LED light strip both before and after it has been folded. This demonstrates the flexibility
and safety of the obtained CSEs.

3. Materials and Methods
3.1. Preparation of RTS-TH

PEGMEA (Mw = 518, Sartomer CD551, 45 g), THFA (5 g), and 2,2-dimethoxy-2-
phenylacetophenone photoinitiator (0.03 g) were added into a flask filled with nitrogen.
After mixing evenly, the solution was exposed to a 365 nm UV lamp for several minutes
until a viscous slurry formed. Meanwhile, the UV lamp and nitrogen were removed to stop
the reaction.

3.2. Preparation of RTS-TH-IL CSE and RTS-TH CSE

For the RTS-TH-IL slurry, RTS-TH slurry (2.1 g), and PEGDA (Mw = 608, Sartomer
SR610, 0.422 g) were added into a brown glass bottle for the preliminary mix. Next,
Pyr14TFSI (Shanghai Chengjie Chemical Co., Shanghai, China, 99%, 0.422 g), LiTFSI
(0.856 g), LLZTO (500 nm, Shenzhen Kejing Zhida Co., Ltd., Shenzhen, China, 0.422 g), and
a photoinitiator (0.04 g) were added sequentially. For the RTS-TH slurry, RTS-TH slurry
(2.4 g) and PEGDA (0.422 g) were added in a brown glass bottle for preliminary mix. Then,
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LiTFSI (0.978 g), LLZTO (0.422 g), and the photoinitiator (0.04 g) were added in sequence.
The mixture was stirred for several hours until the LLZTO was fully dispersed. The free-
standing CSEs were prepared by blade-coatable method with the above slurry, followed by
UV curing at 365 nm for 10 min to obtain a thickness of 250 µm for the RTS-TH-IL CSE or
RTS-TH CSE.

3.3. Preparation of LiFePO4 Cathode

The LiFePO4 cathode was fabricated by dissolving LiFePO4 (active material, 70 wt%),
Poly (vinylidene fluoride) (PVDF, 10 wt%), Poly (ethylene oxide), (PEO, Mw= 600,000,
Macklin., 10 wt%), and Super P (10 wt%) in N-methyl-2-pyrroldone (NMP). After mixing
evenly, the slurry was coated on carbon-coated Al foil (C-Al, 18 µm, Hefei Kejing Material
Technology Co., Hefei, China). The coated cathode was then placed in a vacuum-drying
oven and dried at 60 ◦C overnight. Finally, the dried cathode was punched into pellets
with a diameter of 12 mm, achieving a mass loading of 1 mg cm−2.

3.4. Preparation of CSEs with Electrolyte-Cathode Integrated Structure by In Situ
UV Polymerization

Using the blade coating, the RTS-TH/RTS-TH-IL slurry was coated on the cathode
electrode, and then cured with a UV light at 365 nm for 10 min to obtain RTS-TH/RTS-TH-IL
CSE with a thickness of about 70 µm.

3.5. Physical Characterization

The MERLIN SEM was used to observe the morphologies of CSEs. The MiniFlex
(Rigaku, Tokyo, Japan) XRD was used for the crystal phase test with Cu Kα radiation
scanning from 10◦ to 80◦ at the rate of 5◦ min−1. FTIR spectra using NicoletIS50 (Thermo
Fisher Scientific, Waltham, MA, USA) were utilized to analyze the composition of the
sample. DSC was conducted to determine the Tg of the CSEs on the Polyma 214 instrument.
The mechanical properties were evaluated using the Instron 5967 tensile test machine
(Instron, Norwood, MA, USA). Raman spectra were obtained on a LabRAM HR Evolution
Raman spectrophotometer (HORIBA, Kyoto, Japan).

3.6. Electrochemical Characterization

The Autolab Electrochemical Instrumentation (Metrohm, Herisau, Switzerland) was
used to evaluate the electrochemical properties. EIS of the C-Al/CSE/C-Al blocking cell
was used to evaluate the ionic conductivities (σ) of the CSEs in the frequency range from
100 kHz to 0.1 Hz. The σ can be calculated by the following equation:

σ =
L

RA

where L is the thickness of the CSE membrane, R represents the bulk resistance obtained
from alternating current impedance analysis, and A is the contact area between C-Al and
the electrolyte.

