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Abstract: The interaction between the neuroendocrine system and the immune system
plays a key role in the onset and progression of various diseases. Neuropeptides, rec-
ognized as common biochemical mediators of communication between these systems,
are receiving increasing attention because of their potential therapeutic applications in
immune-related disorders. Additionally, many neuropeptides share significant similarities
with antimicrobial peptides (AMPs), and evidence shows that these antimicrobial neu-
ropeptides are directly involved in innate immunity. This review examines 10 antimicrobial
neuropeptides, including pituitary adenylate cyclase-activating polypeptide (PACAP),
vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), ghrelin,
adrenomedullin (AM), neuropeptide Y (NPY), urocortin II (UCN II), calcitonin gene-related
peptide (CGRP), substance P (SP), and catestatin (CST). Their expression characteristics and
the immunomodulatory mechanisms mediated by their specific receptors are summarized,
along with potential drugs targeting these receptors. Future studies should focus on further
investigating antimicrobial neuropeptides and advancing the development of related drugs
in preclinical and/or clinical studies to improve the treatment of immune-related diseases.

Keywords: antimicrobial neuropeptides; immunoregulator; receptors; therapeutic targets;
immune disorders

1. Introduction
Recent studies have revealed the elaborate crosstalk between the immune and nervous

systems [1]. These systems use a shared biochemical language, including neurotransmitters
such as neuropeptides and hormones, immune ligands, and their receptors [2]. This
interaction forms a bidirectional communication network. Neuropeptides are key players
in this process, regulating specific neuroimmune disorders [3].

Antimicrobial peptides (AMPs) serve as the primary line of defense for the host against
pathogenic organisms and possess the capacity to elicit innate immune responses [4]. Some
neuropeptides produced by neurons, glial cells, and immune cells exhibit physical proper-
ties comparable to those of AMPs and have been verified to possess specific antimicrobial
properties [5]. Moreover, neuropeptides function as neuroendocrine modulators [6], play-
ing a vital role in the modulation of inflammatory responses [7]. The receptors for these
neuropeptides serve as essential targets for immune regulation [7]. Potential therapeutic
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agents targeting their respective receptors are anticipated to be viable treatments for specific
immune disorders and to progress toward clinical therapy [8–10].

Neuropeptides that exhibit antimicrobial and immunoregulatory properties have
the potential to significantly impact the pathophysiology of various immune-related dis-
eases [11]. This review provides a comprehensive examination of the immune regulatory
mechanisms mediated by neuropeptides, along with an analysis of their sources, target
cells, and immunoregulatory functions of antimicrobial neuropeptides. Furthermore, we
summarize the receptors for the 10 most prominent antimicrobial neuropeptides, including
their respective agonists and antagonists, as well as the implications for disease treatment.
By leveraging the immune-regulating properties of those antimicrobial neuropeptides, we
propose that they may play a substantial therapeutic role in specific diseases.

2. Neuropeptide Immunoregulatory Mechanism
Traditionally, the neuroendocrine system and the immune system have been viewed

as distinct regulatory domains that govern homeostasis between the host and its environ-
ment [12]. Each domain is characterized by its own specialized terminology, and only a
limited number of researchers possess expertise in both areas [13]. It was not until the
late 1970s, with advancements in research into both the immune and neuroendocrine
systems, that the complex crosstalk between these two systems was elucidated [12,14].
The neuroendocrine system and the immune system communicate internally through a
biological regulatory signal library. Immune cells can respond to stimuli by secreting
neurotransmitters, whereas the neuroendocrine system can modulate immune responses
through the production of cytokines [13,15,16] (Figure 1). This interplay between the neu-
roendocrine system and the immune system is essential for pathogen elimination and the
re-establishment of immune homeostasis [17]. Neuropeptides, a class of neuroendocrine
mediators, are secreted by both immune and nerve cells. The literature has established that
neuropeptides act as multifunctional regulators of the immune response [6] and are capable
of activating immune cells to elicit either anti-inflammatory or pro-inflammatory effects.

