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Abstract: Cannabis sativa L. is cultivated nowadays for agricultural, industrial, and medic-
inal applications and also for recreational use. The latter is due to the presence of delta-9-
tetrahydrocannabinol, a psychoactive substance. Recreational cannabis policies vary between
different countries, which has led to the lack of a clearly defined legal context for cannabis and
also a diversity of products derived from or containing cannabis on the (il)legal market. These
cannabis-derived products have regained attention, notably because of their cannabinoid
content. This review aims to assess and present analytical methods developed to analyze
phytocannabinoids with spectroscopic and chromatographic techniques in specific cannabis
matrices: herbs and oily products. Published papers from 2018–November 2024 were searched
for with precise criteria, analyzed, and summarized. In the studies, liquid and gas chromato-
graphic techniques (>70% reviewed papers) were the most used and have been widely applied
using similar methods, and most papers were focused on cannabis herbs (>75%). Techniques
were also compared and future challenges were identified. A comparison of different speci-
ficities of chromatographic and spectroscopic techniques discussed in this current review has
also been established and summarized.
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1. Introduction
Cannabis sativa L. is a widespread species from the Cannabaceae family that naturally

occurs in various habitats from the sea to the foothills of the Himalayas. The number of
species in the Cannabis genus has long been controversial. Some authors reported three
different species: Cannabis sativa L., Cannabis indica Lam., and Cannabis ruderalis Janish [1].
Currently, only one species is considered to belong to the genus cannabis and includes two
varieties, sativa and indica. The taxonomy is uniform and one simple and practical system
of classification is based on the chemotype, considering the variety sativa as fibrous and the
variety indica as narcotic [2].

The plant was first discovered in Central Asia 12,000 years ago and was mainly used
for its fibers to produce ropes and nets, as well as for dietary purposes and as traditional
medicine. As an example, it was used in ayurvedic medicine to treat pain, nausea, and
anxiety, and also to induce euphoria. Nomadic populations spread the cannabis seeds
around the world during their commercial exchanges, leading toward various discoveries
and descriptions of medicinal applications, resulting in what is called ‘the golden age of
medicinal cannabis’ between the 19th and 20th centuries [3].
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To date, more than 177 phytocannabinoids have been identified in Cannabis sativa L. [4,5].
The chemical structures of some main phytocannabinoids are shown in Table 1. Phytocannabi-
noids are terpenophenolic compounds and are considered the main active constituents of the
plant. They are biosynthesized by the glandular trichomes, particularly in stalked trichomes [6].
Decarboxylated phytocannabinoids were long assumed to be authentic natural products but,
currently, it is assumed that 95% of phytocannabinoids, such as delta-9-tetrahydrocannabinol
(∆9-THC), cannabidiol (CBD), and cannabichromene (CBC), exist as their acid precursor form.
After harvest and when exposed to heat via smoking or baking or when exposed to light, the
decarboxylated phtocannabinoids are readily formed by non-enzymatic thermal decarboxyla-
tion. These factors are also responsible for the oxidation of THCA in cannabinolic acid (CBNA)
and the oxidation of ∆9-THC in cannabinol (CBN) [7,8].

Table 1. The chemical structures of some main phytocannabinoids (and (in red) the carboxylic precursor).

Cannabinoid Structure

Cannabichromen(-ic acid)
CBC(A)
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Table 1. Cont.

Cannabinoid Structure

Tetrahydrocannabidivarin(-ic acid)
THCV(A)
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Nowadays, the plant is mainly cultivated for agricultural and industrial applications,
as well as for recreational and medicinal uses.

Agricultural and industrial hemp has a wide range of applications, including as a food
source for humans and animals and use in commercial products such as textiles, clothing,
biodegradable plastics, paint, and so on. Hemp cultivation is also considered a green product
and is recognized as such by the European Green Deal due to its light weight and durability [9].
Thanks to this Green Deal, hemp production in the European Union (EU) is flourishing, with
France as the largest producer, representing 70% of the total production of the EU [9]. Farmers
in Europe should have a license to cultivate hemp for industry and should use only the seventy-
five varieties of Cannabis sativa L. listed in the common catalog of varieties of agricultural
plant species [10] that can be marketed in both the EU and Switzerland.

A maximal content of delta-9-tetrahydrocannabinol (∆9-THC), the psychoactive com-
pound of cannabis, in agricultural hemp is fixed at 1% (w/w) in Switzerland [11], as opposed
to the EU, where a limit of 0.3% (w/w) is applied [12]. Worldwide, every country has its own
legislation and limits.

The reason for this is that cannabis today is most commonly used for recreational
purposes. Indeed, the presence of ∆9-THC has made cannabis the most widely consumed
illicit drug in Europe and one of the most popular worldwide. Here, concentrations of ∆9-THC
are generally above 15% (w/w). Extensive developments in cannabis have been influenced
by the recreational cannabis market in the United States of America and the development of
“cannabis-derived products” containing extracts issued from the cannabis plant [13]. Today,
cannabis, as a recreational drug, falls under legislation regarding illicit drugs, consisting of
three international drug control conventions: the single convention on narcotic drugs of 1961
(amended in 1972) adopted by 154 countries [14], the convention on psychotropic substances
of 1971, adopted by 184 countries [15], and the United Nations convention against illicit
traffic in narcotic drugs and psychotropic substances of 1988, adopted by 191 countries [16].
In principle, these conventions do not allow countries to legalize the recreational use of
cannabis, although in 2013, Uruguay was the first to legalize its production, possession,
detention, and distribution [17]. In 2018, Canada followed suit and started a worldwide
debate on the subject [18]. Within the European Union, several countries are developing
recreational cannabis policies. For instance, in the Netherlands, its sale and use are tolerated.

Currently, it is obvious that the legal context of cannabis is not clearly defined. The scope
of cannabis policies encompasses the regulation for medicinal use, for cannabis-derived
products, such as cosmetics, and the control of illicit cannabis. Indeed, the diversity of
products derived from or containing cannabis, as well as extracted or synthetically produced
cannabinoids, is very broad. An important category includes products used for medical and
medicinal purposes. Therefore, cannabis is produced by some companies for the treatment
of pain, anxiety, depression, sleep disorders, and neurological disorders [19]. On the other
hand, registered medicines have been launched on the market in different regions of the
world. Some are based on synthetic cannabinoids [20], for example, nabilone, which is used
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in the treatment of anorexia and for its antiemetic effects, and dronabinol, which is used in
the treatment of multiple sclerosis and pain. Others are based on Cannabis sativa L. extracts,
used in the treatment of multiple sclerosis [21], and on naturally occurring cannabinoids,
such as cannabidiol (CBD), which is applied as an adjunctive therapy for the treatment of
Lennox–Gastaut or Dravet syndrome [22]. Next to these recognized medicinal products,
there is a growing number of so-called “low-∆9-THC products”, which are available in
pharmacies, shops, via the Internet, and through illegal channels. In addition, for these
products, legislation varies widely between countries, from considering them as illegal to
permitting over-the-counter sales. Low-∆9-THC cannabis products are numerous and Table 2
provides an overview of the different types of products available on the European market.

Table 2. Overview of low-∆9-THC products circulating on the European market.

Product Description and Information About the Product

Herbal product and resin for smoking Cannabis spp. flowers
(CBD cultivars)

e-liquids Liquid containing CBD put in an e-cigarette (vaping product)

Crystals Solid containing CBD used to make the e-liquid itself

CBD oil (internal use) Oil (e.g., hemp seed oil) + CBD

Edible products—Food Food based on Cannabis sativa L. (CBD cultivars)
(e.g., cookies, chocolate, and pasta)

Food supplements e.g., Capsules, gummies, and beverages
containing CBD

Hemp seed oil Oil made from whole seeds

Herbal tea Cannabis leaves/flowers destined to be infused

Cosmetics e.g., balms, shampoos, oils, and creams
containing CBD

Potpourri Cannabis spp. flowers (CBD cultivars)

The wide variety of cannabis and cannabis-derived products, both existing and emerg-
ing, also necessitates market surveillance in order to protect the safety of patients and
consumers. For all these products, the most important compounds of interest are cannabi-
noids. In this context, cannabinoids can be split into two types: phytocannabinoids, present
in the plant Cannabis sativa L., and synthetic cannabinoids. Endocannabinoids are a third
type and are molecules synthesized by the human body. Therefore, they are not within the
scope of this review, since they are not used in the products discussed here.

Although ∆9-THC and CBD are the most-targeted cannabinoids during the analysis of
these products, it is also important to monitor some other cannabinoids, e.g., cannabichromene
(CBC), cannabinol (CBN, which is the ∆9-THC degradation product), cannabidivarin (CBDV),
cannabigerol (CBG), and tetrahydrocannabidivarin (THCV), since it is known that they also
often occur in products. Some products even claim to have a higher dosage of these com-
pounds, linking them to several health claims and benefits. Phytocannabinoids, contrary to
endocannabinoids, which are naturally occurring substances produced in the human body,
are capable of binding to cannabinoid receptors with high affinity and have numerous other
targets besides these receptors [8]. Therefore, both types of cannabinoids have the same sites
of action, explaining their different effects and activities.

This review intends to provide a structured review of the chromatographic and spec-
troscopic techniques and methods described for the analysis of phytocannabinoids in
(para)pharmaceutical cannabis-derived products, evaluating their advantages and disad-
vantages and emphasizing the necessity of effective method validation. Considering the
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wide scope of cannabis-derived products on the market, this review will focus on the two
most popular matrices, i.e., herbal products and so-called CBD oils. The different tech-
niques will be compared and future challenges will be identified. The analysis of synthetic
cannabinoids is considered out of the scope of this review since in the legal market, they are
present in registered medicines, with validated and approved methods in the marketing
authorization files of the companies. In the illegal market, analysis falls under forensic
analysis and the fight against new psychoactive substances in the illicit drug circuit. In
addition, registered medicines based on naturally occurring cannabinoids were considered
out-of-scope, since their analytical methods for quality control are part of confidential
marketing authorization data and are product- and company-specific.

2. Review of the Analytical Techniques and Methods
• This section is inspired by the published thesis of Duchateau C. [23]

When using the keyword “cannabi*” (for cannabis and cannabinoids) in the Scopus
database, more than 105,717 documents were found, and the distribution of these doc-
uments across the various domains is as follows: more than 63% in medicine, 23% in
pharmacology, toxicology, and pharmaceutics, 6% in chemistry, and 5% in agricultural
and biological sciences. Recently developed analytical techniques and methods for testing
cannabinoids in herbal materials and oils were reviewed.

The increased interest in cannabis has led to a growing need for the development of
qualitative and quantitative methods for the analysis of cannabinoids in many areas. Cannabis
analysis is performed to control the quality of the material used, as well as to determine the
difference between fiber and recreational cannabis [24]. An extensive investigation of the
analytical techniques to determine cannabinoids was performed here with an emphasis on
the analysis of plant materials and oils. Due to the large number of scientific publications on
this topic, the literature review has been deliberately restricted to the period from 2018–2024
(November). By searching for the combination of the word “cannabi*” combined with the
analytical technique of interest within titles, keywords, and abstracts and limiting the search
to the “chemistry”, “pharmacology, toxicology, and pharmaceutics”, and “agricultural and
biological sciences” areas, papers were found using the Scopus and Web of Science databases.