Li+ transference number (tLi
+) was calculated by the following equation:

tLi+ =
Iap

(
∆V − IbpRbp

)
Ibp

(
∆V − IapRap

)
The initial current (Iap) and the steady current (Ibp) of the Li/CSE/Li symmetric

cell were measured with a voltage pulse (∆V) of 10 mV in DC polarization mode. Rbp

and Rap represent the resistance before and after polarization, respectively. To obtain
Li//Li symmetric cells, the CSEs were sandwiched with two Li foils (diameter = 8 mm) in
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CR2025-type coin cells. To do the cell assembly, a CR2025-type coin cell was assembled by
contacting, in sequence, the in situ CSEs punched by multi-punch pliers (d = 12 mm), an
8 mm concentric pore PP Separator (Celgard., Charlotte, NC, USA, 25 µm), and a Li foil
(d = 10 mm). All batteries were assembled in an argon-filled glove box (H2O < 0.1 ppm,
O2 < 0.1 ppm). On a LAND-CT3001A battery tester (Wuhan LAND Electronic Co., Ltd.,
Wuhan, China), galvanostatic charge/discharge measurements were conducted to evaluate
the cyclic performance of Li//Li symmetric cells and LiFePO4//Li cells. The LiFePO4//Li
cells were tested at a voltage range of 2.5 V−3.8 V. The electrochemical measurement tests
described above were all conducted at 60 ◦C.

4. Conclusions
In summary, IL-modified CSEs with electrolyte-cathode integrated structures are fabri-

cated via in situ UV-initiated polymerization. The RTS-TH-IL CSEs exhibit a maximum
ionic conductivity of 0.437 mS cm−1 at 60 ◦C. The addition of ILs facilitates the dissociation
of LiTFSI and reduces the crystallinity of CSEs, which can provide more free volume in the
amorphous region, effectively improving the ionic conductivity and Li+ mobility number.
The synergistic effect of in situ UV polymerization and the introduction of ILs can provide
sufficient penetration and diffusion pathways for Li+, significantly decreasing the interfa-
cial resistance of SSLBs and improving the performance of cells. The Li//Li symmetric
cells with the RTS-TH-IL CSE cycle remained stable for over 2000 h. LiFePO4//Li cells
employing RTS-TH-IL CSE exhibit impressive cycling stability, with a discharge capacity of
125.1 mAh g−1 and more than 80% retention after 200 cycles at 0.5 C. The solventless UV
polymerization strategy holds great promise for realizing the rapid, facile, and large-scale
fabrication of CSEs. This study may offer new insights into the development of efficient
ionic liquid solid-state lithium batteries, emphasizing both processability and the design of
multiple ion conductive channels.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules30020395/s1, Figure S1: (a) Galvanostatic charge-
discharge cycling curves of Li//Li symmetric cells with different LLZTO mass ratio in RTS-TH-
LiTFSI-PEGDA-XLLZTO at 60 ◦C at 0.1 mA cm−2 @ 0.1 mAh cm−2; (b) Zoom-in curves at 270 h–276 h
in (a); (c) Zoom-in curves at 468 h–474 h in (a); Figure S2: (a) Galvanostatic charge-discharge cycling
curves of Li//Li symmetric cells with different EO:Li+ ratio in RTS-TH-LLZTO10-PEGDA-LiTFSIx at
60 ◦C at 0.1 mA cm−2 @ 0.1 mAh cm−2; (b) Zoom-in curves at 250 h–258 h in (a); (c) Zoom-in curves
at 994 h–1000 h in (a); Figure S3: (a) Nyquist curves of RTS-TH-LLZTOx-PEGDA-LiTFSI6 at 30 ◦C;
(b) Nyquist curves of RTS-TH-LLZTO10-PEGDA-LiTFSIx at 30 ◦C; (c) Galvanostatic charge-discharge
cycling curves of Li//Li symmetric cells with RTS-TH-PEGDA-LiTFSI6 at 60 ◦C at 0.1 mA cm−2 @
0.1 mAh cm−2; (d) Galvanostatic charge-discharge cycling curves of Li//Li symmetric cells with
RTS-TH-LLZTO10-PEGDA-LiTFSI20 at 60 ◦C at 0.1 mA cm−2 @ 0.1 mAh cm−2; Figure S4: Galvanos-
tatic charge-discharge cycling curves of Li//Li symmetric cells with RTS-TH CSE and RTS-TH-IL
CSE at 60 ◦C at 0.1 mA cm−2 @ 0.1 mAh cm−2: (a) Zoom-in curves of 1096 h–1104 h; (b) Per-
formances of Li//Li symmetric cells with RTS-TH CSE and RTS-TH-IL CSE at different current
densities to determine critical current density with a stripping/plating period of 15 mins; Figure S5:
Chronoamperometry polarization curve and the impedance spectra before and after polarization of (a)
Li/RTS-TH-IL CSE/Li cell and (b) Li/RTS-TH CSE/Li cell; Figure S6: Galvanostatic charge/discharge
curves of LiFePO4//Li cells with different CSEs of different cycles (a) in situ RTS-TH-IL CSE; (b) in
situ RTS-TH CSE/Li cell; (c) ex situ RTS-TH-IL CSE; Table S1: Ionic conductivities of RTS-TH-IL CSE
at different temperatures; Table S2: Ionic conductivities of RTS-TH CSE at different temperatures.
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