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Abstract: Rhabdophane, CePO4·H2O, nanoparticles were prepared by mechanochemical
synthesis with different durations and thoroughly characterized by various characterization
techniques. X-ray diffraction analysis showed that the optimal synthesis duration was
15 min, since, in this case, pure rhabdophane is obtained, without traces of contamination
by the vessel material. The size of the obtained nanoparticles, as determined from high-
resolution transmission electron microscopy images, was around 5 nm. According to UV-Vis
diffuse reflectance spectroscopy results, rhabdophane nanoparticles show transparency
to visible light and high absorption in the UV region, with a direct bandgap of 3.1 eV.
The photocatalytic activity in the Castor oil degradation process and the cytotoxicity for
human skin cells were determined and compared to commercial TiO2 nanoparticles, with
rhabdophane nanoparticles exhibiting superior properties. Small particle size, purity,
absorption in the UV range, transparency to visible light, low photocatalytic activity,
and low cytotoxicity indicated the possibility of prepared rhabdophane application as an
inorganic UV filter in photoprotective formulations.

Keywords: cerium phosphate; mechanochemical synthesis; UV filter; cytotoxicity; photo-
protection

1. Introduction
Excessive exposure to the sun can have unwanted and dangerous consequences, such

as sunburn, accelerated skin aging, immunosuppression, and skin tumors [1]. The pro-
tection of skin from the harmful effects of the sun, particularly UV radiation, is usually
achieved by applying a suitable sunscreen. The most important compounds in sunscreen
formulations are UV filters [2], which can be organic and inorganic [3]. The action mecha-
nism of organic UV filters is exclusively the absorption of UV radiation. Their downside is
the possibility of absorption through the skin, which leads to a reduction in the effectiveness
of protection and the possibility of skin irritation [2]. On the other hand, inorganic filters
work by reflecting, scattering, or absorbing UV radiation. Their downsides are catalytic
activity, which can lead to chemical changes in other components of the cream, and a visible
white film on the skin, which is the result of reflection and scattering [4]. The most com-
monly used inorganic UV filters are zinc oxide, ZnO, and titanium oxide, TiO2, these being
the only registered and approved filters in the EU and USA [5]. Both compounds have
considerable photocatalytic activity and catalyze the formation of many reactive oxygen
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species, which can lead to sunscreen instability and, more importantly, have a cytotoxic
effect, cause skin damage, and the appearance of tumors. Finally, both materials possess a
high refractive index, leading to pronounced phenomena of reflection and scattering in the
visible light spectrum [6]. Therefore, efforts are being made to find a suitable substitute
for these compounds with reduced or negligible photocatalytic activity, a lower refractive
index, and smaller particle size.

Particular attention is paid to cerium-based materials due to their wide distribution
and favorable properties. Cerium phosphate, CePO4, is a potentially suitable material
for this purpose due to its high absorption of UV radiation, lower refractive index, and
reduced photocatalytic activity compared to titanium dioxide and zinc oxide [2,4]. Cerium
phosphate occurs in two forms: hexagonal hydrated form rhabdophane, CePO4·nH2O,
and monoclinic anhydrous monazite, CePO4 [7]. Besides being used as a UV filter, cerium
phosphate has also been investigated for its optical (fluorescence), chemical (ion exchange),
photocatalytic, refractive, and anticorrosive properties [8–11].

A significant trend in the preparation of sun protection products is avoiding the
formation of a white film on the skin, primarily for aesthetic reasons, which is achieved by
using nanoparticles. When the particles are in the nano-size range or at least significantly
smaller than the wavelengths of visible light, reflection and scattering on these particles are
insignificant [5]. Therefore, the application of creams containing sufficiently fine particles
of an inorganic UV filter does not impair transparency in the visible area (the white film
does not form) [3]. At the same time, due to the absorption that occurs during the transition
of electrons from the valence band to the conduction band of the inorganic UV filter, the
cream provides good protection against UV radiation.