Numerous techniques have been employed for the identification and quantification
of cannabinoids. Cannabinoids in plants and oils are frequently analyzed using gas chro-
matography (GC) and liquid chromatography (LC) [25]. Because of the current laws on
∆9-THC, the plant material is generally the targeted matrix. The Cannabis Analytical Sci-
ence Program of the AOAC (Association of Official Analytical Collaboration) recommends
other cannabinoids of interest [26].

Spectroscopic and electroanalytical methods have also been investigated. Applications
based on infrared and Raman spectroscopy have shown themselves to be suitable in testing
for both quantitative and qualitative purposes [27]. Indeed, these techniques use hand-held
devices, which makes them interesting tools for on-site, quick, and reagent-less quality
control [28]. Although mid-infrared spectroscopy (MIRS) and Raman spectroscopy have
been recently applied using modern instrumentation, near-infrared spectroscopy (NIRS) is
generally used for cannabis analysis [29].

3. Analytical Techniques
• This section is inspired by the published thesis of Duchateau C. [23]

3.1. Gas Chromatography (GC)

GC is a well-known and established separation technique that, when combined with
a suitable detection system, enables the analysis of a wide range of analytes in complex
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samples. The most widely used detectors in GC, particularly in the analysis of cannabinoids,
are mass spectrometry (MS) and flame ionization detection (FID). GC can be applied in the
analysis of mixtures containing volatile components with a vapor pressure of a few mmHg,
compounds with boiling points ranging from 0 to 425 ◦C, and compounds that can be
heated without decomposition, such as cannabinoids [30]. Table 3 gives an overview of
cannabis-related GC applications.

The flow in GC is generally between 0.5 and 1.6 mL/min and the separation is usually
performed using hydrogen [31–33] or helium [34–55] as the carrier gas. A high proportion
(95–100%) of dimethylpolysiloxane is used as the inner wall coating in fused support coated
open tubular (FSCOT) capillary columns, which are the preferred type. This kind of column
is commonly defined as an “ultra-inert capillary column”.

The direct determination of the acidic forms of phytocannabinoids is not possible in
GC analysis. The acidic cannabinoids (thermolabile) are turned into their decarboxylated
forms at the injection port, where high temperatures (~280 ◦C) are present. After 15 min
at 150 ◦C, THCA is almost completely converted into ∆9-THC. The production of ∆9-THC
may be maximal at 225 ◦C, while decarboxylation of CBDA is already complete at about
110 ◦C. Only the quantification of the total form (acidic and basic form, e.g., total ∆9-THC)
is possible with the implementation of GC, which is an advantage, e.g., in the context of
∆9-THC content determination in agricultural hemp [56–59]. Indeed, EU legislation only
limits the total ∆9-THC content; therefore, it recommends methods based on GC [60]. When
the determination of the acidic forms is not necessary, a heating step can be implemented.
However, it should be kept in mind that a significant loss of components could be caused by
the high temperatures of the injector and detector. In addition to the high temperatures, the
geometry of the injector port also influences the decarboxylation rate. If an accurate estimation
of both decarboxylated and acidic cannabinoid forms is required using GC, a derivatization
step is recommended [56–59]. Cardenia et al. have compared different silylation reactions
of cannabinoids to methylation with diazomethane. This solvent was demonstrated to be
better than silylation solvents but their commercial unavailability and unsuitability for routine
procedures have led to silylation being the best derivatizing method [53]. Derivatization by
silylation also improves peak symmetry and method sensitivity [42].

Choosing the internal standard appears to be crucial. 5α-cholestane [41,53], 4-androstene-
3,17-dione [42], squalane [50], or a deuterated standard [33,47–49] are examples of potential
internal standards. The comparison between two internal standards was achieved in the
development of the GC-MS method by Cardenia et al., and it appears that sensitivity is
improved with 5α-cholestane compared to the deuterated (D) standard [53]. The recovery
values range from ±15% to 20%. The limit of detection (LOD) and quantification (LOQ) are
generally in the microgram range, although nanogram or picogram ranges could be attained.

The accuracy of quantitative results is correlated with the extraction step, which is a
crucial step in cannabinoid analysis. Solvent-based methods are generally used to extract
cannabinoids from herbal samples. Methods using apolar solvents (e.g., n-hexane [41,43,49,51],
dichloromethane (DCM) [55], acetone [39], or diethyl ether [47,48]), polar solvents (e.g., methanol
(MeOH) [31,33,36,38,46] or ethanol (EtOH) [35,37,45,46] alone), or the combination of different
solvents [42,53] were developed. The extraction processes are more complex for oily samples.
For instance, QuEChERS is used for sample clean-up in order to avoid the introduction of an
oily matrix into the GC port [43].

Quite recently, similar methods were developed in order to simultaneously analyze
cannabinoids and terpenes, which are both important in the quality control of cannabis
and cannabis-derived products [36].
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Table 3. GC applications: overview of the literature.

Analytical
Technique
1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Internal

Standard Column
Carrier Gas

Flow
Rate/Velocity

GC/Detector
Conditions

Temperature in ◦C

Extraction Solvent
(Recovery Rates
After Extraction)

Derivatization
Analysis Time
Quantitative

(LOQ)/Screening (LOD)

2024

Two-dimensional
GC-MS

Spadafora N.
[34]

Dried inflorescences CBDV, CBD(A), CBC,
CBG(A), ∆9-THC(A) No

(1◦) HP-5-ms
(0.18 µm, 20 m × 0.18 mm)

(2◦) DB-17MS
(0.25 µm, 2.5 m × 0.25 mm)

Helium
(1◦) 0.5 mL/min
(2◦) 10 mL/min

To: 40–230
Ti: 250

Ts: -
SPME no

n.m.
Quantification

(n.m.)

GC-FID
Micalizzi G.

[36]

Dried, pulverized,
and sieved

inflorescences
CBD(A), ∆9-THC(A) n-nonadecane HP-5

(0.25 µm, 15 m × 0.25 mm)
Helium

1.0 mL/min

To: 240
Ti: 290

TFID: 300
MeOH no 8 min

Quantitative (n.m.)

GC-FID

Arsenault T.
[31]

Dried, sieved, and
mixed flowers (buds) CBD, ∆9-THC No Rxi-35sil msS

(0.25 µm, 15m × 0.25 m)
Hydrogen
4 mL/min

To: 225–325
Ti: 250

TFID: 350
MeOH no 10 min

Quantitative (n.m)

2023

GC-MS
Koo Y. [37]

Dried and ground
plant material

(flower, stem, root,
and leaves)

CBD, ∆9-THC no DB-5-ms
(0.25 µm, 15 m × 0.25 mm)

Helium
1.0 mL/min

To: 80–300
Ti: 300

Ts: -
EtOH no <24 min.

Quantitative (n.m.)

GC-MS
Motiejauskaite D.

[38]

Dired and ground
inflorescences

CBDVA, CBL, CBD,
CBC, CBN, CBG no Rxi-5 ms

(0.25 µm, 30 m × 0.25 µm) Helium

To: 110–280
Ti: 250
Ts: 200

Electron ionization

MeOH,
Triton-X-100

(>86%)
no 39 min

Quantitative (n.m.)

GC-MS
Ronald H.

[39]

Dried ground
inflorescences CBD, THC, CBN no Elite-5ms Helium (0.8

mL/min)

To: 200–280
Ti: 280
Ts: 225

Electron ionization

Acetone no 45 min
Quantitative (n.m)

GC-MS
Judžentienė A.

[40]

Inflorescence, leave,
root, and stem

CBC, CBD(A), CBG,
CBN no Rxi-5ms

(0.25 µm, 33 m × 0.25 mm)
Helium

1 mL/min

To: 50–250
Ti: 250
Ts: 220

EI ionization

MeOH no 47 min
Qualitative

GC-FID
Gul W.

[42]

Dried and ground
inflorescences

CBC(A), CBL(A),
CBD(A), CBDV(A),
CBG(A), CBN(A),
THCV, ∆8-THC,

∆9-THC(A),
∆9-THCV(A))

4-androstene-
3,17-dione

DB-1MS
(0.25 µm, 15 m × 0.25 mm)

Helium
0.8 mL/min

To: 190–300
Ti: 275

TFID: 300
ACN:MeOH BSTFA

17.5 min
Quantitative

(LOD: 0.1 µg/mL
LOQ: 0.25–0.50 µg/mL)

2022

GC-FID
Wilson J.

[32]

Dried sieved
inflorescences CBD no Rxi-35Sil MS

(0.25 µm × 15 m × 0.25 mm)
Hydrogen

1.75 mL/min - EtOH
(>63%) no n.m.

Quantitative (n.m.)
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Table 3. Cont.

Analytical
Technique
1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Internal

Standard Column
Carrier Gas

Flow
Rate/Velocity

GC/Detector
Conditions

Temperature in ◦C

Extraction Solvent
(Recovery Rates
After Extraction)

Derivatization
Analysis Time
Quantitative

(LOQ)/Screening (LOD)

GC-MS
De Prato L.

[41]

Dried ground
inflorescences

CBC, CBD(A), CBDV,
CBG(A), ∆8-THC(A),

∆9-THC(A)
5α-cholestane HP-5MS (0.25 µm, 15 m ×

0.25 mm)
Helium

1.2 mL/min

To: 80–300
Ti: -

Ts: 280
EI ionization

n-Hexane MSTFA
BSTFA

n.m.
Semi-quantitative

(LOD: 82.31–166.40
mg/kg

LOQ: 274.36–554.65
mg/kg)

2021

GC-MS
Ahmed A.Q.

[33]
Dried ground flowers

CBC
CBD
CBG
CBL
CBN

∆9-THC

CBD-d3,
∆9-THC-d3

HP-5MS capillary column
(0.25 µm, 30 m × 0.25 mm)

Hydrogen
1.6 mL/min

To: 180–250
Ti: 280

EI ionization

MeOH
(80–100%) no

14 min
Quantitative

(LOD: 0.006–0.008 mg/mL
LOQ: 0.018–0.026 mg/mL)

(SIM mode)

GC-MS
Duchateau C.

[43]
Oils

CBN, CBDV, CBT,
CBC, ∆8-THC,

∆9-THC, THCV, CBG
methylarachidate VF-5 MS

(0.25 µm, 30 m × 0.25 mm)
Helium

1.5 mL/min

To: 200–280
Ti: 250
Ts: 280

EI ionization

n-hexane
QuEChERS (Bond

Elut EMR lipid)
no

17.3 min
Screening

(LOD: 10–14 ng/mL)
Quantitative

(n.m.)

2020

GC-FID
Zekič J.

[50]

Dried and ground
plant material

CBC, CBD, CBG,
CBN, ∆8-THC,

∆9-THC
squalane RTX-50

(0.25 µm, 30 m × 0.25 mm)
Helium

2 mL/min

To: 60–290
Ti: 310

TFID: 310

Acetone
(>92%) no

17 min
Quantitative

(LOD: 0.662–0.857 µg/mL
LOQ: 2.207–2.858 µg/mL)

GC-MS
Slosse A. [35]

Dried ground
inflorescences

THCV, CBD, CBC,
∆9-THC, CBN, CBG tribenzylamine DB5-ms

(0.25 µm, 15 m × 0.25 mm)
Helium

1.3 mL/min

To: 60–320
Ti: 230

Ts: -
EI ionization

EtOH no 29 min
Qualitative (n.m.)

