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Abstract: Daytime radiative cooling, based on selective infrared emissions through atmo-
spheric transparency windows to outer space and the reflection of solar irradiance, is a
zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO)
electrospun membranes have both selective mid-infrared emissions and effective sunlight
reflection, inducing excellent daytime radiative cooling performance. However, PEO is
highly water soluble, which makes electrospun PEO membranes unable to cope with rainy
conditions when used for outdoor daytime radiative cooling. Herein, we report an in situ
UV-crosslinking strategy for preparing PEO electrospun membranes with water resistance
for the application of daytime radiative cooling. Acrylate-terminated PEO was synthesized
and mixed together with cross-linking agents and photoinitiators to prepare the electro-
spinning solution. During electrospinning, the nanofibers were irradiated with UV light to
initiate the cross-linking. For a membrane with a thickness of 200 µm, the average solar
reflectance was 89.6%, and the infrared emissivity (8–13 µm) was 96.3%. Although slight
swelling happens to the cross-linked membrane once it comes into contact with water, the
fibrous morphology shows no obvious change when prolonging the water soaking time,
indicating excellent water resistance. The outdoor cooling performance test results showed
that compared to the average temperature of the air in the test box, the average temperature
drop in the membrane before and after water soaking was 13.8 ◦C and 11.5 ◦C, respectively.
Crosslinked PEO-based electrospun membranes with both water resistance and radiative
cooling performance may have real applications for outdoor daytime radiative cooling.

Keywords: electrospun membranes; poly(ethylene oxide); radiative cooling; UV-cross-
linking; water resistance

1. Introduction
Radiative cooling materials reflect solar irradiance and radiate heat through the “at-

mospheric transparency window” (8–13 µm) to achieve a cooling effect [1–3]. Unlike
traditional electricity-based cooling technologies that consume tremendous amounts of
energy and produce substantial pollution, daytime radiative cooling is a zero-energy and
environmentally friendly cooling strategy. To achieve high cooling performance, daytime
radiative cooling materials should have high infrared emissivity and minimized solar
absorption [4–6]. With the rapid development of the materials and nanotechnology fields,
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diverse radiative cooling materials with strong emissivity and reflectivity are gradually
appearing, such as multilayer structures [7,8], photonic crystal structure [9], nanoparticle
doped materials [10–12], coating metamaterials [13–15], and biomimetic materials [10,16–18].

Electrospinning is a technique applicable to almost all polymers and can produce
continuous ultra-fine fibers with diameters ranging from several micrometers to hundreds
of nanometers [19]. In particular, the characteristics of electrospun membranes, including
fiber diameter, morphology, alignment, porosity, and surface area, can be easily adjusted by
optimizing the parameters of electrospinning, such as the electric field, solvent types, and
spinning conditions. Since the sizes of electrospun fibers are comparable to the wavelength
range of sunlight, electrospun membranes with disordered fiber arrangement structures
have relatively high sunlight reflectivity [20–23]. Thus, electrospinning is an efficient
nanofabrication method for preparing daytime radiative cooling materials using polymers
with high infrared emissivity in the atmospheric window, including polymers with broad-
band emissions covering the whole mid-infrared wavelength, such as cellulose acetate
(CA) [24] and polylactic acid (PLA) [25], and polymers with selective emissions covering the
atmospheric window, such as polyethylene oxide (PEO) [26] and polyvinylidene fluoride
(PVDF) [10,12,27].

Among these polymers, PEO only has C-O, C-C, and C-H bonds. C-O stretching results
in strong IR absorption at 7.7–10 µm, while C-C and C-H bonds just have narrow absorption
peaks centered at the wavelengths of 3.4, 3.5, 6.8, 7.3, and 13.7 µm [28], thus resulting in
PEO with a desirable selective absorption band that overlaps with the 8–13 µm atmospheric
transparency window and no obvious absorption outside of this region (i.e., highly selective
mid-infrared thermal emission) [26,29]. Therefore, PEO electrospun membranes that have
selective mid-infrared emission and effective scattering nanostructures have been prepared
for the application of daytime radiative cooling. For instance, Zhu’s group fabricated PEO
electrospun membranes containing randomly stacked nanofibers (diameter size centered
at ~800 nm) for radiative cooling via a scalable roll-to-roll electrospinning method. The
PEO nanofibrous membranes showed a high reflectivity of 96.3% in the sunlight region
(0.3–2.5 µm) and a high emissivity of 78% in the wavelength region of 8–13 µm, thereby
resulting in ~5 ◦C sub-ambient cooling under sunlight. Later, to improve the mechanical
properties and UV stability of PEO electrospun membranes, they doped potassium titanate
(K2Ti6O13) nanofibers into the PEO electrospun fibers, and they observed enhancements
in the strength, elongation at break, Young’s modulus, and UV stability by 2.3, 1.6, 7,
and 12 times, respectively [30]. However, as daytime radiative cooling materials are used
outdoors, the intrinsic water-solubility of PEO results in the PEO electrospun membranes’
inability to cope with rainy conditions, significantly restricting their practical applications.