There are various techniques for the preparation of cerium orthophosphates, such as
hydrothermal [12], coprecipitation [8,9], microemulsion [3], sol-gel [11,13], mechanochemi-
cal [10], sonochemical, [14,15], microwave-assisted method [16], etc. The modern approach
to chemical synthesis is to make it environmentally friendly by reducing the energy con-
sumption, minimizing the use of organic solvents, limiting the generation of toxic waste,
etc. Synthesis methods that meet these criteria are classified as green methods; one such
method is mechanochemical synthesis. It is a synthesis approach in which chemical trans-
formations are induced by the application of mechanical energy, usually by means of
high-energy grinding in a ball mill. The method does not require the use of solvents but,
rather, optimizes reactant utilization and enhances product selectivity, often minimizing or
even avoiding by-products. Additionally, it typically reduces reaction times and energy
consumption. This approach can also produce products with sizes in the nano range [17].

The goal of this investigation was to develop a mechanochemical synthesis method for
nanocrystalline cerium phosphate. Cerium chloride heptahydrate and sodium phosphate
dodecahydrate were used as precursors, with sodium chloride serving as an inert diluent,
enabling the separation of produced nanoparticles and preventing their subsequent growth.
Another goal was the characterization of the obtained material to test if it meets the
requirements of effective sun protection: ability to reflect UV light, no photocatalytic
activity, and no cytotoxic effects.

2. Results and Discussion
Figure 1 shows X-ray diffraction patterns of samples prepared with different synthe-

sis durations. All three diffraction patterns show very broad peaks, which indicates the
nanocrystalline character of the obtained phase(s). The diffraction patterns of all three
samples closely match the diffraction pattern of rhabdophane, CePO4·H2O, ICDD PDF
No. 35-614. Hydrated orthophosphate, rhabdophane, crystallizes in the hexagonal symme-
try, although the recent literature opts for monoclinic structure [18]. Even though the peaks
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are very broad, careful observation of the diffraction patterns reveals that the positions of
the diffraction maxima do not agree perfectly with the literature data. This is best perceived
for the (200) peak which should appear at 29.68 ◦(2θ) and it is notably shifted to lower
angles. Looking for an explanation, one would first think of the presence of an additional
phase such as monoclinic monazite, CePO4, ICDD PDF No. 32-199. On the other hand, such
a shift could be the consequence of the increase in lattice parameters [3]. Lattice expansion
in nanoparticles has been observed for many ionic compounds and, according to Diehm
et al. [19], the key reason for lattice expansion is negative surface stress. Unfortunately,
the broadness of the peaks and their overlapping made an exact calculation of the lattice
parameters impossible, so this inconsistency will be resolved using other techniques. A
rhabdophane crystallite size of 3.9 ± 0.5 nm was calculated on the basis of (101) reflex (at
20.25 ◦2θ), which was chosen as the most appropriate due to peaks’ overlapping.
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Figure 1. X-ray diffraction patterns of samples prepared with different durations of synthesis. Only 
the main rhabdophane peaks are labeled. 

Diffraction lines of tetragonal zirconia, t-ZrO2, ICDD PDF No. 50-0189, are clearly 
visible on the pattern of the sample whose synthesis lasted for 60 min. These lines are 
weaker on the pattern of the sample whose synthesis took 30 min and imperceptible on 
the pattern of the sample whose synthesis took 15 min. It is obvious that a shorter 
synthesis time avoids excessive wear of the vessel and balls, as well as the contamination 
of the sample with ZrO2. On the other hand, there are no peaks characteristic for reactants 
in any of the patterns and the intensities of the rhabdophane peaks do not differ 
significantly, so it can be assumed that the reaction is complete. Therefore, only the sample 
whose synthesis lasted 15 min was further investigated, since the contamination and wear 
of the vessel and balls were negligible. 