Two-dimensional
GC-TOF-MS (low

resolution)

Dried inflorescences CBD, CBN, ∆9-THC chlorobenzene-
d5

Two MXT Y unions
Nonpolar Rxi-5MS

(0.25 µm × 25 m × 25 mm)
Midpolar Rxi-17Sil MS

(0.25 µm × 5 m × 0.25 mm)

Helium
0.4 mL/min
7 mL/min

To: 50–330
Ti: 20–300

Ts: 230
MeOH

Acetone
Water

no
n.m.

Quantitative
(LOD: 0.02–0.15 µg/mL
LOQ: 0.05–0.51 µg/mL)

Two-dimensional
GC-TOF-MS (high

resolution)
Franchina F.

[44]

Helium
1 mL/min

To: 50–330
Ti: 20–300

Ts: 250
no

GC-FID
Bakro F.

[45]

No dried ground
leaves and

inflorescences
CBD n-tridecane RTX-5 0.1 µm × 10 m ×

0.1 mm)
Helium
46 cm/s

To: 60–310
Ti: 310

TFID: 340
EtOH no

16 min
Quantitative

(LOD: 0.16 µg/mL
LOQ: 0.55 µg/mL)
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Table 3. Cont.

Analytical
Technique
1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Internal

Standard Column
Carrier Gas

Flow
Rate/Velocity

GC/Detector
Conditions

Temperature in ◦C

Extraction Solvent
(Recovery Rates
After Extraction)

Derivatization
Analysis Time
Quantitative

(LOQ)/Screening (LOD)

GC-FID
Baranauskaite J.

[46]

Dried and ground
inflorescences CBD, CBG / Rxi-5MS (0.25 µm × 30 m ×

0.25 mm)
Helium

1 mL/min

To: 80–310
Ti: 290

TFID: 330
EtOH no

30 min
Quantitative

(LOD: 0.21–0.25 µg/mL
LOQ: 0.66–0.75 µg/mL)

GC-MS
Fernandez N. [47,48] Oils

CBC, CBDA, CBD,
CBG, CBN, THCA,

∆9-THC
∆9-THC-d3 HP-5MS (0.25 µm, 30 m ×

0.25 mm)
Helium

1 mL/min

To: 60–300
Ti: 280
Ts: 280

EI ionization

Diethyl ether MSTFA

26 min
Screening

Quantitative
(n.m.)

LOQ: 0.04–0.1 µg/mL)

GC-FID
Duchateau C.

[55]

Dry flowers crushed
by hand CBN, ∆9-THC methylarachidate DB-5ms (0.25 µm × 30 m ×

0.25 mm)
Helium

1.5 mL/min

To: 270–310
Ti: 225

TFID: 300
DCM no

(n.m.)
Quantitative

(n.m.)

GC-MS
ElSohly M.

[49]
Oils CBD(A), ∆9-THC(A) CBD-d3,

∆9-THC-d3
D-1 (0.4 µm, 10 m ×

0.18 mm)
Helium

0.4 mL/min

To: 180–280
Ti: 250

Ts: -
n-Hexane MSTFA

13 min
Quantitative

(LOD: 1 µg/mL
LOQ: 2.5 µg/mL)

GC-TOF/MS
Delgado-Povedano

M.M.
[51]

Dried and ground
leaves and

inflorescences

CBC, CBD, CBDVA,
CBDV, CBG, CBL,

CBN, THCA,
∆8-THC

∆9-THC, THCV

no DB-5MS-UI (0.25 µm, 30 m
× 0.25 mm)

Helium
1 mL/min

To: 50–310
Ti: 250
Ts: 305

EI ionization

n-Hexane
BSTFA
TMCS

Pyridine

37 min
Screening

(n.m.)

2019

GC-MS
Burnier C. [52]

Cannabis plant
(flowers and leaves) CBD, CBN, ∆9-THC tribenzylamine HP-5MS (0.25 µm, 30 m ×

0.25 mm)
Helium

1 mL/min

To: 50–260
Ti: 280
Ts: 230

MeOH
EtOH no

15 min
Quantitative

(LOD: 4.54 µg/mL
LOQ: 15.13 µg/mL)

2018

GC-MS
Cardenia V. [53]

Dried flowers and
leaves

CBC, CBD, CBDA,
CBG, CBGA, CBN,

THCV, ∆8-THC,
∆9-THC, THCA

5α-cholestane Restek RTX 5 (0.1 µm,10m ×
0.1 mm)

Helium
n.m.

To: 180–250
Ti: 300
Ts: 200

EI ionization

MeOH
:CHCl3

Methylation:
diazomethane

Silylation:
pyridine,

MSTFA-TMCS,
n-hexane

10 min

Quantitative
(LOD: 2.16–58.86 ng/mL
LOQ: 7.18–169.29 ng/mL)

GC-MS
Fodor B.

[54]

Dried and ground
inflorescences

CBC, CBD, CBG,
CBN, ∆9-THC,
11-OH-THC,

THCA-A

no HP-5MS capillary column
(0.25 µm × 30 m × 0.25 mm)

Helium
1 mL/min

To: 100–300
Ti: 300
Ts: 210

MeOH

BSTFA
TMCS

Pyridine
MTBSTFA
TBDMCS

TMCS

20 min
Quantitative

(LOQ: 20–80 pg/µL)

ACN: acetonitrile; BSTFA: N,O-Bis (trimethylsilyl)-trifluoroacetamide; CBC(A): cannabichromen(-ic acid); CBD(A): cannabidiol(-ic acid); CBDV(A): cannabidivarin(-ic acid); CBG(A):
cannabigerol(-ic acid); CBL(A): cannabicyclol(-ic acid); CBN(A): cannabinol(-ic acid); CBT: cannabicitran; HMDS: hexamthyldisilazane; LOD: limit of detection; LOQ: limit of quantification; ∆9-
THC(A): ∆9-tetrahydrocannabinol(-ic acid); ∆8-THC: ∆8-tetrahydrocannabinol; THCV(A): tetrahydrocannabidivarin(-ic acid); MTBSTFA: N-methyl-N-ter.-butyl dimethylsilyltrifluoroactamide;
MSTFA: n-methyl-n-trimethylsilylfrifluoroacetamide; n.m.: not mentioned; SPME: solid-phase microextraction; TBDMCS: tert. butyl dimethylchlorosilane; TMCS: trimethylchlorosilane; To:
oven temperature; Ti: injector temperature; Ts: source temperature for MS detection; TFID: detector temperature for FID.
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3.2. Liquid Chromatography (LC)

For the analysis of cannabinoids, high-performance (or high-pressure) liquid chromatog-
raphy (LC) performs similarly to GC. They both present a number of environmentally un-
friendly issues. On the one hand, GC uses expensive gases such as helium, and on the other
hand, conventional HPLC needs large amounts of organic solvents and generates a lot of
waste [61]. However, HPLC and ultra-HPLC (UHPLC) do not require heating or derivative
steps and are useful alternatives for analyzing the acidic form of cannabinoids [62].

In LC, the solution is directly injected at room temperature into the mobile phase
at the head of the chromatographic column. Sample components are separated through
the differences in interaction between the stationary phase and the mobile phase (flowing
liquid), and eluted molecules are detected at different retention times (Rt) at the outlet of
the column [63,64].

LC is used in conjunction with different detectors. Mass spectrometers (MS), ultraviolet–
visible detectors (UV–vis), and diode array detectors (DAD) are the most widely used in
the context of analyzing natural cannabinoids. Methods described for the determination of
cannabinoids in various cannabis matrices such as plants, extracts, cannabis oils, hemp food
products, and so on are based on (UHP)LC-MS/MS and (UHP)LC-DAD (UV) [62].

Table 4 gives an overview of cannabis-related LC applications.
As for GC analysis, the extraction is a crucial step in obtaining accurate cannabi-

noid quantification. It can be observed that cannabinoids in plant materials are generally
extracted by solvent-based methods using acetonitrile (ACN) [65–70], MeOH [34,71–83],
EtOH [52,84–88] pentane [40], isopropanol [59,89,90], and acetone [91], or by a combina-
tion of different solvents [92–98]. The recovery of the extraction step [73] is sometimes
mentioned in different papers and is generally higher than 70%. In an ecological context,
methods using low solvent quantities, such as ultrasound-assisted solid–liquid extraction,
were developed [97].

Internal standards are generally used, such as deuterated compounds [71,89–91,99],
but also abnormal CBD [74], cannabichromeorcin [74], and other molecules, e.g., phempro-
coumon [70], fencamfamine [94], tridecane [93], ibuprofen [84], and tribenzylamine [52].
Some authors did not use an internal standard for the quantification of cannabinoids.

The physico-chemical properties of cannabinoids are similar and it is a challenge to
separate them under isocratic conditions. UHPLC is used in most applications to reduce
the time needed for analysis. Reversed-phase C18-packed columns (or less commonly,
C8-packed columns) with gradient or isocratic elution have shown the best performance
for cannabinoid determination. Mobile phases composed of different proportions of ACN,
MeOH, water, either pure or with a small percentage of formic acid or acetic acid, and
various acetate, ammonium, and formate buffers are typically used for elution. Quite
recently, similar methods were developed in order to simultaneously analyze cannabinoids
and terpenes, which are both important in the quality control of cannabis and cannabis-
derived products [65,88]. A relatively recent method allowing the simultaneous analysis of
terpenes and cannabinoids was developed using two-dimensional liquid chromatography
coupled with smart active modulation, which allows the simultaneous determination of
different concentration levels in complex samples [65]. In the context of sustainability,
the use of ultrasound-assisted extraction using eutectic solvents [100] and nano-liquid
chromatographic systems was explored [87].

UV is commonly used since cannabinoids contain chromophores in their struc-
ture [84,94,96,101]. It can be used as a single detector (quantification in the order of
µg/mL) or combined in series with MS/MS (quantification in the order of ng/mL) [97,102].
It is possible to use a quadrupole MS detector alone [67] or in combination with TOF [92].
In addition, applications using QTRAP detectors showed sensitivities in the range of
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pg/mL [83,93]. Compared to MS/MS detectors, UV detectors lack specificity and are
approximately 100 times less sensitive than MS/MS, which provides enough sensitivity
and specificity to quantify all quasi-cannabinoids. As a result, the MS/MS detector is
commonly used, and electrospray (ESI) and atmospheric pressure chemical ionization
(APCI) are generally encountered as ionization methods.

3.3. Supercritical Fluid Chromatography (SFC)

Since 2010, ultrahigh performance (UHP)-SFC has been used, with some advantages
compared to UHPLC. The former allows for a very fast analysis time due to the use of
column particles below 2 µm in diameter. Moreover, SFC is an eco-friendly technique that
uses supercritical CO2 as the mobile phase, which is a gas with a low viscosity and high
diffusivity [29]. Generally, these methods require lower amounts of organic solvents since
they are mixed with supercritical CO2. However, only a few papers describe SFC methods
for cannabinoid quantification in cannabis plant materials and CBD oils. Interestingly, in
order to demonstrate the advantages of SFC for routine cannabinoid analysis, a comparative
study between UHPLC and UHP-SFC techniques hyphenated with a UV detector for
cannabinoid quantification in cannabis (plant material) was realized. It was demonstrated
that both methods are in accordance [103].