Although the cross-linking of PEO can be realized via radiation techniques (electron
beam [31], gamma-ray [32], or UV light [33]) or chemical cross-linking through the reac-
tion between the end groups in PEO with cross-linking agents [34], the physicochemical
properties and biocompatibility of cross-linked PEO make it mostly used for biomedical
applications such as drug delivery [35] and cell culture scaffolds [36]. Regarding electrospin-
ning, PEO is mainly used as an assistant polymer because of its good electrospinnability,
and it is used to improve the spinnability and facilitate the fiber formation of hardly elec-
trospinnable or even non-electrospinnable polymers such as chitosan [37], collagen [38],
and alginate [39]. The PEO in the composite nanofibers can be cross-linked to form a
relatively stable part of the nanofibers [40], but in most cases, PEO is also employed as a
sacrificial template, and it is extracted by soaking nanofibers in water to leave only the main
component of nanofibers. In this way, the as-generated porous structure in the nanofibers
can be utilized for performance improvement in applications such as dye adsorption (due
to increased surface area) [37] and radiative cooling (due to increased light scattering). So
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far, research works on the cross-linking of single-component PEO electrospun nanofibers
are extremely rare [33,34], and the fiber morphology’s stability over water soaking has not
been explored. Therefore, studies on the cross-linking of PEO electrospun nanofibers used
for radiative cooling and the effects of the water swelling of cross-linked nanofibers on
optical properties are highly desired in order to use PEO electrospun membranes in real
applications with respect to daytime radiative cooling.

In this work, an in situ UV-cross-linking strategy was developed for preparing electro-
spun PEO membranes with water resistance for the application of daytime radiative cooling.
The hydroxyl group at both ends of PEO was first reacted with ethyl isocyanate acrylate
(ISA) to obtain PEO-ISA-containing acrylate groups at both ends, and then, the PEO-ISA
spinning solution was prepared with the addition of a cross-linking agent, trimethylol-
propane triacrylate (TMPTA), and a photoinitiator, benzophenone. During electrospinning,
the nanofibers were irradiated with UV light (320 nm at 70 mW/cm2) to initiate cross-
linking. To further improve sunlight reflection, Al2O3 particles (diameter 30 nm) were
doped into the fibers. In contrast to the uncross-linked PEO electrospun membrane that
completely disappeared once immersed in water, the cross-linked membrane could still
maintain its fibrous morphology even after soaking in water for 1 h. The optical properties
and outdoor radiative cooling performance of the cross-linked membrane before and after
water soaking were further tested. We hope that such a strategy for in situ UV-cross-linking
may promote the real application of PEO electrospun membranes for outdoor daytime
radiative cooling.

2. Results and Discussion
As shown in Figure 1, an in situ UV-cross-linking method was developed to prepare

PEO-based electrospun membranes with water resistance for outdoor daytime radiative
cooling. The hydroxyl groups at both ends of PEO were first reacted with ISA to obtain PEO-
ISA, which contains acrylate groups at both ends, and then, the PEO-ISA spinning solution
was prepared with the addition of a cross-linking agent (TMPTA) and a photoinitiator
(benzophenone). During electrospinning, UV light (320 nm at 70 mW/cm2) was used
to irradiate the nanofibers to initiate cross-linking. In situ UV-cross-linking allows the
formation of a cross-linked stable molecular network (Figure 1a). The mechanism for the in
situ UV-cross-linking of PEO-ISA with TMPTA is presented in Figure 1b. Al2O3 particles
(diameter 30 nm) were doped into the nanofibers to improve sunlight reflection.