HRTEM micrographs (Figure 2) suggest that the prepared material consist of particle 
agglomerates of spherical nanosized particles (Figure 2a) with estimated size around 5 nm 
(Figure 2b), which is very close to the value calculated for the crystallite size. In the 
HRTEM image (Figure 2c), lattice fringes can be clearly observed. The most commonly 
measured distance between adjacent fringes was 3.0 nm, corresponding to the interplanar 
distances of the (200) planes of rhabdophane. From the diameters of the diffraction rings 

Figure 1. X-ray diffraction patterns of samples prepared with different durations of synthesis. Only
the main rhabdophane peaks are labeled.

Diffraction lines of tetragonal zirconia, t-ZrO2, ICDD PDF No. 50-0189, are clearly
visible on the pattern of the sample whose synthesis lasted for 60 min. These lines are
weaker on the pattern of the sample whose synthesis took 30 min and imperceptible on the
pattern of the sample whose synthesis took 15 min. It is obvious that a shorter synthesis
time avoids excessive wear of the vessel and balls, as well as the contamination of the
sample with ZrO2. On the other hand, there are no peaks characteristic for reactants in any
of the patterns and the intensities of the rhabdophane peaks do not differ significantly, so it
can be assumed that the reaction is complete. Therefore, only the sample whose synthesis
lasted 15 min was further investigated, since the contamination and wear of the vessel and
balls were negligible.

HRTEM micrographs (Figure 2) suggest that the prepared material consist of particle
agglomerates of spherical nanosized particles (Figure 2a) with estimated size around 5 nm
(Figure 2b), which is very close to the value calculated for the crystallite size. In the HRTEM
image (Figure 2c), lattice fringes can be clearly observed. The most commonly measured
distance between adjacent fringes was 3.0 nm, corresponding to the interplanar distances
of the (200) planes of rhabdophane. From the diameters of the diffraction rings in the
corresponding SAED pattern (Figure 2d), the interplane spacings were calculated to be 0.30,
0.28, 0.21, and 0.19 nm, which can be indexed as the (200), (102), (211), and (212) planes of
rhabdophane. Therefore, the results of the HRTEM analysis indicate the presence of solely
rhabdophane. EDS mapping (Figure 3) reveals completely homogeneous distribution of
cerium, phosphorus, and oxygen in the prepared sample.
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Figure 3. TEM micrograph (a) and EDS mapping of Ce (b), P (c), and O (d) in the sample prepared by
15 min synthesis.

In order to gain additional information on its composition, the sample was studied
by simultaneous differential thermal and thermogravimetric analyses and the results are
presented in Figure 4. According to the literature [7–9,12,13], one should first observe
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the loss of adsorbed water (1), then the loss of water in the channels (2), and, finally, the
transformation of rhabdophane into monazite (3). Most of the literature places channel
water loss in the temperature range between 110 and 245 ◦C, while irreversible exothermic
transformation of rhabdophane into monazite is stated to occur at temperatures above
600 ◦C [10,13]. The following reactions are expected to take place:

CePO4·nH2O (channels) mH2O (adsorbed) → CePO4·nH2O + mH2O↑ (1)

CePO4·nH2O → CePO4 + nH2O↑ (2)

CePO4 (rhabdophane) → CePO4 (monazite) (3)
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Figure 4. DTA, TG, and DTG curves of sample prepared by 15 min synthesis. 

According to Figure 4, the total mass loss between room temperature and 1000 °C 
was 10.36%. It is also evident that there is one broad endothermic peak in the range 
between room temperature and roughly 400 °C, as well as a small exothermic peak at ~600 
°C. The DTG curve indicates that, in the interval from room temperature to 400 °C, two 
processes accompanied with mass loss occur. The first one is between room temperature 
and approximately 125 °C, accompanied with a mass loss of 3.42%, which is a consequence 
of the evaporation of adsorbed water. The next temperature range where significant mass 
loss occurs can roughly be placed between 125 and 400 °C, where 6.4% of mass is lost. This 
mass loss is the result of the conversion of hydrated into anhydrous rhabdophane due to 
the release of water molecules from the channels of rhabdophane’s structure. The sample 
loses an additional 0.5% of mass until 1000 °C. Matrasek et al. observed a mass loss at 900 
°C in a similar system and have given an interesting analysis of possible causes for this 
phenomenon but have also given good arguments for rejecting each of them [10]. The 
mass fraction of water in rhabdophane (assuming the formula CePO4·H2O) is 7.12%. With 
the mass correction considering the adsorbed water (3.42%), the expected loss of water 
located in the channels is 6.87%. This value roughly corresponds to the measured loss in 