Pilarova et al. developed a UHP-SFC method for the quick determination of 12 cannabi-
noids in different matrices, including plant materials and oils [104]. This optimized method
led to the separation of two groups of isomers (THCA and CBDA for the first group and
CBC, CBD, CBL, ∆9-THC, and ∆8-THC for the second group). Table 5 summarizes two
cannabis-related SFC applications [104,105].
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Table 4. LC applications: overview of the literature.

Analytical Technique
1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Internal Standard

Analysis Time
Quantitative

(LOQ)/Screening (LOD)

Solvent Extraction
(Recovery After

Extraction)
Mobile Phase

Column (Particle Size,
Length × Inner Diameter)

Temperature (T◦) in ◦C

2024

UHPLC-UV (DAD) (228
and 306 nm)
Spadafora N.

[34]

Dried inflorescences
CBDV, CBD, CBDA, CBC,

CBG, CBGA, ∆9-THC,
∆9-THCA

no n.m.
Quantification (n.m.) MeOH

Water + Orthophosphoric
acid (pH 2.2)

ACN
(gradient)

Raptor ARC-18 column
(2.7 µm, 150 mm × 2.1 mm)

T◦ : 25

2D-HPLC-DAD (200 nm)
Caruso S.J.

[65]
Dried inflorescences

CBGA, CBG, CBDA, CBD,
CBC, THCV, CBN, ∆8-THC,

∆9-THC, THCA-A
no

75 min
Screening

(n.m.)
can

D1: Water + formic acid
0.05%

MeOH + formic acid 0.05%
(gradient)

D2: Water + formic acid
0.05%

ACN + formic acid 0.05%
(gradient)

Zorbax SB-CN (5 µm,
250 mm × 4.6 mm) and
Poroshell 120-SB C18

(2.7 µm, 50 mm × 2.1 mm)
T◦ D1: 35
T◦ D2: 75

UHPLC-DAD (270 nm)
Mastellone G.

[100]

Died ground inflorescences
and oils CBD, CBDA no

56 min
Quantification

(LOD: 0.03–1 µg/mL
LOQ: 0.1–4 µg/mL)

Eutectic solvents: [Ch+]
[Br-] + thymol

Water + formic acid 0.1%
ACN + formic acid 0.1%

(gradient)

Ascentis Express C18
(2.7 µm, 150 mm × 2.1 mm)

T◦ : 30

UHPLC-Q-ToF-MS
Woźniczka K.

[92]
Fresh plant material ∆9-THCA, CBDA, CBGA,

CBVA, THCVA Phemprocoumon
6 min

Quantification
(n.m.)

MeOH/isopriopanol 50/50
v/v

ACN + 0.1% formic acid
(gradient)

Poroshell 120 PFP (2.7 µm,
100 mm × 2.1 mm)

T◦ : 33

UHPLC-QTrap-MS
Wishart D.S.

[93]

Dried ground
inflorescences

CBDV, CBDVA,
THC-COOH, CBLA, CBCA,

CBNA, CBDA, THCV,
CBGA, CBD, CBN, CBC,

CBG, CBL, ∆9-THC, THCA

Tridecane

9.5 min
Quantification

(LOD: 0.001–0.00426 ng/mL
LOQ: 0.00333–0.0142

ng/mL)

Hexane/MeOH
3/1 v/v

0.2% formic acid 0.2%
formic acid + ACN

(gradient)

Zorbax Eclipse XDB C18
column (3.5 µm, 100 mm ×

3.0 mm)
T◦ : 50

HPLC-APCI-MS/MS
Raeber J.

[88]
Dried ground flowers

CBDV, CBG, CBD, CBDA,
CBN, ∆9-THC, THCA (+

terpenes)
no 28 min

Quantification (n.m.) EtOH

2 mM ammonium acetate +
0.1% formic acid

2 mM ammonium acetate +
0.1% formic acid/methanol

(5/95)
(gradient)

Symmetry C18 (3.5 µm,
100 mm × 4.6 mm)

+ guard column
T◦ : 45

UHPLC-MS/MS
Cai Y.
[71]

Ground flowers and leaves
CBC, CBDV, CBD(A),

CBG(A), CBL, CBN, THCV,
∆8-THC, ∆9-THC, THCA-A

CBD-d3 11 min
Quantification MeOH

Water + 0.1% formic acid
ACN

(gradient)

Acquity BEH-C18 (1.7 µm,
2.1 mm × 50 mm)

T◦ : 30

UHPLC-MS/MS
Lindekamp N.

[91]
Oils

CBC(A), CBD(A), CBDV(A),
CBG(A), CBL(A), CBN(A),

∆9-THC(A)

CBD-d3, CBN-d3,
∆9-THC-d3, THCA-d3

18 min
Quantification

(LOD: 0.02–4.32 ng/mL
LOQ: 0.07–14.38 ng/mL)

Acetone
Water + 0.1% form acid
ACN + 0.1% formic acid

(gradient)

Acquity UPLC BEH C18
(1.7 µm, 150 mm × 2.1 mm)

T◦ : 30

LC-DAD
Song L.

[74]
Ground flowers

CBC(A), CBD(A), CBDV(A),
CBG(A), CBN(A), ∆8-THC,
∆9-THC, THCA, THCV(A),

CBL(A), CBT

Abnormal-CBD,
cannabichromerorcin

32 min
Quantification

(LOQ: 0.04 µg/mL)
MeOH

Water + 0.1% formic acid +
ammonium formate 0.5 mM

(pH3)
MeOH + ACN

(isocratic)

Restek Raptor ARC-18
(2.7 µm, 150 mm × 2.1 mm)

+ guard column
T◦ : 30
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Table 4. Cont.

Analytical Technique
1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Internal Standard

Analysis Time
Quantitative

(LOQ)/Screening (LOD)

Solvent Extraction
(Recovery After

Extraction)
Mobile Phase

Column (Particle Size,
Length × Inner Diameter)

Temperature (T◦) in ◦C

LC-DAD
Wilson W.B.

[75]

Dried ground plant (and
other matrices, e.g., hemp

seed oil)

CBC(A), CBDV(A), CBD(A),
CBG(A), CBL(A), CBN(A),

THCV(A), ∆9-THC,
∆8-THC, 9S-∆10-THC,
9R-∆10-THC, exo-THC

no 8 min
Quantification MeOH

ACN
Water

(gradient)

NexLeaf CBX for Potency
C18 column (2.7 µm,
150 mm × 4.6 mm)

T◦ : 40

2023

UHPLC-Qtrap-MS
Kanabus J.

[83]

Fresh and dried ground
inflorescences

CBDV, CBDVA,
THC-COOH, CBLA, CBCA,

CBNA, CBDA, THCV,
CBGA, CBD, CBN, CBC,

CBG, CBL, ∆8-THC,
∆9-THC, ∆9-THCV,
∆9-THCVA, THCA

no

10 min
Quantification

(LOD: 0.00003–0.005
µg/mL

LOQ: 0.0001–0.02 µg/mL)

MeOH
(>90%)

0.02% formic acid in
ACN/5 mM Ammonium

formate
(gradient)

C18-Cortecs (1.6 µm,
100 mm × 2.1 mm)

T◦ : 20

HPLC-DAD-ToF-MS
Judžentienė A.

[40]

Dried ground
inflorescences, leaves, seeds,

and roots
CBD, CBDA, CBN no

34 min
Quantification

(n.m.)
Pentane ACN + 0.1% formic acid

(gradient)

Zorbax Eclipse XDB (5 µm,
150 mm × 4.6 mm)

T◦ : 35

HPLC-DAD
Correia B.

[70]

Dried ground flowers and
oils

CBD(A), CBN, ∆8-THC,
∆9-THC, THCA Phemprocoumon

30 min
Quantification

(LOD: 0.125–0.250 µg/mL
LOQ: 0.5 µg/mL)

ACN
ACN

Water + 0.1% formic acid
(pH 2.8)

Kinetex C18 (2.6 µm,
150 mm × 2.1 mm)

+ guard column
T◦ : 20

HPLC-MS
Duzan B.

[67]
Oils

CBC, CBG(A), CBD(A),
CBDV, CBN, ∆8-THC,

∆9-THC, THCA
no

13 min
Quantification

(LOD: 5–25 ng/mL
LOQ: 10–50 ng/mL)

ACN
(86–110.88%)

Water + 0.1% formic acid
ACN + formic acid 0.1%

(isocratic)

Acquity UPLC BEH C18
(1.7 µm, 100 mm × 2.1 mm)

+ guard column
T◦ : 45

UHPLC-MS/MS
Fabresse N.

[95]
Flowers CBD, CBN, ∆9-THC CBD-d3, CBN-d3,

∆9-THC-d3
<6 min

Quantification Heptane:ethyl acetate (7:1)
Water+ formic acid 0.1%
ACN + formic acid 0.1%

(gradient)

Luna Omega Polar C18
(1.6 µm, 50 mm × 2.1 mm)

T◦ : 40

2022

HPLC-TOF/MS
Hewavitharana A.K.

[84]

Dried ground
inflorescences

CBDA, CBD, CBDV, CBGA,
CBG, CBN, THCA, ∆9-THC,

THCVA, THCVA
Ibuprofen

40 min
Quantification

(LOD: 1.18–9.11 µg/g)
LOQ: 3.93–25.3 µg/g)

EtOH

Water + MeOH + formic
acid 0.1%

ACN + formic acid 0.1%
(gradient)

Poroshell C18 (2.7 µm,
150 mm × 2.1 mm)

T◦ : 30

HPLC-MS/MS
Hall D.R.

[76]
Dried sieved inflorescences

CBCA, CBC, CBDA, CBD,
CBDVA, CBDV, CBGA,

CBG, CBL, CBNA, CBN,
∆8-THC, THCA, ∆9-THC,

THCVA, THCV

no

8 min
Quantification

(LOD: 20–78 µg/g
LOQ: 60–238 µg/g)

MeOH
Water + formic acid 0.1%
ACN + formic acid 0.1%

(gradient)

Luna Omega C18 (1.6 µm,
150 × 2.1 mm)

T◦ : 40

UHPLC-MS/MS
McRae G.

[96]
Dried ground flowers

CBC(A), CBD(A), CBDV(A),
CBG(A), CBL(A), CBN(A),
∆8-THC, ∆9-THC, THCA,

THCV(A)

CBD-d3, CBN-d3
∆9-THC-d3

21 min
Quantification

(LOQ: 10ng/mL)

MeOH:water (8:2)
(>98.75%)

Water + formic acid 0.1%
ACN + formic acid 0.1%

(gradient)

Ace-3 C18-Amide (3 µm,
100 mm × 2.1 mm)

+ guard column
T◦ : 40
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Table 4. Cont.