Figure 2a shows the FTIR spectra of electrospun nanofibrous membranes. All these
PEO-based membranes showed the typical absorption peaks of PEO at 1099 cm−1 and
2873 cm−1, which correspond to C-O-C and C-H bond vibrations. Compared to the spec-
trum of PEO/Al2O3 membranes, for the membranes spun with PEO-ISA, there appeared
characteristic peaks at 1640 cm−1 and 1717 cm−1, corresponding to the stretching vibrations
of C=C and C=O, respectively. Moreover, as shown in the inset of Figure 2a, the intensity
of the peak 1717 cm−1 was higher for the membrane cross-linked with TMPTA due to the
existence of C=O groups in TMPTA molecules.

The mechanical properties of PEO-based membranes were investigated via tensile tests.
As shown in Figure 2b,c, compared to the uncross-linked PEO and PEO/Al2O3 electrospun
membranes, the tensile strength of the cross-linked PEO-ISA/Al2O3-T10 membrane signifi-
cantly increased due to the cross-linking that creates covalent bonding among the molecular
chains of PEO. The tensile strength at the break for the PEO-ISA/Al2O3-T10 membrane
was 2.65 MPa, which increased by about 60% and nearly 100% compared to that of the
PEO and PEO/Al2O3 membranes. For the cross-linked PEO-ISA/Al2O3-T10 membrane,
the elongation at break was just 45.7%, which is much lower than that of uncross-linked
PEO and PEO/Al2O3 membranes due to the cross-linked network that resists deformation
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under stress. The Young’s modulus was slightly increased with the addition of Al2O3,
while the cross-linked PEO-ISA/Al2O3-T10 membrane showed a lowered modulus. This
phenomenon was also observed in a previous report that used TMPTA as a cross-linker for
PEO [33].
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The water resistance of PEO-based electrospun membranes was tested by soaking the
membranes in water for a certain time period. As shown in Figure 3a, the PEO electrospun
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membrane completely dissolved in water within 10 min. The sample of PEO/Al2O3-
T10 (without the end-capping with ISA) partially dissolved in water and experienced
size shrinkage. In this case, the weak water resistance can be attributed to the photo-
induced hydrogen abstraction reactions from PEO and the subsequent cross-linking with
TMPTA [33]. In contrast, the PEO/Al2O3-T10 sample maintained its integrity in water,
indicating that the in situ UV cross-linking is effective for imparting PEO-based electrospun
membranes with water resistance.
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Figure 3. (a) Photos showing changes in the PEO (1), PEO/Al2O3-T10 (2), and PEO-ISA/Al2O3-T10 (3)
electrospun membranes before and after soaking in water for 30 min. (b) SEM images of PEO/Al2O3-T10
and PEO-ISA/Al2O3-T10 after soaking in water for 1 min, 10 min, 30 min, and 1 h, respectively.

Figure 3b shows the SEM images of the PEO/Al2O3-T10 and PEO-ISA/Al2O3-T10
membranes before and after soaking in water for different time periods followed by being
naturally dried. It can be seen that the fibrous morphology of PEO/Al2O3-T10 became
hard to identify after being soaked in water for just 1 min. With an increase in the water
soaking time, the pores between the electrospun fibers tended to disappear, and film-like
surface morphology was observed after 1 h of water soaking. However, for the PEO-
ISA/Al2O3-T10 membrane, the fibrous morphology was maintained even after 1 h of water
soaking, though the fibers became curly due to the slight swelling in water. In particular,
the ultrafine fibers still existed, indicating the high cross-linking efficiency of the in situ
UV cross-linking method proposed in this work. More importantly, compared to the
fibrous morphology after 1 min of water soaking, the change in the fibrous morphology
was not obvious when prolonging the duration of water soaking. Furthermore, the PEO-
ISA/Al2O3-T10 membrane was subjected to repeated water soaking–drying processes.
It was found that there was no further change in the fibrous morphology after the first
water soaking–drying cycle (Figure S1). These results indicate that the PEO-ISA/Al2O3-T10
membrane has excellent water resistance and can provide reliable functions even after
encounters with rainy weather.

To visually confirm that the cross-linked PEO-ISA/Al2O3-T10 membrane is still
moisture-permeable after water soaking based on its preserved fibrous morphology, a
simple experiment was designed. As shown in Figure 4, the sample of the PEO-ISA/Al2O3-
T10 membrane after soaking in water for different time periods was tightly sealed at the
opening of a small glass bottle containing hot water, and a glass beaker was used to cover
the small glass bottle. It can be observed that the moisture vapor coming from the hot water
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can penetrate through the electrospun membranes and condense on the inner wall of the
glass beaker, confirming the fibrous morphology of the water-soaked membranes and the
as-resulted moisture permeability.
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Figure 4. Photographs showing the moisture permeability of PEO-ISA/Al2O3-T10 after different
water soaking time periods.