Figure 4. DTA, TG, and DTG curves of sample prepared by 15 min synthesis.

According to Figure 4, the total mass loss between room temperature and 1000 ◦C was
10.36%. It is also evident that there is one broad endothermic peak in the range between
room temperature and roughly 400 ◦C, as well as a small exothermic peak at ~600 ◦C.
The DTG curve indicates that, in the interval from room temperature to 400 ◦C, two
processes accompanied with mass loss occur. The first one is between room temperature
and approximately 125 ◦C, accompanied with a mass loss of 3.42%, which is a consequence
of the evaporation of adsorbed water. The next temperature range where significant mass
loss occurs can roughly be placed between 125 and 400 ◦C, where 6.4% of mass is lost. This
mass loss is the result of the conversion of hydrated into anhydrous rhabdophane due to
the release of water molecules from the channels of rhabdophane’s structure. The sample
loses an additional 0.5% of mass until 1000 ◦C. Matrasek et al. observed a mass loss at
900 ◦C in a similar system and have given an interesting analysis of possible causes for
this phenomenon but have also given good arguments for rejecting each of them [10]. The
mass fraction of water in rhabdophane (assuming the formula CePO4·H2O) is 7.12%. With
the mass correction considering the adsorbed water (3.42%), the expected loss of water
located in the channels is 6.87%. This value roughly corresponds to the measured loss in
the 125–400 ◦C range (6.4%) and matches almost exactly when the mass loss in the range
between 400 and 1000 ◦C (0.5%) is included.

Upon varying the thermal treatment temperature, it is possible to confirm the assump-
tions on thermally induced events noticed via DTA/TGA analysis. Based on the DTA/TGA
analysis results, temperatures of 300, 600, and 900 ◦C were chosen as temperatures the
sample was thermally treated to and analyzed using XRD and FTIR analyses.
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From Figure 5, it can be observed that the diffraction patterns of as-prepared sample
and sample heated to 300 ◦C are quite similar and it is safe to say that the sample heated
to 300 ◦C is still composed dominantly of rhabdophane. In the diffraction pattern of
sample heated to 600 ◦C, the transformation of rhabdophane into monazite is clearly
visible. The diffraction peaks are still very broad and the change does not seem dramatic
at first glance, but a careful look at the pattern will make it clear that the transformation
of rhabdophane into monazite is complete at 600 ◦C. Thermal treatment to 900 ◦C caused
the growth of monazite crystallites, which is evident from the distinct narrowing of the
diffraction maxima, suggesting an increase in monazite crystallite size. It is possible that
a zirconia (011) peak (at 30.25 ◦2θ) emerged in the XRD pattern of the sample heated to
this temperature. However, at the same angle, the (−211) peak of monazite should appear.
Other zirconia peaks have lower intensities and also overlap with monazite peaks. From
the obtained results, it can be concluded that the prepared rhabdophane is quite thermally
stable but, despite the literature sources, the phase transformation of rhabdophane into
monazite occurs at a temperature below 600 ◦C. Based on this analysis, a weak exothermic
peak appearing on the DTA curve around 600 ◦C could be attributed to the transformation
of rhabdophane to monazite.
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In order to determine whether there is any zirconia in the sample prepared by 15 min 
synthesis, an EDS analysis of a wide area of this sample was performed and the result is 
given in Figure 6. Some of the characteristic Zr lines (L lines) are overlapped with 
characteristic lines for phosphorus and gold from conductive coating. However, if 
zirconium is present, the ZrKα line at 15.77 should be visible. As can be observed in the 

Figure 5. X-ray diffraction patterns of samples prepared by 15 min synthesis and heated to various
temperatures. Only main monazite peaks are labeled. The yellow stars indicate the angles where the
zirconia peaks (ICDD PDF No. 50-0189) would appear.