Analytical Technique
1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Internal Standard

Analysis Time
Quantitative

(LOQ)/Screening (LOD)

Solvent Extraction
(Recovery After

Extraction)
Mobile Phase

Column (Particle Size,
Length × Inner Diameter)

Temperature (T◦) in ◦C

UHPLC-DAD
Song L.

[77]
Hemp concentrate

CBC(A), CBDV(A), CBD(A),
CBG(A), CBL(A), CBN,
CBT, THCV(A), THCA,

∆8-THC, ∆9-THC

no
15 min

Quantification
(LOQ: 0.02 µg/mL)

MeOH

Water (pH 3.6) + formic acid
0.1%
ACN

(isocratic)

Luna Omega Polar C18
(1.6 µm, 150 mm × 2.1 mm)

T◦ : 30

UHPLC-DAD
(228 nm)

Duchateau C.
[78]

Dried and sieved aerial
parts

CBD(A), CBN, ∆9-THC,
THCA no

11 min
Quantification

(LOD: 0.01–0.03% w/w
LOQ: 0.03–0.2% w/w)

MeOH
Water + formic acid 0.1%

ACN
(isocratic)

CORTECS Shield RP18
(1.6 µm, 100 mm × 2.1 mm)

T◦ : 35

DART-MS

Oils CBD CBD-d3

n.m
Quantification

(n.m.)
MeOH

/ /

LC-MS
Huber S.

[79]

n.m.
Quantication

(LOD: 0.657 mg/L
LOQ: 1.63 mg/L)

Water + formic acid 0.1%
ACN

(gradient)

XSelect CSH C18 (2.5 µm,
150 mm × 4.6 mm)

T◦ : 60

LC-MS/MS
Johnson E.

[68]
Oils ∆9-THC ∆9-THC-d9

14.25 min
Quantification

(n.m.)

ACN
(>96%)

Water + formic acid 0.1%
ACN

(gradient)

Kinetex C8 (2.6 µm,
100 mm × 2.1 mm)

HPLC-MS/MS
Plamieri S.

[80]

Dried ground
inflorescences

CBC(A), CBD(A), CBG(A),
CBN, ∆9-THC, THCA,

THCV
no

8 min
Quantification (10

cannabinoids)
Screening (26 cannabinoids)

(n.m.)

MeOH
Water + 5 mM formic acid
ACN + 5 mM formic acid

(gradient)

Kinetex C18-XB (2.6 µm,
100 µm × 2.1 mm)

T◦ : 35

LC-MS/MS
Tran J.
[81]

Dried ground
inflorescences

CBC(A), CBD(A), CBDV(A),
CBG(A), CBL, CBN(A),

THCV(A), THCA-A,
∆8-THC, ∆9-THC

no

8 min
Quantification

(LOD: 0.1 µg/mL
LOQ: 0

08–0.71 µg/mL)

MeOH
(73–126%)

Water + formic acid 0.1%
ACN + formic acid 0.1%

(gradient)

Luna Omega C18 (1.6 µm,
150 mm × 2.1 mm)

T◦ : 40

LC-DAD
Wilson W.B.

[82]
Oils

CBC, CBD(A), CBDV(A),
CBG(A), CBN, THCA,

∆8-THC, ∆9-THC
no

10 min
Quantification

(n.m.)
MeOH

ACN
Water

(isocratic)

ACE 5 C18-AR (5 µm,
250 mm × 0.5 mm)

2021

HPLC-MS/MS
Bueno J. [89]

Dried and ground
inflorescences

CBD, ∆9-THC,
tetrahydrocannabiphorol ∆9-THC-d3

n.m.
Quantification

(LOD: 0.0008% w/w)

MeOH:chloroform 9:1
EtOH

Water + 5 mM ammonium
formate
MeOH

(gradient)

Restek Raptor ARC C18
(2.7 µm, 150 mm × 2.1 mm)

T◦ : 45

HPLC-UV
(220 nm)
Chen X.

[72]

Dried and ground
inflorescences

CBC, CBD(A), CBDV,
CBG(A), CBN, THCA,

∆9-THC, ∆8-THC, THCV
no

17 min
Quantification

(LOD: 0.01–0.11 µg/mL
LOQ: 0.04–0.36 µg/mL)

MeOH

Water + 0.085% phosphoric
acid 0.085

MeOH + 0.085% phosphoric
acid

(gradient)

NexLeaf CBX Potency C18
(2.7 µm, 150 mm × 4.6 mm)

+ guard column
T◦ : 50
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Table 4. Cont.

Analytical Technique
1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Internal Standard

Analysis Time
Quantitative

(LOQ)/Screening (LOD)

Solvent Extraction
(Recovery After

Extraction)
Mobile Phase

Column (Particle Size,
Length × Inner Diameter)

Temperature (T◦) in ◦C

HPLC-DAD (220 and 240
nm)

Madej K.
[66]

Oils CBD(A), CBN, ∆9-THC no

12.5 min
Quantification

(LOD: 0.17–1.94 µg/mL
LOQ: 0.78–5.03 µg/mL)

ACN
(69.5–109.5%)

Water + acetic acid 0.5%
ACN

(gradient)

Spheri-5 C18 (5 µm,
250 mm × 4.6 mm)

T◦ : 25

LC-MS/MS
Merone G.M.

[90]
Oils CBD(A), CBN, CBG, THCA,

THCV, ∆9-THC
CBD-D3, CBN-D3,

∆9-THC-D3

15 min
Quantification

(LOD: 0.01–01 mg/mL
LOQ: 0.05–0.1 mg/mL)

Isopropanol

Water + formic acid 0.2% +
ammonium formate 2 mL

MeOH + formic acid 0.2% +
ammonium formate 2 mL

(gradient)

Hypersil Gold PFP (1.9 µm,
50 mm × 2.1 mm)

n.m.

HPLC-UV
(232 nm)

Stempfer M.
[94]

Oils, dried ground
iInflorescences

CBC, CBDA, CBD, CBDV,
CBGA, CBG, CBN, ∆8-THC,

∆9-THCA, ∆9-THC
Fencamfamine

30 min
Quantification

(LOQ (inflorescences):
10–3000 µg/kg)

MeOH:water 1:1

Water + Ammonium
formate 20 mM + formic

acid 0.1%
ACN

MeOH + 10 mM
ammonium formate + 0.05%

formic acid
(gradient)

Luna C18 (5 µm, 150 ×
4.6 mm)

+ guard column
T◦ : 40

nanoLC-UV nanoLC-MS
Žampachová L.

[87]
Ground inflorescences CBD(A), CBG(A), CBC,

∆9-THC, THCA no

12 min
Quantification

(LC-UV
LOD: 0.125–1.0 µg/mL

LOQ: 0.5–2 µg/mL
LC-MS:

LOD: 0.020–0.125 µg/mL
LOQ: 0.055–0.175 µg/mL)

EtOH
(80–95%)

ACN + water + formic acid
1%

(isocratic)

ChromSpher C18 (3 µm,
150 mm × 0.1 mm)

n.m.

2020

HPLC-UV-MS/MS
(235 nm)

Nemeškalová A.
[97]

Oils,
Ground plant material (and

other matrices)

CBDA, CBD, CBDV, CBGA,
CBG, CBN, THCA, ∆8-THC,

∆9-THC
CBN-d3, ∆9-THC-d3

7.8 min
Quantification

(oils:
LOD: 0.2–1.0 µg/g

LOQ: 1–4 µg/g
plant material:
LOD: 1–5 µg/g

LOQ: 5–20 µg/g)

Ethyl acetate:isopropanol
1:1

Ammonium acetate 10 mM
in 5% aqueous MeOH +

formic acid 0.1%
MeOH + ACN

(gradient)

Poroshell 120 EC-C18
(2.7 µm, 100 mm × 2.1 mm)

+ guard column
T◦ : 35

UHPLC-MS/MS
Berthold E.C.

[98]

Dried, ground flowers
(only), composite sample

(leaves, flowers, and stems)

CBC, CBL, CBD(A), CBDV,
CBG(A), CBN, THCA,

∆8-THC, ∆9-THC, THCV

∆9-THC-d3,
11-nor-9-carboxy

∆9-THC-d9

6 min
Quantification

(LOD: 1 ng/mL
LOQ: ≤ 0.05% w/w)

MeOH:water 9.5:5
Water + formic acid 0.1%

MeOH:CAN
(gradient)

UPLC BEH C18 (1.7 µm,
100mm × 2.1 mm)

T◦ : 40

2019

HPLC-DAD
(211 and 220 nm)

Burnier C.
[52]

Dried ground leaves,
flowers CBN, CBD, THCA, ∆9-THC Tribenzylamine

19.2 min
Quantification

(LOD: 4.54 µg/mL
LOQ: 15.13 µg/mL)

EtOH

Phosphoric acid 50 mM
Water + ACN

ACN + formic acid 0.1%
(isocratic)

Nucleodur C18 gravity
(5 µm, 250 mm × 4.6 mm)

T◦ : 35
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Table 4. Cont.

Analytical Technique
1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Internal Standard

Analysis Time
Quantitative

(LOQ)/Screening (LOD)

Solvent Extraction
(Recovery After

Extraction)
Mobile Phase

Column (Particle Size,
Length × Inner Diameter)

Temperature (T◦) in ◦C

UHPLC-HRMS/MS
Citti C.

[85]
Oil

CBG(A), THCA, CBD(A),
CBN, CBD, ∆9-THC,
∆8-THC(And other

cannabinoids)

CBD-d3, ∆9-THC-d3

65 min
Quantification

(screening)
(n.m.)

EtOH
Water + formic acid 0.1%
ACN + formic acid 0.1%

(gradient)

Poroshell 120 EC-C18
(2.7 µm, 100 mm × 3 mm)

T◦ : 25

HPLC-UV
(220 nm)

Mandrioli M.
[69]

Dried ground
inflorescences

CBD(A), CBG(A), CBC,
THCV, ∆9-THC, ∆8-THC,

THCA
no

20 min
Quantification

(LOD: 0.11–0.17 µg/mL)
LOQ: 0.88–3.79 µg/mL-

ACN

Water + 0.085% phosphoric
acid

ACN + 0.085% phosphoric
acid

Nex-Leaf CBX/Potency
(2.7 µm, 150 mm × 4.6 mm)

+ guard column
T◦ : 35

2018

HPLC-UV

Carcieri C.
[99]

Oil CBD(A), CBN, ∆9-THC CBD-d3, ∆9-THC-d3
3.5 min

Quantification
(LOQ: 5 ng/mL)

Isopropanol

ACN:water + formic acid
0.1%

Isopropanol:ACN + formic
acid 0.1%
(gradient)

Acquity UPLC HSS T3
(1.8 µm, 30 mm × 2.1 mm)

T◦ : 30

HPLC-UV

Citti C.
[86]

Oil CBD(A), CBN, CBG, CBDV,
THCA, ∆9-THC /

15 min
Quantification

(LOD: 0.2 µg/mL
LOQ: 1 µg/mL)

EtOH
Water + formic acid 0.1%
ACN + formic acid 0.1%

(isocratic)

Poroshell 120 EC-C18
(2.7 µm, 100 mm × 3 mm)

n.m.