The influence of the amount of cross-linker TMPTA on the fiber morphology and water
resistance was investigated by observing the microscopic morphologies of the membranes
prepared with different mass fractions of TMPTA (relative to PEO-ISA) before and after
soaking in water for 30 min. As shown in Figure 5, for membranes without TMPTA
(PEO-ISA/Al2O3-T0) or with relatively low amounts of TMPTA (PEO-ISA/Al2O3-T1 and
PEO-ISA/Al2O3-T5), fibrous morphology was destroyed once soaked in water. Water
resistance was achieved for both samples of PEO-ISA/Al2O3-T10 and PEO-ISA/Al2O3-
T20, while too high contents of TMPTA resulted in the appearance of beads on the fibers.
Therefore, PEO-ISA/Al2O3-T10 was considered optimal.
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Figure 5. SEM images of PEO-based electrospun membranes prepared with different TMPTA mass
fractions of 0%, 1%, 5%, 10%, and 20%, respectively, before and after soaking in water for 30 min.

Through the in situ UV-cross-linking, we successfully imparted PEO-based nanofiber
membranes with water resistance. Although the fibrous morphology of the nanofibers was
preserved, the nanofibers changed from straight to curly after soaking in water. As radiative
cooling materials, the optical properties of electrospun membranes are the primary factors
affecting the cooling performance. In the following, the optical properties and cooling
performance of different nanofiber membranes with a thickness of 200 µm were tested.
As shown in Figure 6a, in the “atmospheric window” range of 8–13 µm, the average
transmittance of PEO, PEO/Al2O3, PEO-ISA/Al2O3-T10, and PEO-ISA/Al2O3-T10-W (i.e.,
the PEO-ISA/Al2O3-T10 sample after 30 min water soaking) was 93.6%, 92.3%, 93.7%,
and 93.4%, respectively. It can be observed that UV cross-linking has little effect on the
average mid-infrared transmittance of electrospun membranes. The solar reflectance
of PEO, PEO/Al2O3, and PEO-ISA/Al2O3-T10 in the range of 0.28–2.5 µm was 90.2%,
91.1%, and 89.6%, respectively (Figure 6b). After water soaking, the solar reflectance
of PEO-ISA/Al2O3-T10 was reduced to 82.7% due to the swelling and deformation of
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nanofibers. Figure 6c shows the infrared emission spectra of the electrospun membranes.
In the atmospheric window range of 8–13 µm, the average infrared emissivity of PEO,
PEO/Al2O3, and PEO-ISA/Al2O3-T10 was 75.8%, 90.0%, and 96.3%, respectively. The
enhanced infrared emission of the cross-linked membrane might be attributed to the
vibrations of the introduced C=C and C=O groups.
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The outdoor radiative cooling performance of PEO-based electrospun membranes was
tested using a homemade setup (Figures 7a and S2). The test was conducted in a polystyrene
foam box to eliminate the effect of heat conduction. Infrared transparent PE film (10 µm
thick) was used to cover the top opening of the foam box to prevent heat convection. The
foam box was covered with aluminum foil to reflect the surrounding thermal radiation. A
thermocouple was placed under the sample to record the real-time temperature change.
The test results are shown in Figure 7b, and the variations in solar irradiance and environ-
mental relative humidity over time during the test process are shown in Figures 7c and 7d,
respectively. It can be seen that the PEO-ISA/Al2O3-T10 membrane exhibited excellent day-
time radiative cooling performance, significantly outperforming the PEO and PEO/Al2O3