In order to determine whether there is any zirconia in the sample prepared by 15 min
synthesis, an EDS analysis of a wide area of this sample was performed and the result is
given in Figure 6. Some of the characteristic Zr lines (L lines) are overlapped with char-
acteristic lines for phosphorus and gold from conductive coating. However, if zirconium
is present, the ZrKα line at 15.77 should be visible. As can be observed in the inset in
Figure 6, no line appears at this energy. Therefore, the peak at 30.25 ◦2θ most likely belongs
to monazite, and zirconium is either absent in this sample or present in a minimal amount.
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FTIR analyses were conducted for the same samples and the spectra are shown in
Figure 7. The broad band between 3750 and 2250 cm−1 and a small band at 1630 cm−1 could
be observed for the as-prepared sample. The first band is due to –OH stretching, while the
second one is attributed to –OH bending mode [12,13]. The diminished intensity of these
two bands in the sample heated to 300 ◦C clearly indicates that the amount of water in this
sample is reduced, while, after heating to 600 ◦C, there is no more water in the sample. IR
spectra of the as-prepared sample and sample heated to 300 ◦C show the presence of bands
at 533 and 613 cm−1 and a band at 1009 cm−1 with a shoulder at 1050 cm−1 characteristic
for the hydrous hexagonal orthophosphates [10,20], which correspond to O–P–O bending,
O=P–O bending, and P–O stretching vibration modes, respectively [8,11,13]. On the other
hand, samples heated to 600 and 900 ◦C show band splitting in the wavenumber ranges of
950–1100 and 500–600 cm−1, typical for monoclinic phosphates [2,9,10]. Therefore, judging
by the FTIR spectra, i.e., the splitting of bands in the region characteristic for PO4

3- groups’
vibrations and bands related to the presence of water, hexagonal rhabdophane is present in
the as-prepared sample and sample heated to 300 ◦C, while, in the samples heated at 600
and 900 ◦C, the presence of monoclinic monazite is confirmed.
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The UV-Vis DRS spectrum of the sample prepared by 15 min synthesis in comparison
with the commercial TiO2 spectrum is given in Figure 8. As can be seen, the sample reflects
a large part of the radiation of the visible spectrum. In the vicinity of the transition from
the visible to the UV area, there is a sudden decrease in reflectance due to the absorption of
UV radiation. According to the literature [3,21], rhabdophane is a direct bandgap material.
From the Tauc’s plot, the energy of the bandgap for the direct transition was determined to
be 3.1 eV, which is close to the value of 2.7 eV obtained by Lima et al. [3] in their study of
rhabdophane-type CePO4 nanoparticles.
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In order to evaluate the possibility of utilizing the prepared material in photoprotec-
tive formulations, the photocatalytic activity for the Castor oil degradation process was
investigated (Figure 9).

The photocatalytic activity was determined by measuring the conductivity of the
water containing the volatile degradation products of the Castor oil degradation process.
For the purpose of comparison, the same experiment was accomplished in the presence of
commercial titania and without any catalyst. The results of the photocatalytic degradation
experiments, i.e., conductivity as a function of time, are presented in Figure 9. As can be
seen from Figure 9, some catalytic activity of the investigated sample could be observed
because the conductivity in the presence of the investigated sample is roughly twice as high
as without any catalyst. However, in comparison with titania, which has a significantly
higher activity, the photocatalytic activity of the prepared material could be rated as very
weak. Based on the conducted photocatalytic experiment, it can be concluded that the
investigated material could be suitable for use as a UV filter in sunscreens since it behaves
as a nonoxidizing agent and does not impair sunscreen photostability.