CBC(A): cannabichromen(-ic acid); CBD(A): cannabidiol(-ic acid); CBDV(A): cannabidivarin(-ic acid); CBG(A): cannabigerol(-ic acid); CBL(A): cannabicyclol(-ic acid); CBN(A):
cannabinol(-ic acid); CBT: cannabicitran; LOD: limit of detection; LOQ: limit of quantification; ∆9-THC(A): ∆9-tetrahydrocannabinol(-ic acid); ∆8-THC: ∆8-tetrahydrocannabinol;
THCV(A): tetrahydrocannabidivarin(-ic acid).
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Table 5. SFC applications: overview of the literature.

Analytical
Technique

Year
1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Analysis Time

(LOD/LOQ) Solvent Extraction Mobile Phase Column

UHP-SFC-MS/MS
Pilařová V.

2022
[104]

Oil, dried plant
material (herbs,

leaves, and flowers),
and other matrices

CBC, CBDA, CBD,
CBDV, CBGA, CBG,
CBL, CBN, THCA,
∆8-THC, ∆9-THC,

THCV

3.5 min
(n.m.)

ACN
(plant material)

EtOH
(dietary

supplements,
cosmetics)

CO2 + MeOH: ACN
(2.5:7.5) + 5% water

Waters Acquity
Viridis

2-Ethylpyridine, C18
(1.7 µm, 100 ×

3.0 mm)

UHP-SFC-UV
Deidda R.

2020
[105]

Ground
inflorescences, resins

CBC, CBDA, CBD,
CBGA, CBG, CBN,
THCA, ∆8-THC,

∆9-THC

6 min
(LOD: 1.5–2.30

µg/mL
LOQ: 2.96–4.55

µg/mL)

EtOH
CO2 + MeOH:ACN

(2.5:7.5)
(Gradient)

Waters Acquity UPC
Torus DIOL (1.7 µm,

100 × 0.3 mm)

CBC(A): cannabichromen(-ic acid); CBD(A): cannabidiol(-ic acid); CBDV(A): cannabidivarin(-ic acid); CBG(A):
cannabigerol(-ic acid); CBL: cannabicyclol; CBN(A): cannabinol(-ic acid); LOD: limit of detection; LOQ: limit
of quantification; ∆9-THC(A): ∆9-tetrahydrocannabinol(-ic acid); ∆8-THC: ∆8-tetrahydrocannabinol; THCV:
tetrahydrocannabidivarin.

3.4. Spectroscopy

Spectroscopic techniques are based on the interaction of light with the molecules or the
samples under investigation. In the context of the analysis of cannabinoids, especially their
analysis in herbal samples, infrared spectroscopy, comprising MIRS, NIRS, and Raman
spectroscopy, is the most relevant.

3.4.1. MIRS and NIRS

MIRS and NIRS analysis are non-destructive, fast, and green techniques and have been
used across various fields [106]. It was found that NIRS combined with chemometrics had
great potential in the analysis of natural plant products. Indeed, moisture, volatile substances,
and chemical compounds in herbal products can be analyzed using NIRS [107]. Most papers
in this review focused on the analysis of cannabis herbs [105,108–119]. Only the papers
published by Duchateau C. et al., Chen Z. et al., and Risoluti R. et al. [120–122] focused on
oils. However, the sensitivity is low for both methods, with values of 0.1% for MIRS and
1% for NIRS [29]. Spectroscopic methods produce highly informative spectra, containing
a lot of data that are difficult to interpret [108,123]. Multivariate analysis techniques allow
the analysis of large and complex datasets and are better applied to the extraction of the
information of interest [108,123]. This combination was already applied to the classification of
herbal cannabis samples and the quantification of ∆9-THC in cannabis samples for recreational
use [123]. Duchateau et al., for example, used both a benchtop FT-NIRS and a hand-held
device to discriminate between legal and illegal cannabis samples (dried flowers) based on
the European and Swiss legislation, as well as soft independent modeling of class analogies
(SIMCA) and partial least squares discriminant analysis (PLS-DA) models [55]. MIRS and
calibration techniques were also used to classify different kinds of oil between them [124]. In
particular, the use of attenuated total reflectance (ATR) sampling with MIRS is described as
one of the main methods used for liquid analysis by infrared spectroscopy [125]. NIR with
transmittance, reflectance, and transflectance is a promising option to evaluate, for example,
the quality of oilseeds and edible oils [126]. Chen et al. determined CBD in hemp oil by NIRS
in reflectance mode coupled to multivariate calibration [121]. Duchateau et al. used both
MIRS and NIRS for the identification of the oil matrix for some commercially available CBD
oils (on both the regular market and the Internet market) and for the estimation of the level of
CBD present. For this, they combined the spectral data with SIMCA and PLS analysis and
showed that although MIRS and NIRS gave comparable results for the classification of the oil
matrices, MIRS was the most valuable for the estimation of the CBD content [120].
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It has been noticed that considerable attention has been given to the miniaturization
of spectroscopic devices for on-site measurements. Hand-held devices offer interesting
possibilities by allowing on-site analysis by reducing the size of the device. These properties
allow cost reductions and easy transport. Moreover, they offer accurate measurements
and reliable high performance [127]. As an example, Risoluti et al. have developed a
screening test for the real-time detection of cannabinoids in hemp flour using a miniaturized
analytical platform based on a MicroNIR spectrometer [108]. In addition, Zimmerleiter
et al. developed a compact sensor based on NIR spectroscopy to differentiate between
legal and illegal cannabis samples according to their ∆9-THC content. The spectral data
here were treated using PLS-DA [119]. Tran et al. can distinguish between high-THCA and
even-ratio chemovars in a glasshouse environment thanks to their method [109].

Table 6 provides an overview of cannabis-related NIRS and MIRS applications.

3.4.2. Raman Spectroscopy

As for MIRS and NIRS, Raman spectrophotometers can be used in the lab with bench-
top devices or on-site with hand-held devices, and current in situ analysis can be performed
without sample pretreatment [128]. However, due to the high fluorescence produced by
chlorophyll b and carotenoids, Raman spectroscopy is less frequently investigated for the
analysis of herbal materials than for the characterization of drugs of abuse [128]. Actually,
the Raman detector is unable to distinguish between the light emitted from Raman scat-
tering and the fluorescence. This means that fluorescence may interfere with the Raman
spectrum, since fluorescence peaks are wider and greater than Raman peaks. To avoid
fluorescence, the wavelength of the laser must be adapted, by employing, for instance, an
infrared laser (1064 nm) [129]. Porcu et al. developed a rapid in situ detection method for
CBD and ∆9-THC in cannabis (plant material) with a Raman spectroscope containing such
an infrared laser (1064 nm). It was demonstrated to be able to discriminate dried inflores-
cences of CBD-rich and ∆9-THC-rich cannabis based on the ∆9-THC and CBD contents, but
it required the selection of the glandular trichomes of the sample with a microscope [130].
An overview of cannabis-related Raman applications in the field is given in Table 7.

The strength of the Raman effect itself is another restriction because only 0.0000001%
of the scattered light is Raman scattering. Indeed, most light that is scattered off a substance
will be Rayleigh scattered light. Raman spectroscopy relies on detecting Raman scattered
light and its sensitivity is therefore limited. The Raman approach can detect as low as
1 ppm of ∆9-THC and 65 ppb of CBN. Similar results were found for seven other cannabi-
noids analyzed by Grijalva et al. [131]. They have shown the robustness and reliability
of results obtained by Raman spectroscopy hyphenated with chemometrics and machine
learning [131]. They have used the density functional theory (DFT) to attribute spectral
features in cannabinoids, such as in Wolfe et al. [132].

The sensitivity of the technique can be substantially improved using surface-enhanced
Raman spectroscopy (SERS). In contrast to conventional Raman spectroscopy, it consists of
the absorption of the analyte on roughened metallic surfaces (e.g., gold and silver colloids)
to increase the Raman scattering by up to 1000 times [129,133]. However, compared to
classical Raman spectroscopy, SERS is a destructive technique.
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Table 6. NIRS and MIRS applications: overview of the literature.

Spectroscopic Technique
(Reference Method)

1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Instrumentation

Spectrometer Type

Sample Handling
Resolution

Scans

Chemometric Model
(Model Evaluation Metrics)

(spectral Range)
Preprocessing

2024

NIR
(GC-FID, LC-DAD)

Zimmerleiter R.
[119]

Dried, ground (with different
degrees of fineness) inflorescences THC total Hand-held

Diffuse reflectance
n.m.
20

PLS-DA
Discrimination

(ccr : 70.4–78.6%)
(1550 nm-1950 nm)

Smoothing and 1st derivative (Savitzky-Golay) + SNV

MIR and NIR
(GC-MS)

Duchateau C.
[120]

Oils CBD Benchtop FT

ATR-MIR
4 cm−1

32
Transflectance (NIR)

8 cm−1

16

SIMCA
(ccr: 100%)

PLS-R
(RMSEC: 1.0–4.4
RMSEP:0.9–3.9)
(5000–16000 nm)
(1600–2500 nm)

Smoothing and 2nd derivative (Savitzky-Golay)

NIR
(LC-MS)

Tran J.
[109]

Dried ground inflorescences THCA Hand-held (MicroNIR) Diffuse reflectance

PLS-DA
(RMSEC: 0.15
RMSEP: 0.12)

PLS-R
(RMSEC: 26.34–28)

RMSEP: 21.49–23.49)
SVM-R

(RMSEC: 23.87–25.11
RMSEP: 22.49–24.87)

XGB-R
(RMSEC: 0.02–12.27
RMSEP: 23.02–28.77)
(10,526–6060 cm−1)

2nd derivative, SNV, MC

2023

NIR
(HPLC-UV)

Gloerfelt-Trap F.
[110]

Dried ground aerial part
CBC, CBDA, CBD, CBDVA,

CBDV, CBGA, CBG, CBN, THCA,
∆9-THC, THCVA, THCV

Hand-held
n.m.

Diffuse reflectance
/

Cross-validation
(RMSE: 5.27–247.66)
Hold-out validation
(RMSE: 18.54–94.5)

(1350–2500nm)
1st derivative, order 1
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Table 6. Cont.

Spectroscopic Technique
(Reference Method)

1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Instrumentation

Spectrometer Type

Sample Handling
Resolution

Scans

Chemometric Model
(Model Evaluation Metrics)

(spectral Range)
Preprocessing

NIR
Tran J.
[111]

Dried ground inflorescences

CBCA, CBC, CBDA, CBD,
CBDVA, CBDV, CBGA, CBG,

CBNA, CBN, THCA, ∆9-THC,
THCVA, THCV

Benchtop
FT

Hand-held (Micro)
n.m.

Diffuse reflectance
16 cm−1

64
Diffuse reflectance

/
100

PCA
PLS-DA

(FT:
RMSEC: 0.123–0.237
RMSEP: 0.106–0.211

Micro:
RMSEC: 0.165–0.391
RMSEP: 0.125–0.368)

PLS-R
(FT:

RMSEC:0.07–6.93
RMSEP: 0.06–5.51)

(1111–2500 nm)
SNV, normalization, detrend, 1st/2nd derivatives

2022

NIR
(HPLC-DAD)
Birenboim M.