2.1. Anti-Inflammatory Effects

The induction of immune tolerance is vital for maintaining immune homeostasis, mod-
ulating autoreactive T cells, preventing the onset of autoimmune diseases, and achieving
transplant tolerance [7]. Inflammation is a crucial physiological response against pathogen
eradication; however, the inadequate regulation of this process can lead to significant
adverse effects on the host [7]. Investigating the endogenous factors that influence immune
tolerance and inflammation represents a significant research focus within the field of im-
munology. Between 2000 and 2008, Delgado’s research team reported that neuropeptides
synthesized by nerve cells and immune cells have anti-inflammatory properties and facil-
itate the maintenance of immune homeostasis. These neuropeptides include vasoactive
intestinal peptide (VIP), α-melanocyte-stimulating hormone (α-MSH), urocortin I (UCN I),
adrenomedullin (AM), and cortistatins [7,12,17].
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Figure 1. Bidirectional communication between the neuroendocrine and immune system. An 
intricate interplay exists between the neuroendocrine system and the immune system. Firstly, 
pathogens can induce immune cells to produce cytokines and nerve cells to release neuromediators, 
thereby facilitating the exchange of these chemical signals between immune cells and nerve cells. 
Secondly, pathogens can also stimulate other cell types, such as epithelial cells, leading to the 
secretion of effector molecules including cytokines, chemokines, and growth factors. These factors 
can further activate immune cells and nerve cells through receptor-mediated responses to pathogen 
stimulation. Additionally, the involvement of the hypothalamic–autonomic nervous system axis 
(HANS) should be considered. For instance, the brain–gut axis has been shown to trigger 
hypothalamus–pituitary–adrenal function within the central nervous system (CNS). The diagram 
of the immune cells was refined based on Krause’s work [18]. The diagram of the brain, pathogens, 
and nerve cells was designed by pch.vector/Freepik. 

Figure 1. Bidirectional communication between the neuroendocrine and immune system. An intricate
interplay exists between the neuroendocrine system and the immune system. Firstly, pathogens
can induce immune cells to produce cytokines and nerve cells to release neuromediators, thereby
facilitating the exchange of these chemical signals between immune cells and nerve cells. Secondly,
pathogens can also stimulate other cell types, such as epithelial cells, leading to the secretion of
effector molecules including cytokines, chemokines, and growth factors. These factors can further
activate immune cells and nerve cells through receptor-mediated responses to pathogen stimulation.
Additionally, the involvement of the hypothalamic–autonomic nervous system axis (HANS) should
be considered. For instance, the brain–gut axis has been shown to trigger hypothalamus–pituitary–
adrenal function within the central nervous system (CNS). The diagram of the immune cells was
refined based on Krause’s work [18]. The diagram of the brain, pathogens, and nerve cells was
designed by pch.vector/Freepik.
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A previous study revealed that CD4+ and CD8+ TH2 immune cells are the primary
sources of VIP in response to inflammatory stimuli or antigen activation [7]. Additionally,
α-MSH is predominantly expressed in lymphocytes and monocytes, and its production
is stimulated by inflammatory factors [19]. Research has shown that VIP and α-MSH act
as potent anti-inflammatory agents, effectively inhibiting the production of inflammatory
mediators (TNFα, IL-6, and IL-1β) and chemokines (CCL5, IL-8, and IP-10), downregulating
inducible nitric oxide synthase (iNOS) expression, and thus diminishing nitric oxide (NO)
release. Meanwhile, the activation of macrophages, microglia, and monocytes enhances the
production of the anti-inflammatory cytokines IL-10 and TGFβ [7]. Concurrently, VIP and
α-MSH play crucial roles in modulating the balance between TH1 cells and regulatory T
cells within the organism (Figure 2). This regulation ensures a stable equilibrium between
anti-inflammatory and pro-inflammatory factors, thereby reducing the risk of autoimmune
diseases [7]. Moreover, neuropeptides can influence macrophages to effectively modulate
the M1/M2 balance and enhance the body’s anti-inflammatory capacity (Figure 2) [20].
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synthesized by both neuronal and immune cells effectively respond to pathogen stimuli and 
mediate anti-inflammatory effects. Firstly, neuropeptides can modulate T cell function by inhibiting 
the production of TH1-related factor IL-12, inducing CD86 expression, and promoting the 
generation and differentiation of TH2 cells. Additionally, neuropeptides can induce Treg cell 
production while suppressing autoreactive T cell activation through secretion of IL-10 and TGFβ. 
Secondly, neuropeptides directly influence macrophages by promoting their differentiation into the 
M2 phenotype. This enhances the expression of anti-inflammatory factors while suppressing pro-
inflammatory factor expression. The red “X” means inhibit. The diagram of the immune cells was 
refined based on Krause’s work [18]. 