The results of cytotoxicity investigation of the prepared sample and commercial titania,
expressed as the percentage of surviving cells depending on the concentration are given
in Table 1. The data are also given in Figure 10 for easier comparison. According to the
guidelines for the determination of in vitro cytotoxicity of medicinal products, a material is
considered nontoxic if cell survival is ≥70% after treatment. From the tabular data of the
obtained results, it can be seen that the cells tolerated the treatment of both agents well, and
the survival percentage was satisfied by both materials. It can be concluded that both TiO2

and CePO4 are noncytotoxic and suitable for use in skin products. However, although the
differences in values are small, it should be emphasized that cell survival was greater in the
presence of the investigated phosphate sample. This difference was especially notable for



Molecules 2025, 30, 405 9 of 13

the lowest concentrations. It should be noted that cell viability decreases slightly faster with
concentration in the presence of CePO4 than TiO2. Therefore, conducting the cytotoxicity
research in a wider concentrations range would be advisable.
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Figure 9. The conductivity of Castor oil degradation products dissolved in water after photocat-
alytic degradation under UV light without any catalyst and in presence of phosphate sample and
commercial titania.

Table 1. The comparison of prepared phosphate and commercial titania cytotoxicity.

Concentration (µg mL−1) Cell Survival with TiO2 (%) SD Cell Survival with CePO4 (%) SD

50 77 5 88 5
100 77 5 80 3
150 77 5 81 2
200 74 3 75 4
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3. Materials and Methods
Cerium phosphate was prepared by mechanochemical synthesis in a Pulverisette 6

planetary mill (Fritsch, Idar-Oberstein, Germany) using an 80 mL zirconium oxide (ZrO2)
vessel and 10 mm diameter ZrO2 spheres (total mass of spheres = 47.38 g). Cerium (III)
chloride heptahydrate, CeCl3·7H2O (Acros Organics, Geel, Belgium, 99%), and sodium
phosphate dodecahydrate, Na3PO4·12H2O (Kemika, Zagreb, Croatia, 99%), were used as
reactants. In order to prevent the growth of cerium phosphate particles, sodium chloride,
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NaCl (Lach-ner, Zagreb, Croatia, 99%), was added to the reaction mixture as a diluent. The
mass ratio of balls and powder was 6:1; it follows that the mass of the powder was 7.97 g.
The ratio of NaCl and precursors was also 6:1, so the mass of NaCl was 6.8336 g and the
total mass of precursors was 1.1393 g (0.5642 g CeCl3·7H2O and 0.5751 g Na3PO4·12H2O).
Syntheses were carried out for 60, 30, and 15 min at 600 rpm. After synthesis, to wash
away NaCl, the resulting powder was mixed with 200 mL of distilled water, sonicated
in an ultrasonic bath for five minutes, and then centrifuged at 3500 rpm for five minutes,
followed by decantation. The procedure was repeated five times. Finally, the resulting
powder was dried in a laboratory oven at 105 ◦C for 24 h. Part of the material remained
on the vessel walls and on the balls and part was lost in the washing procedure, which
resulted in a yield of only 50–60%.