[112]

Dried ground inflorescences
CBCA, CBC, CBDA, CBD, CBGA,

CBG, CBL, THCA, ∆9-THC,
THCV

Benchtop
FT

Reflectance
4 cm−1

16

PLS-DA
(RMSEC: 0.136–0.232
RMSEP: 0.127–0.228)

PLS-R
(RMSEC: 0.0086–0.944
RMSEP: 0.011–1.275)

(1000–2500 nm)
SNV, MSC, normalization (mean centering, autoscaling)

GLS, smoothing,

NIR
(GC-FID)

Su K.
[113]

Dried ground plant material CBD, CBG, CBN, ∆9-THC Benchtop
n.m

/
Reflectance or transflectance

/

PLS-R
(RMSEC :0.01–1.16
RMSEP: 0.01–1.28)

(950–1650 nm)
/

NIR
(HPLC-MS/MS)

Yao S.
[114]

Dried ground plant material CBDA, CBD, THCA, ∆9-THC Hand-held (Micro)
FT

Diffuse reflectance
/

PLS-R
(RMSECV: 0.02–0.54
RMSEP: 0.02–0.061)

(1350–2560 nm)
2nd derivative (Savitsky-Golay), MC

NIR
(HPLC-UV)

Jarén C.
[115]

Dried ground plant material CBD, ∆9-THC Hand-held
Dispersive

Reflectance
/
50

PLS-R
(RMSEC: 0.010–0.011

RPD: 2.04)
(1200–2200 nm)

Normalization, SNV, MSC, SNV-DT, 1st and 2nd derivative
(Savitzky-Golay)
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Table 6. Cont.

Spectroscopic Technique
(Reference Method)

1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Instrumentation

Spectrometer Type

Sample Handling
Resolution

Scans

Chemometric Model
(Model Evaluation Metrics)

(spectral Range)
Preprocessing

2021

MIR
(LC-MS/MS)
Cirrincione M.

[116]

No dried and no ground
inflorescences

CBD(A), CBG(A), CBN, THCA,
∆9-THC

Benchtop
FT

ATR
4 cm−1

20 scans

PLS-R
(RMSEC: 0.163 x10–8–0.238)

(4000–400 cm−1)
1st derivative:

∆9-THC: 1514–1485 cm−1

THCA: 141–1391 cm−1

CBD: 3085–3060 cm−1

CBDA: 982–959 cm−1

CBG: 844–830 cm−1

CBGA: 820–807 cm−1

CBN: 910–872 cm−1

NIR
Chen Z.

[121]
Oils CBD Benchtop

FT

Reflectance
4 cm−1

64

PLS-R
(RMSEC: 5.6
RMSEV: 6.87)

SOSVEN
(RMSEC: 5.1
RMSEP: 6.6)

(1111–2222 nm)
1st derivative (Savitzky-Golay)

NIR
(HPLC-UV)
Deidda R.

[105]

Inflorescence and resin through a
plastic bag THCA, ∆9-THC

Hand-held (1)
Dispersive

Hand-held (2) (Micro)
Dispersive

Reflectance
Reflectance

PLS-R
(Instrument (1)

RMSEC: 0.88–1.74
RMSEP: 1.55–2.07)

(Instrument (2)
RMSEC: 0.74–1.02
RMSEP: 1.04–1.75)
(900–1700 nm) (1)
(950–1650 nm) (2)

2nd derivtive (Savitzky-Golay), SNV

NIR
(HPLC-UV)

Geskovski N. [117]

Dried ground flowers and
extracts CBDA, CBD, THCA, ∆9-THC Benchtop

FT

ATR
4 cm−1

n.m.

PLS-R
(extracts

(RMSECV: 2.62–5.25)
RMSEP: 1.44–3.79

Flowers:
RMSECV: 1.41–1.53
RMSEP:1.33–2.32)
(5555–25000 nm)

Smoothing and 2nd derivative (Savitzky-Golay)
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Table 6. Cont.

Spectroscopic Technique
(Reference Method)

1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Instrumentation

Spectrometer Type

Sample Handling
Resolution

Scans

Chemometric Model
(Model Evaluation Metrics)

(spectral Range)
Preprocessing

2020

NIR
(GC-MS)

Risoluti R.
[122]

Oil CBD, THCA, ∆9-THC Hand-held (Micro)
Dispersive

Reflectance
6.25 nm

PLS-DA
(RMSEC: 0.001–0.002

RMSECV: 0.003–0.005)
(900–1700 nm)

Baseline corrected, SNV

NIR
(GC-MS)

Risoluti R.
[108]

Dried inflorescences CBD, THC total Hand-held (Micro)
Dispersive Reflectance

PLS-DA
PLS-R

(RMSEC: 0.003–0.005
RMSEP: 0.005–0.007)

(950–1650 nm)
2nd derivative, SNV

Different regions of interest

NIR
(GC-FID)

Duchateau C.
[55]

Dried and crushed (by hand)
inflorescences CBD, THC total

Benchtop FT (1)
Hand-held (Micro)

Dispersive

Reflectance
8 cm−1

16
Diffuse reflectance

11 cm−1

5

SIMCA
(Instrument (1)
CV ccr: 89–92

External validation ccr: 80–1
Instrument (2)
CV ccr: 95–97

External validation ccr :84–93)
PLS-DA

(Instrument (1)
CV ccr: 92–97

External validation ccr: 84–91
Instrument (2)
CV ccr: 98–99

External validation ccr :88–95)
k-NN

(1600–2500 nm)
1st derivative, 2nd derivative, SNV
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Table 6. Cont.

Spectroscopic Technique
(Reference Method)

1st Author
[Reference]

Matrix
(Sample State) Cannabinoids Instrumentation

Spectrometer Type

Sample Handling
Resolution

Scans

Chemometric Model
(Model Evaluation Metrics)

(spectral Range)
Preprocessing

2018

NIR
(GC-FID)

Sanchez-Carnero Callado C.
[118]

Dried leaves and flowers ground
into a powder

CBC, CBD CBDV, CBG, CBN,
∆8-THC, ∆9-THC, THCV

Hand-held (1)
Dispersive

Benchtop (2)
FT

Reflectance
n.m.
n.m.

Diffuse reflectance
8 cm−1

32

PLS-R
(Instrument (1)

RMSEC: 0.02–0.58
RMSEP: 0.03–1.72

Instrument (2)
RMSEC: 0.02–0.49
RMESP: 0.04–1.79)
(400–2498 nm) (1)
(800–2500 nm) (2)

Several regions of interest
Normalization, 1st derivative, MSC

ATR: attenuated total reflectance; CBC(A): cannabichromen(-ic acid); CBD(A): cannabidiol(-ic acid); CBDV(A): cannabidivarin(-ic acid); CBG(A): cannabigerol(-ic acid); CBN: cannabinol;
ccr: correct classification rate (%); FT: Fourier-transform; GLS: generalized least squares; MC: mean centering; MSC: multiplicative scatter correction; n.m.: not mentioned; PCA: principal
component analysis; PLS(-R): partial least square (regression); RMSEC: root mean square error of calibration; RMSECV: root mean square error of cross-validation; RMSEP: root mean
square error of prediction; RPD: ratio of prediction to deviation; SNV: standard normal variate; SNV-DT: standard normal variate with detrending; SOSVEN: Self-Optimizing Support
Vector Elastic Net; SVM-R: Support vector machine in R; ∆9-THC(A): ∆9-tetrahydrocannabinol(-ic acid); ∆8-THC: ∆8-tetrahydrocannabinol; THCV(A): tetrahydrocannabidivarin(-ic
acid); XGB-R: extreme gradient boosting.
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An analysis of ∆9-THC and its analogs using SERS was developed by Islam et al. [134].
Two years later, Botta et al. developed an approach for the trace analysis of ∆9-THC
and CBN detection [135]. They describe the fabrication of several SERS substrates (Ag-
nanorods) to optimize the method and observed that the fabrication of the nanorods must
be reproducible for reliable results to be obtained.

Another spectroscopic approach was presented by Gilmore et al. [136]. They devel-
oped an approach based on absorbance, transmittance, and fluorescence excitation-emission
matrix (A-TEEM) spectroscopy to differentiate between different chemotypes and to quan-
tify the main cannabinoids, ∆9-THC and CBD. Therefore, spectroscopic measurements
were performed on extracts in MeOH/dichloromethane (9:1), followed by the development
of classification models, using principal component analysis (PCA) and extreme gradient
boosting (XGB) discriminant analysis for chemotype classification and XGB regression for
the quantification of ∆9-THC and CBD. Models were built using GC-FID and HPLC-UV
results as reference data.

Table 7. Raman spectroscopy applications: overview of the literature.

Spectroscopic
Technique

(Reference Method)
1st Author
[Reference]

Matrix Cannabinoids Instrumentation
Spectrometer Type

Laser source
Resolution

Acquisition Time
Laser Power

Chemometric Model or
Spectral Analysis

(Spectral Range)

(Preprocessing)

2024

Raman
Grijalva J.

[131]
Standards CBD(A), CBC, CBG,

CBN, ∆9-THC, THCA, Raman microscope

785 nm
n.m.
10 s

100 mW

Linear DA
DFT

(400–2200 cm−1)

2023

Raman
Wolfe T.J.

[132]

Dried ground buds
(different cultivars of
cannabis) to isolate
phytocannabinoids

CBC, CBD, CBG(A),
CBN, ∆9-THC

Raman equipped with
camera

532 nm
n.m.
2 s

DFT
(200–4000 cm−1)

/

2022

Raman
(GC-FID)
Porcu S.

[130]

Not dried, not ground
inflorescences CBD, ∆9-THC

Raman spectrometer and
stereomicroscope

equipped with camera

1064 nm
/

PCA
Discrimination

(655–1800 cm−1)
/

Raman-SERS
Botta R.

[135]
Standards CBN, ∆9-THC Raman microscope

785 nm
/

10 s
20 mW

/
(620–1720 cm−1)

/

2020

Raman
Sánchez L.

[137]
Dried flowers / Hand-held

831 nm
15 cm−1

10 s
495 mW

SIMCA
Orthogonal PLS-DA

Discrimination
(701–1700 cm−1)

SNV, 1st derivative

Raman-SERS
Islam S.

[134]
Standard CBD, CBN, ∆9-THC Raman microscope

633 nm
0.02–05 cm−1

10 s
10 mW

/

CBC: cannabichromen; CBD(A): cannabidiol(-ic acid); CBG(A): cannabigerol(-ic acid); CBN: cannabinol; DA:
discriminant analysis; SNV: standard normal variate; ∆9-THC(A): ∆9-tetrahydrocannabinol(-ic acid).

4. Discussion
From the studied literature, slightly less than 40 papers using LC, slightly more than

25 papers using GC, and 25 papers using spectroscopic techniques, including NIRS, MIRS,
and Raman spectroscopy, were retained. It is clear that chromatographic techniques, such
as GC and LC, are the most popular in the context of cannabinoid analysis in cannabis
herbs and oily products. However, most of the papers (>70%) are about cannabis herbs,
with less than half on oils.
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GC (hyphenated with FID) was somewhat considered the gold standard as it is used
in the EU’s official method for the analysis of agricultural hemp. However, other official
methods such as AOAC [26] use other techniques such as liquid chromatography (generally
hyphenated with DAD) for detecting and measuring cannabinoids in hemp. The reason to
prefer LC vs. GC can be notably explained by the limitations of GC.