2.2. Pro-Inflammatory Effects 

The inflammatory response is a highly complex process involving numerous factors 
and signaling pathways. As a crucial component of the body’s defense and protective 
mechanisms, the inflammatory response is essential for eliminating harmful foreign 
substances and initiating self-repair processes [21]. Generally, regulated pro-
inflammatory responses are not harmful; rather, they are crucial for maintaining 
homeostasis under normal conditions [22]. During the onset of an inflammatory response, 
certain neuropeptides act as immunomodulators by interacting with various receptors to 
facilitate the progression of inflammation [23]. Certain neuropeptides synthesized by 
neuronal and immune cells play a significant role in modulating pro-inflammatory 
responses; the primary neuropeptides involved include substance P (SP), calcitonin gene-
related peptide (CGRP), and neuromedin U (NmU) [24,25]. 

Neuropeptides primarily trigger pro-inflammatory responses by stimulating or 
enhancing the expression of pro-inflammatory cytokines [26]. For example, SP and CGRP 
can promote the release of pro-inflammatory cytokines (TNFα, IL-1, and IL-4) and 
histamine from mast cells, thereby fostering an environment conducive to inflammation 
(Figure 3) [27–30]. Furthermore, neuropeptides can induce inflammation by regulating the 
balance between anti-inflammatory and pro-inflammatory factors. For example, SP 
downregulates the mTOR signaling pathway, reduces the expression of the anti-

Figure 2. Antimicrobial neuropeptides are key players in anti-inflammation. Certain neuropeptides
synthesized by both neuronal and immune cells effectively respond to pathogen stimuli and mediate
anti-inflammatory effects. Firstly, neuropeptides can modulate T cell function by inhibiting the
production of TH1-related factor IL-12, inducing CD86 expression, and promoting the generation
and differentiation of TH2 cells. Additionally, neuropeptides can induce Treg cell production while
suppressing autoreactive T cell activation through secretion of IL-10 and TGFβ. Secondly, neuropep-
tides directly influence macrophages by promoting their differentiation into the M2 phenotype. This
enhances the expression of anti-inflammatory factors while suppressing pro-inflammatory factor
expression. The red “X” means inhibit. The diagram of the immune cells was refined based on
Krause’s work [18].
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Additionally, UCN I, AM, and cortistatin, which are synthesized by nerve and im-
mune cells (such as macrophages, monocytes, lymphocytes, or T cells), act as endogenous
immunoregulatory factors with substantial anti-inflammatory properties [7]. They are
capable of inhibiting the production of pro-inflammatory cytokines (TNFα, IL-6, IL-12,
IL-1β, and MIF), chemokines (CCL5, IP-10, MIP-1α, MIP-2, MCP-1, and eotaxin), and
NO, whereas they stimulate immune cells to produce the anti-inflammatory cytokine
IL-10 [7].

2.2. Pro-Inflammatory Effects

The inflammatory response is a highly complex process involving numerous factors
and signaling pathways. As a crucial component of the body’s defense and protective mech-
anisms, the inflammatory response is essential for eliminating harmful foreign substances
and initiating self-repair processes [21]. Generally, regulated pro-inflammatory responses
are not harmful; rather, they are crucial for maintaining homeostasis under normal con-
ditions [22]. During the onset of an inflammatory response, certain neuropeptides act as
immunomodulators by interacting with various receptors to facilitate the progression of
inflammation [23]. Certain neuropeptides synthesized by neuronal and immune cells play
a significant role in modulating pro-inflammatory responses; the primary neuropeptides in-
volved include substance P (SP), calcitonin gene-related peptide (CGRP), and neuromedin
U (NmU) [24,25].

Neuropeptides primarily trigger pro-inflammatory responses by stimulating or en-
hancing the expression of pro-inflammatory cytokines [26]. For example, SP and CGRP
can promote the release of pro-inflammatory cytokines (TNFα, IL-1, and IL-4) and his-
tamine from mast cells, thereby fostering an environment conducive to inflammation
(Figure 3) [27–30]. Furthermore, neuropeptides can induce inflammation by regulating the
balance between anti-inflammatory and pro-inflammatory factors. For example, SP down-
regulates the mTOR signaling pathway, reduces the expression of the anti-inflammatory
cytokine IL-10, and enhances the release of the pro-inflammatory cytokines IL-12p40
and IL-23, which subsequently increases susceptibility and promotes inflammatory re-
sponses [31]. Recent research has indicated that NmU can be upregulated in response
to pathogen infection, promoting type 2 cell responses and activating eosinophils, thus
inducing pro-inflammatory effects [25].
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Figure 3. Antimicrobial neuropeptides are key players in pro-inflammation. Certain neuropeptides
play a pivotal role in mediating neurogenic inflammation and augmenting inflammatory responses.
In the presence of inflammatory stimuli, mast cells undergo degranulation, and through the action of
neuropeptides, they elicit arterial dilation and heightened venous permeability, thereby establishing
an environment conducive to inflammatory processes. Moreover, mast cell-derived tryptase possesses
the ability to cleave activated PAR-2, thereby facilitating the release of neuropeptides and instigating
the inflammatory response. The diagram of the immune cells was refined based on Krause’s work [18].
The diagram of the nerve cell was designed by pch.vector/Freepik.

