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N, S co-doping 

    A mixture of PC and thiourea (mass ratio 1:1) was heated in N2 at 500 °C for 2 h. 

The collected samples were rinsed with hot distilled water a few times to get rid of any 

unreacted thiourea. Finally, the resulting products were put into the oven to dry at 

120 °C overnight. The resulting sample was denoted as PCT. 

KOH activation 

For a typical reaction, 2 g PCT was combined with a solution that contained 8g 

KOH. After stirring vigorously for 6 h, the mixture was left overnight to dry at 120 °C 

in an oven. Afterwards, the sample was activated to 700 °C for 2 h. During the 

activation process, the heating rate is 5 °C/min and nitrogen flow rate is 400 mL/min. 

Following activation, the sorbent was rinsed with distilled water until the pH value of 

the filtrate was roughly 7. The wet sample was then dried at 150 °C under vacuum for 

24 h. The obtained sample was denoted as PCTK-700-4. 

Characterization  
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Powdered X-ray diffraction (XRD) patterns were carried out on a PHILIPS 

PW3040/60 powder diffractometer using CuKα radiation (λ =0.15406nm). Scanning 

electron microscopy (SEM Hitachi S-4800) was used to observe the morphology of the 

samples of carbon materials. Further details of the pore structure were determined by 

transmission electron microscopy (TEM, JEOL-2100F) operated at 200 kV. The CHN 

elements were analyzed using a VarioEL III Elemental Analyzer. Nitrogen adsorption 

and desorption isotherms were measured on a Beishide 3H-2000PS2 sorption analyzer 

at -196oC. Ultrahigh-purity N2 (99.999%, Shanghai Pujiang Gas Co., Ltd) was used for 

measurement. Before measurement, the samples were degassed in a vacuum at 200oC 

for at least 12h. The specific surface area (SBET) was calculated according to the 

multipoint Brunauer-Emmett-Teller (BET) method from the adsorption data in the 

relative pressure range between 0.001 and 0.01. The total micropore volume (Vt) was 

deduced from the N2 adsorption data by the t-plot method, and the total pore volume (V0) 

was estimated from the adsorbed amount of liquid nitrogen at a relative pressure of 0.99. 

The error of porosity measurement is within 3%. The pore size distribution was 

calculated using the density functional theory (DFT) method. In addition, X-ray 

photoelectron (XPS) measurements were performed using an AXIS Nova spectrometer 

(Kratos Inc., NY, USA) equipped with a monochromatic Al Kα X-ray source (1486.6 

eV). XPS survey spectra were recorded with a pass energy of 160 eV, and 

high-resolution spectra with a pass energy of 40 eV.  

The CO2 adsorption isotherms were measured using the Beshide 3H-2000PS2 

sorption analyzer at 0oC and 25oC, respectively. Pure CO2 (99.99%, Shanghai Pujiang 
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Gas Co., Ltd) was used for adsorption. Prior to each adsorption experiment, the sample 

was degassed for 12 h at 200oC to remove the guest molecules from the pores. The 

volume of narrow micropores (with sizes <1 nm), Vn, was calculated from CO2 

adsorption at 0°C using the Dubinin–Radushkevich (D-R) equation. The measurements 

were repeated for each sample, until the values fell within ± 2% of each other. 

Measurement of dynamic CO2 uptake of the sorbents 

The dynamic CO2 uptake of the sorbents was tested on a fixed-bed reactor 

schematically illustrated in Scheme S1 at 1 bar and 25 °C. First, the sample was heated 

at 100°C for 1 h under N2 at a flow rate of 20 mL/min. The gas flow was shifted from 

nitrogen to a 10% mixture of CO2 in N2 at a flow rate of 10 mL/min, when the sample 

temperature was lowered to 25°C. The effluent gases were monitored online using an 

Agilent 7820A gas chromatograph with a thermal conductivity detector (TCD). From 

the breakthrough curves, the dynamic CO2 capture capacity on an adsorbent was 

calculated. The error for this measurement falls within 2%.  

Measurement of CO2 adsorption kinetics 

The adsorption kinetics of CO2 was measured in a thermogravimetric analyzer 

(NETZSCH STA 449C). In the kinetic analysis, the sample (~5 mg) was degassed under 

a He stream at 200°C for 1 h. Next, the temperature was cooled to the experimental 

temperature of 25°C. Then the CO2 gas was fed into the test chamber with a flow rate of 

50 mL/min and the weight variation with time was recorded. The measurement’ s error 

is within 2%. 
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Scheme S1. Schematic diagram of the fixed-bed reactor system. 

 

 

Figure S1. SEM image of PC  
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Figure S2. XPS survey scan spectrum of PCT and PCTK-T-m samples 
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Figure S3. Plot of each porous properties characteristics (a) SBET, (b) Vo, (c) Vt ,(d) Vn , 

(e) nitrogen and (f) sulfur content versus CO2 uptake. 
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Figure S4. CO2 adsorption isotherms of PCTK-700-4 vs PCK-700-4 at 25°C and 1 bar 
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Figure S5. N2 sorption isotherms of PCTK-700-4 vs PCK-700-4 
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Table S1. Comparison of the CO2 adsorption (25 °C and 1 bar) for different sorbents 
 

Sample CO2 uptake 
(mmol/g) Ref. 

AA750 2.7 S1 
GEPM-1 2.5 S2 
GMNO-4 2.6 S3 
GTCF-3 2.7 S4 
MRF-2 2.5 S5 

OM-CNS 3.0 S6 
SU-MC 1.0 S7 

NDPC-2-800 0.8 S8 
COP-122 0.4 S9 
ZIF-78 2.7 S10 

C-PP-750-1 2.6 S11 
4-FSAC-HPC 3.3 S12 

PSK-2-650 3.5 S13 
Zeolite 13x 4.6 S14 

Mg-MOF-74 7.1 S15 
UiO-66(Zr)-(OH)2 6.2 S16 

PCTK-700-4 3.7 This study 
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