The choice of LC or GC for this type of analysis is a subject of discussion in the
literature, especially in the context of herbal smoking products, where the content of
∆9-THC should be checked, in order to verify its compliance with the legislation, as
well as the content of CBD in order to check label compliance. Duchateau et al. [78]
compared the performance of the GC-FID method and an LC-UV method in performing an
analysis of CBD and ∆9-THC in herbal products and concluded that very similar results
could be obtained. Although not statistically significant, it was observed that LC tends to
overestimate the content while GC had a tendency to underestimate it. This is generally not
a problem, except when the ∆9-THC content flirts with the legal limits. The underestimation
in GC could be explained by thermal degradation during sample injection in the GC injector
port. Garcia-Valverde et al. have demonstrated that CBD can be degraded into ∆9-THC,
which is subsequently converted into CBN, and CBC can emerge as a degradation product
of CBG [138]. Here, analysis certificates based on LC could give different results to the ones
obtained by controlling agencies performing the analysis with GC. It should be kept in
mind that in GC, the decarboxylation of the acidic forms should be complete and this can be
influenced by several factors, so this step should be very well-validated [139]. On the other
hand, in LC, acidic and decarboxylated forms are quantified separately, with measurement
uncertainties playing for both compounds, which results in higher uncertainties when total
THC is calculated to check compliance with the legislation. In the opinion of the authors,
the only possible way to solve the problem of discrepancies is to impose a “standard
method”. In this way, producers, distributors, and authorities will all evaluate the product
in the same way, avoiding unnecessary legal procedures and the loss of resources. This
was, for example, done by the European Pharmacopoeia, which developed and validated
an LC method for the quantification of total ∆9-THC and total CBD for cannabis flowers,
which are used for medicinal purposes [140].

The use of mass spectrometry is gaining importance, especially due to its ability to
quantify very low amounts of cannabinoids. In addition, the distinction between struc-
turally very closely related molecules is a huge advantage. Moreover, methodologies
capable of providing information on both terpenes and cannabinoids in different matrices
are deemed necessary. The extension of the number of cannabinoid molecules to be ana-
lyzed, as well as the fact that the acidic forms can be quantified separately, explains the
rising popularity of LC-MS/MS.

It also has to be emphasized that, as for all analytical methods, robust validation
is necessary and should cover the whole process, as well as the range of matrices to be
covered. Some articles were published with methods developed and validated using only
reference standards of a series of cannabinoids [141,142]. These papers have their value,
e.g., in optimizing the separation of the strongly structurally related cannabinoids [141]
or even in the use of experimental design for method development or optimization [142],
though for practical applications in the context of quality control and market surveillance,
more thorough validation, including of matrix effects and interferences, is pivotal.

This review was limited to the analysis of herbal products and the so-called CBD oils,
which are used in a (para-)pharmaceutical context or as herbal smoking products. However,
cannabis, cannabinoids, and cannabis extracts can be found in a wide range of products
nowadays, as already summarized in Table 1. Contrary to herbal matrices, a lack of regula-
tion exists, with no mandatory analytical controls for cannabis-based products, leading to
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uncertainty about the composition and quality of the products offered to consumers [143].
For such a high diversity of products, the applicability of analytical methods, as well as
the validation strategies applied, may differ and therefore all analytical scientists involved
in the development of methods for cannabinoids and in market surveillance should be
aware that each matrix has its own characteristics and its own analytical challenges, result-
ing in methods that are not always transferable from one domain to another. Analytical
approaches for cannabinoid analysis in cosmetics, vaping products, and food are a high-
interest topic, as illustrated by recent reviews [144,145] and by the publication of newly
developed methods [146–148]. Recently, the Food and Drug Administration (FDA) pointed
out that CBD has raised various safety concerns with long-term use. Customers would
benefit from a new regulatory approach to manage and reduce the dangers associated
with CBD products [149]. This should hopefully lead to the development of new official
methods for analyzing CBD-containing products.

Spectroscopic techniques, especially MIR and NIR, were often applied for this type of
analysis and showed promising results when multivariate analysis techniques were used
for data treatment and interpretation. Spectroscopic techniques, however, are less sensitive
and suffer from the fact that no separation of the different molecules occurs. On the other
hand, spectroscopy has a huge advantage considering its speed of analysis, portability, and
environmentally friendly nature.

Two other methods covered in this review are SFC and Raman spectroscopy. The use
of SFC for cannabinoid analysis is still being developed. For the moment, this technique
is less encountered in laboratories, dealing with cannabinoids, and also shows a similar
selectivity and sensitivity as classical LC. SFC may become more important in the future,
especially during the transition to more environmentally friendly methods and techniques
and green chemistry in general. Raman spectroscopy is influenced by fluorescence and
is less sensitive. Raman combined with SERS can be a solution to increase its sensitivity.
However, the device is not yet well-exploited and the creation of nanoparticles, as well as
the reproducibility of these, is not yet optimal.

Table 8 summarizes the different advantages and disadvantages of the chromato-
graphic and spectroscopic techniques discussed in this review. Chromatographic tech-
niques can be more easily automatized than spectroscopic techniques, yet, the time required
for analysis is higher. Liquid chromatography-based methods can distinguish between
acidic and decarboxylated forms. However, the temperature and the flow rate influence
the decarboxylation/degradation of cannabinoids and the separation of the analytes. Due
to the ease of use and the low analysis cost of spectroscopic techniques, these are less
sensitive and generally need multivariate modeling to distinguish samples and predict the
concentrations of analytes.

Next to the methods reviewed in this paper, some alternative methods were encoun-
tered, for which only one or a few papers were published. For the moment, these techniques
are not ready yet for implementation as a routine analysis technique since more research
will be necessary. One of these techniques is electrochemistry. Although cannabinoids are
electrochemically active, only a few papers can be found in the literature for the analysis of
cannabis (herbal plants and oils). This could be explained by the oxidation potentials of
∆9-THC and CBD, which are similar, requiring the combination of electrochemistry with
another (preferably separation) technique to solve this problem. Despite the challenges,
Deenin et al. developed an electrochemical lateral flow device to detect THC in 2023 [150].
The concept of the method is that ∆9-THC in the sample is immunocomplexed with a
ferrocene carboxylic acid-labeled antibody, which binds to the immobilized cannabinoid
receptor 2 above the electrode. They have applied their method on dried cannabis samples
to prove its ability to quantify ∆9-THC and total THC [150]. Huang et al. presented another



Molecules 2025, 30, 490 27 of 35

alternative, namely the use of cyclic ion mobility combined with a QToF mass spectrometer.
Ion mobility could be an alternative to chromatography. Huang et al. were able to differen-
tiate and quantify a series of cannabinoids, including acidic forms and structural isomers
of ∆9-THC. These alternatives suggest again that cannabis and cannabis-derived products
can be analyzed using a wide variety of techniques and approaches, and that in the context
of quality control, label accuracy checks, and market surveillance, there is an urgent need
for standardization [151].

Table 8. Comparative table of the specificities of chromatographic and spectroscopic techniques.
(+) and (-) signs determine the strengths and weaknesses of each parameter. The number of signs
determine the intensity of strengths and weaknesses.

Chromatographic Techniques Spectroscopic Techniques

GC UHPLC UHP-SFC NIR MIR Raman

Automatization +++ +++ +++ --- --- ---

Speed of analysis -- - - +++ +++ ++

Parameters of influence temperature and
flow rate

temperature and
flow rate

temperature and
flow rate temperature temperature temperature

Compounds/samples decarboxylation of
acidic form +++ +++

no difference
between acidic and

neutral forms

no difference
between acidic and

neutral forms

no difference
between acidic and

neutral forms

Separations +++ +++ +++ --- --- ---

Analyte detection +++ +++ +++ classification/
prediction

classification/
prediction

classification/
prediction

Sensitivity +++ +++ +++ -- - --

Analysis cost --- --- --- +++ +++ +++

Intuitiveness - - --- + + +/-

Handling --- --- --- +++ ++ ++

Sample preparation --- --- --- +++ +++ ++

Green analytical chemistry +/- +/- +/- +++ +++ +++

This review was limited to the analysis of cannabinoids, with a primary focus on
quality control and market surveillance. The focus on cannabinoids is inspired by the
fact that these are considered the active compounds to which pharmacological effects
are designated. Recent research revealed that there could be a synergetic effect between
cannabinoids and other phytochemicals, for example, terpenes. If this is confirmed, a series
of new analytical methods able to analyze both terpenes and cannabinoids simultaneously
will be published. In fact, at the moment, the rising interest in terpenes has already resulted
in different papers [40,65,88].

5. Conclusions
The expansion of analytical techniques for cannabinoid detection or quantification

has been due to the advent of cannabis-based (consumer) products on the market, as
well as the substantial advancements in medicinal and agronomic research. In the period
reviewed (2018–November 2024), GC and LC have been widely applied, often using similar
methods. Low-∆9-THC products are not controlled under drug laws. Authorities aim to
develop techniques to check the legality of these products in order to prevent the legislation
from being circumvented. For the moment, ∆9-THC and CBD are the main molecules
of interest for regulatory bodies. However, due to continuous research and commercial
value, more and more naturally occurring cannabinoids such as CBG, CBC, CBDV, and
THCV are becoming of interest and are, whether justifiably or not, linked to several health
claims. This means that in the future, more and/or new cannabinoids will have to be
analyzed in different matrices [97]. Examples of such new cannabinoids are epicannabidiol
hydrate [152] or tetrahydrocannabihexol acetate [153]. The design of experiments answers
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the request of a growing scientific interest in Cannabis sativa L., which aims to develop or
optimize with minimum experimental trials [154].

It can be concluded that the market for cannabis-based products is still growing
and diversifying, requiring constant updates to existing methods and the development of
methods adapted to new matrices. The growing and diversifying market also requires some
standardization in the form of legislation or guidelines in order to prevent inconsistencies
between the results provided by the producers and distributors and the ones obtained by the
controlling agencies, as has been seen over the past years for herbal smoking products [78].
In order to control the market and protect consumers, there is a need for official methods
for the products at risk, as exists for agricultural hemp and for cannabis flowers used
as an active pharmaceutical ingredient [140]. Alternatively, guidelines through official
bodies could be established together with the industry to agree on the criteria these products
should respond to and how to check them. This also needs to include the validation protocol.
Indeed, in the papers cited in the current review, different method validation guidelines
are used, e.g., SWGTOX guidelines [95,155], US FDA, bioanalytical method validation
guidelines for industry (ICH) [156], and ISO 17025 [78]. It is important to compare the same
parameters of validation of two methods based on the same criteria. When deciding and
creating these norms and the standardized analytical protocol, the possibility of using green
techniques, such as spectroscopy, or more environmentally friendly techniques, should be
explored. Of course, the primary goal is to protect the consumer, but the principles of green
chemistry are finding their way and will add to the protection of consumers and, more
broadly, the population, especially when they are embraced by the authorities and other
official regulatory bodies.
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