membranes. When the average temperature of the air in the foam box was 57.2 ◦C, the
average temperatures of the PEO, PEO/Al2O3, and PEO-ISA/Al2O3-T10 fiber membranes
were 46.5 ◦C, 44.8 ◦C, and 43.7 ◦C, respectively. When the temperature of the air in the
foam box reached 60.0 ◦C, the temperature reduction in the PEO-ISA/Al2O3-T10 mem-
brane compared to the aluminum plate, PEO membrane, and PEO/Al2O3 membrane was
8.3 ◦C, 3.3 ◦C, and 1.4 ◦C, respectively. The better outdoor cooling performance of the PEO-
ISA/Al2O3-T10 membrane than that of the PEO/Al2O3 membrane can be attributed to its
higher infrared emissivity. After water soaking, the outdoor radiative cooling capability of
the cross-linked membrane decreased due to the reduced sunlight reflectance as described
above, but radiative cooling performance still outperformed that of the uncross-linked
PEO electrospun membrane. Compared to the average temperature of the air in the foam
box, the average temperature drop in the PEO-ISA/Al2O3-T10 membrane before and after
water soaking was 13.8 ◦C and 11.5 ◦C, respectively. These results indicate that the in situ
cross-linking strategy ensures the water resistance of PEO-based electrospun membranes
and, meanwhile, the daytime radiative cooling performance for practical applications. Here,
it should be pointed out that the cooling performance is compared to the temperature of the
air in the enclosed testing box rather than the true ambient temperature. To obtain a cooling
effect under realistic conditions, it is crucial to further enhance the solar reflectivity of the
membranes, as a net sub-ambient cooling effect during daytime hours typically requires a
solar reflectivity of around 90% or above [41]. In addition, the durability against long-term
UV irradiation from sunlight is also important for practical applications. To improve UV
stability, inorganic nanomaterials that can absorb high-energy UV photons and transform
them into less harmful heat can be doped into the fibers to prevent degradation [30,42].
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3. Experimental Section
3.1. Materials

Poly(ethylene oxide) (PEO, Mw = 800,000) was purchased from Hefei BASF Biotech-
nology Co., Ltd. (Hefei, China). Nanoalumina (Al2O3, diameter 30 nm), and benzophenone
was purchased from Shanghai Maclin Biochemical Technology Co., Ltd. (Shanghai, China).
Acetonitrile and trimethylolpropane triacrylate (TMPTA) were supplied by Shanghai Al-
addin Biochemical Technology Co., Ltd. (Shanghai, China). Isocyanate ethyl acrylate (ISA)
was purchased from Shanghai Titan Technology Co., Ltd. (Shanghai, China). Acetone
was purchased from Yonghua Chemical Technology (Jiangsu) Co., Ltd. (Suzhou, China).
Dichloromethane was purchased from Jiangsu Qiangsheng Functional Chemical Co., Ltd.
(Suzhou, China).

3.2. Preparation of Acrylate-Terminated PEO (PEO-ISA)

Acrylate-terminated PEO was synthesized via end-capping the end –OH groups of
PEO using ISA according to the method reported in our previous work [43,44]. Typically,
5 g of PEO was added to 100 mL of dichloromethane, and then, 0.90 g of ISA was added
slowly dropwise into the stirred PEO solution, followed by continuous stirring at room
temperature for 12 h. The product was poured into a glass Petri dish and dried to obtain
PEO-ISA.

3.3. Preparation of Electrospinning Solutions

The PEO-ISA/Al2O3 solution was prepared by adding 1 g of PEO-ISA and 0.04 g of
Al2O3 into acetonitrile and acetone (1:1) and stirring for 4 h at 30 ◦C. Then, the solution
was ultrasonically treated for 30 min to improve the dispersion of Al2O3 particles. TMPTA
relative to the PEO-ISA mass fraction of 1%, 5%, 10%, or 20% was added into the solution
under light-proof conditions, and the solution was stirred for 30 min at room temperature.
The photoinitiator benzophenone with a mass percentage of 1% relative to PEO-ISA was
added to the solution to prepare a homogeneous PEO-ISA/Al2O3/TMPTA spinning solu-
tion. The as-prepared electrospun membrane was named PEO-ISA/Al2O3-T, and according
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to the mass fraction of TMPTA relative to PEO-ISA, five samples (PEO-ISA/Al2O3-T1, PEO-
ISA/Al2O3-T5, PEO-ISA/Al2O3-T10, and PEO-ISA/Al2O3-T20) were obtained. A control
sample of PEO-ISA/Al2O3- was prepared using the PEO-ISA/Al2O3 solution without the
addition of TMPTA.

To study the effect of the concentration of PEO solutions on fiber morphology and
thus solar reflectance, the PEO concentration was set to 3 wt%, 4 wt%, 5 wt%, 6 wt%, and
7 wt%, respectively, to obtain samples of PEO-3, PEO-4, PEO-5, PEO-6, and PEO-7. Test
results showed that PEO-5 is optimal based on the fiber morphology and reflectivity of the
membranes (Figures S3 and S4), and thus, PEO-5 was used as a control sample (abbreviated
as PEO) to reveal the poor water resistance of uncross-linked PEO nanofibers.