3. Antimicrobial Neuropeptide Receptors as Potential Therapeutic
Targets for Immune Diseases

Neuropeptides function as neuroendocrine regulators [6], with certain neuropeptides
displaying antimicrobial properties that play crucial roles in immune regulation [7,23].
The neuropeptides under consideration include pituitary adenylate cyclase-activating
polypeptide (PACAP), VIP, α-MSH, AM, neuropeptide Y (NPY), urocortin II (UCN II),
CGRP, SP, and catestatin (CST). This study conducted a thorough analysis of the expression
characteristics of these ten antimicrobial neuropeptides and their corresponding receptors
(Table 1). Additionally, we performed a comprehensive systematic review of potential
therapeutic agents targeting these receptors, along with an evaluation of their clinical
viability in preclinical and/or clinical studies (Table 2).
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Table 1. Antimicrobial neuropeptides: expression, receptors, and function in the body.

Name Amino Acid Sequences Immune Source Immune Function Receptor:
Immune Cell Receptor Type Receptor Expression Refs.

PACAP/
VIP

HSDGIFTDSYSRYRKQMAVKK
YLAAVLGKRYKQRVKNK-

NH2

PACAP: Thymus
cells, Lymphocytes,

Plasma cells;
VIP: Mast cells,
Granulocytes,
Lymphocytes

Inhibit IL-6, TNFα,
NO;

promote IL-10

Lymphocytes,
monocytes, mast

cells

VPAC1
VPAC2
PAC1

VPAC1: monocytes, T
cells

VPAC2: thymic cells,
mast cells

PAC1: macrophages and
lung dendritic cells

[32,33]

α-MSH HADGVFTSDFSKLLGQLSAK
KYLESLM-NH2

Lymphocytes,
Monocytes,

Dendritic cells, and
Islet cells

Inhibit IL-1, IL-6,
TNFα, IL-2, IFNγ,

IL-4, IL-13;
promote IL-10

Lymphocytes,
monocytes,

dendritic cells,
endothelial cells

MC-1R
MC-2R
MC-3R
MC-4R
MC-5R

MC-1R: monocytes,
macrophages, dendritic
cells (DCs), fibroblasts,

inflammatory cells;
MC-3R: central nervous

system;
MC-5R: macrophages,

lymphocytes;

[34–36]

Ghrelin GSSFLSPEHQRVQQRKESKKP
PAKLQPR

Human P/D1 cells
in rat X/A-like

Inhibit TNFα, IL-1β,
IL-6

T lymphocytes, B
lymphocytes, and

neutrophils

GHS-R1a
GHS-R1b

GHS-R1a: mononuclear
cells;

GHS-R1b: mononuclear
cells

[37–39]

AM
YRQSMNNFQGLRSFGCRF
GTCTVQKLAHQIYQFTDK

DKDNVAPRSKISPQGY-NH2

Macrophages,
Monocytes, and T

cells;
Lymphatic organs

and Gastrointestinal
tract

Inhibit TNFα, IL-6,
IL-12, IL-1β, and NO Macrophages CRLR/RAMP2(AM1),

CRLR/RAMP3(AM2) AM1: fibroblasts [40–42]

CGRP
ACDTATCVTHRLAGLLSRSG

GVVKNNFVPTNVGSKAF-
NH2

Nerve cell

Inhibit TNFα, IL-12,
IFNγ;

promote IL-4, IL-8,
IL-10

Macrophages,
dendritic cells

(DCs), T cells, etc.
CRLR/RAMP1 Macrophages, dendritic

cells (DCs), T cells, etc. [43–45]
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Table 1. Cont.

Name Amino Acid Sequences Immune Source Immune Function Receptor:
Immune Cell Receptor Type Receptor Expression Refs.

SP RPKPQQFFGLM-NH2

Nerve cell,
Inflammatory cells
(e.g., Macrophages,
Dendritic cells, etc.)

Inhibit IL-10;
promote IL-1β, TNF,

MIP-1β, IL-6

Microglia,
macrophages,
dendritic cells,

etc.

NK1R Microglia, macrophages,
dendritic cells, etc. [46–48]

NPY YPSKPDNPGEDAPAEDMAR
YYSALRHYINLITRQRY-NH2

Activated
Macrophages and

Epithelial cells

Inhibit microglial
cell TNFα, IL-1β;
inhibit DCs IFNγ;
promote human
monocyte IL-1β

Monocytes,
lymphocytes,

granulocytes, etc.