X-ray diffraction was performed on a Shimadzu (Tokyo, Japan) XRD 6000 diffrac-
tometer with CuKα radiation. Data were collected in the range from 5 to 70 ◦2θ with a
step of 0.02◦ and a dwell time of 0.6 s. Crystallite size was calculated via Scherrer equa-
tion as described in [22]. Micrographs were obtained using Cs corrected high-resolution
scanning transmission electron microscope (HR-TEM) Jeol (Tokyo, Japan) ARM 200 CF
with accelerating voltage of 80 kV coupled with a Jeol Centurio 100 energy-dispersive
X-ray spectrometry (EDS) detector providing elemental mapping. The EDS spectrum was
obtained utilizing energy-dispersive X-ray spectrometer (EDS) Oxford INCA X-sight cou-
pled with Tescan (Brno, Czech Republic) Vega3 EasyProbe scanning electron microscope.
For the calculation of ceria average particle size, Image J software (https://imagej.net/,
accessed on 12 December 2023) package was used [23]. Thermal analyses were performed
on NETZSCH (Selb, Germany) STA 409 device with α-Al2O3 as a reference substance.
About 50 mg of the sample was placed in a platinum container and heated at a rate of 10 ◦C
min−1 with an air flow of 30 cm3 min−1. Fourier transform infrared spectroscopy analysis
was accomplished on an ATR Bruker (Billerica, MA, USA) Vertex 70 device in the spectrum
range 4000–400 cm−1, with a resolution of 2 cm−1. UV-Vis analysis was performed in
the range of 200–900 nm on Ocean Insight (Orlando, FL, USA) QE Pro High-Performance
spectrometer equipped with an integrating sphere for reflection. The bandgap energy was
determined from the obtained spectrum using Tauc’s plot as described in [22].

In order to determine the potential photocatalytic activity of the prepared sample,
which might compromise its applicability in sunscreen formulations, the Castor oil oxi-
dation process under UV light was conducted. The setup of the experiment is depicted
in Figure 11; 200 mg of catalyst was added to 20 mL of Castor oil and sonicated in an
ultrasonic bath for 3 min. The prepared suspension was added to a flask placed on a
hotplate. The content of the flask was continuously stirred and irradiated with 253 nm
irradiation produced by a UV lamp placed in a quartz cuvette. The entire reaction system
was isolated from an external source of radiation and blown with air using an electric pump
so that the air stream could carry volatile products of Castor oil oxidation into a vessel
filled with 150 mL of demineralized water. The dissolution of gaseous compounds in dem-
ineralized water caused a rise in conductivity, which was measured by a conductometer.
Aside from the prepared material, the experiment was also conducted with commercial
TiO2 nanoparticles for comparison and without any catalyst.
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Cytotoxicity was studied using the human keratinocyte cell line (HaCaT), provided
by Cell Line Services, Eppelheim, Germany. HaCaT were supplemented with 10% bovine
serum and a mixture of penicillin, streptomycin, and amphotericin B. The cells were seeded
in 96 wells of a plate, with each well containing 104 cells, and left for 48 h to grow. Then,
the medium was removed and cells were washed and exposed to the prepared material for
a period of 24 h. After this time, in vitro cytotoxicity was determined using the MTT test,
a nonradioactive colorimetric test based on the reduction of the yellow tetrazolium salt
(3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) to purple formazan
crystals by metabolically active cells. Living cells contain NAD(P)H-dependent oxidore-
ductase enzymes, which reduce MTT to formazan. The obtained crystals are dissolved,
and the resulting colored solution is quantified by measuring the absorbance in the wave-
length range of 500–600 nm using a multi-well spectrophotometer [24]. The cytotoxicity of
commercial TiO2 nanoparticles was determined for the purpose of comparison.

4. Conclusions
Nanoparticles of rhabdophane (CePO4·H2O) were prepared by mechanochemical

synthesis from cerium (III) chloride heptahydrate and sodium phosphate dodecahydrate
with sodium chloride as diluent. The duration of 15 min proved to be the best in order to
ensure the completion of the process and avoid contamination of the sample with vessel
material. The size of the prepared rhabdophane nanoparticles was around 5 nm. Thermal
analysis combined with XRD and FTIR analyses showed the elimination of adsorbed and
channel water, and, finally, the transformation of rhabdophane to monazite at around
600 ◦C. DRS analysis showed that the prepared material absorbs UV rays, while the
absorption in the visible area is minimal. It was established that the photocatalytic activity
of the prepared nanoparticles in the process of Castor oil oxidation was weak. The prepared
rhabdophane nanoparticles were proven to be noncytotoxic for the human keratinocyte
cells. Based on all of the above, the prepared rhabdophane can be evaluated as a promising
UV filter in photoprotective formulations.
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