The effect of Al2O3 content was studied by varying the mass fraction of Al2O3 rel-
ative to PEO from 2%, 4%, 6%, to 8% to obtain samples of PEO/Al2O3-2, PEO/Al2O3-4,
PEO/Al2O3-6, and PEO/Al2O3-8. Test results showed that PEO/Al2O3-4 is optimal based
on the reflectivity of the membranes (Figure S5), which was then also used as a control
sample (abbreviated as PEO/Al2O3) for the cross-linked PEO-ISA/Al2O3-T10 (the mass
fraction of Al2O3 relative to PEO-ISA is also 4%).

Moreover, PEO/Al2O3-T10 was prepared as a control sample using pristine PEO
instead of PEO-ISA for the sample of PEO-ISA/Al2O3-T10 to show the necessary end-
capping of PEO with ISA.

3.4. Preparation of Electrospun Membranes

For electrospinning, the spinning solution was placed in a 20 mL syringe. For solutions
containing TMPTA, the syringe was covered to protect the solution from light irradiation,
and UV light (320 nm, intensity 70 mW/cm2) was used to irradiate the nanofibers to initiate
UV cross-linking during the electrospinning process. Spinning conditions were 25 ◦C and
55% relative humidity. The spinning voltage was 12 kV, the receiving distance was 15 cm,
the roller speed was 800 r/min, and the flow rate was 3 mL/h. After electrospinning, the
as-prepared electrospun membranes (thickness 200 µm) were dried in an oven at 50 ◦C for
1 h.

3.5. Characterizations

A scanning electron microscope (Hitachi Regulus 8230, Hitachi, Tokyo, Japan) was
used to observe the microscopic morphology of the samples. A Fourier transform in-
frared (FTIR) spectrometer (Vertex 70-Hyperion 2000, Bruker, Billerica, MA, USA) with
an integrating sphere attachment was used to measure the mid-infrared transmittance of
fibrous membrane samples. A UV-VIS-NIR spectrophotometer (Hitachi UH4150, Hitachi,
Tokyo, Japan) with an integrating sphere attachment was used to measure the reflectance
of the fibrous membrane samples. The infrared emissivity of the samples was measured
using a Nicolet iS50 FTIR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA)
equipped with an integrating sphere attachment. The mechanical properties of the sam-
ples (1 cm × 4 cm) were tested using a Universal Material Testing Machine (UMTM) type
3365 (Instron, Norwood, MA, USA). The distance between the upper and lower grips of
the universal material testing machine was set at 20 mm, and the tensile rate was set at
20 mm/min. For each sample, the test was conducted three times (Figure S6).

4. Conclusions
An in situ UV cross-linking strategy was developed based on the synthesis of PEO

with acrylate terminated at both ends for preparing water-resistant PEO-based electrospun
membranes for the application of daytime radiative cooling. Although slight swelling
happens to the cross-linked membrane once it is in contact with water, the fibrous morphol-
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ogy shows no obvious changes when prolonging water soaking times, implying excellent
water resistance that can meet the challenge of rainy conditions. The outdoor cooling
performance test results showed that compared to the average temperature of the air in the
outdoor cooling test box, the average temperature drop in the membrane before and after
water soaking was 13.8 ◦C and 11.5 ◦C, respectively. We anticipate that this in situ cross-
linking strategy that assures both water resistance and radiative cooling performance may
lead to the real application of PEO-based electrospun membranes in the field of daytime
radiative cooling.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules30020421/s1. Figure S1. SEM images of PEO-ISA/Al2O3-
T10 after (a) the second and (b) the third water soaking-drying cycle (water soaking time is 1 h).
Figure S2. Digital photos of the test setup using for outdoor cooling performance test: with samples
(left), and without samples (right, showing the position of the thermocouples). Figure S3. SEM images
of PEO electrospun membranes prepared with spinning solutions having different concentrations:
(a) 3 wt%; (b) 4 wt%; (c) 5 wt%; (d) 6 wt%; (e) 7 wt%. Figure S4. Reflectance of PEO electrospun mem-
branes prepared with spinning solutions having different concentrations. Figure S5. Reflectance of
PEO/Al2O3 electrospun membranes prepared with different Al2O3 mass fractions. Figure S6. Tensile
stress-strain curves for the PEO, PEO/Al2O3, and PEO-ISA/Al2O3-T10 electrospun membranes.
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