Y1R
Y2R
Y3R
Y4R
Y5R
Y6R

Y1: All types of immune
cells;

Y2R, Y4R, Y5R:
neutrophile granulocytes;

Y6R: mice

[49–52]

UCN II
VILSLDVPIGLLRILLEQARYK

AARNQAATNAQILAHV-
NH2 (mouse)

Nerve cell Inhibit TNFα;
promote IL-10

Immune cells
(such as

macrophages),
endothelial cells,
and fibroblasts

CRH-R2 CRH-R2: macrophages [53,54]

CST SSMKLSFRARAYGFRGPGPQL
Nerve cell, Immune
cell, Neuroendocrine

cell

Inhibit TNFα, IL-1β;
promote IL-4, IL-10

Mononuclear
cells,

macrophages, etc.

Type 2 muscarinic
acetylcholine

receptor

Mononuclear cells,
macrophages, etc. [55–57]
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Table 2. The potential therapeutic agent for the receptor and therapeutic potential in preclinical and/or clinical studies.

Selective Receptor Specific Ligand Antagonist Agonist Disease

VPAC1 PACAP, VIP
PG 97-269

([Acetyl-His1,D-Phe2,Lys15,Arg16,Leu17]VIP(3-7)/GRF(8-27))
[58]

[R16]-PACAP(1-23)[L22]-VIP,
[Lys15,Arg16,Leu27]-VIP(1-7)-GRF(8-

27)-NH2 [59,60]

Migraine [59]
Colitis [61]

VPAC2 PACAP, VIP PG99-465 [62], VIpep-3 [62] LBT-3627 [63], RO25-1553 [62],
RO25-1392 [62], BAY55-9837 [62]

PD (Parkinson’s disease)
[63]

PAC1 VIP PACAP 6-38 [64] Maxadilan [65]

MC-1R α-MSH [Ac-DPhe(pI)-DArg-Nal(2′)-Arg-NH2] [66], ASIP [67]
PL8177 (Ac-Nle1-cyclo (Glu2-L-His3-
D-Phe4-Arg5-Dap6)-Trp7-NH2) [68],

MT-7117 [69], BMS-470539 [70]

Arthrophlogosis [68];
Systemic sclerosis [69]

MC-3R α-MSH SHU-9119 (Ac-Nle-c[Asp-His-D-Nal(2′)-Arg-Trp-Lys]-NH2)
[71], g-2-MSH [72], [D-Trp8]-γ-MSH [73]

MC-5R α-MSH x-Cha-DPhe-Arg-Trp-y, x-His-Nal(2′)-Arg-Trp-y [70]
SHU-9119 [71], PG-901

(Ac-Nle4-c[Asp5-Pro6-DNal(2′)7-
Arg8-Trp9-Lys10]-NH2) [74]

GHS-R1a Ghrelin
[D-Lys3]-GHRP-6 [75], L-756867

(H2N,D-Arg,Pro,Lys,Pro,D-Phe,Gln,D-Trp,Phe,D-Trp,Leu,
Leu,NH2) [76]

MK-0677 [77], Capromorelin [78],
LY444711 [79], GHRP-2 [80]

Alzheimer’s Disease [79];
Arthrophlogosis [80]; fat

[81]

CRLR/RAMP1 CGRP

Olcegepant [82], Telcagepant (MK-0974)
((3R,6S)-3-Amino-6-(2,3-difluorophenyl) azepan-2-one) [83],

MK-3207 (2-[(8R)-8-(3,5-difluorophenyl)-10-oxo-6,9-diazaspiro
[4.5]dec-9-yl]-N-[(2R)-2′-oxo-1,1′,2′,3-tetrahydrospiro[indene-
2,3′-pyrrolo [2,3-b]pyridin]-5-yl]acetamide) [84], BMS-694153

((R)-4-(8-Fluoro-2-oxo-1, 2-dihydroquinazolin-3(4
H)-yl)-N-(3-(7-methyl-1H-indazol-5-yl)-1-oxo-1-(4-(piperidin-
1-yl)piperidin-1-yl)propan-2-yl)piperidine-1-carboxamide) [85]

KBP-042, KBP-088, KBP-089 [86] Migraine [87]

Y1R NPY

BIBP3226 (N-[(1R)]-4-[(Aminoiminomethyl)amino-1-[[[(4-
hydroxyphenyl)methyl]amino]carbonyl]butyl-α-

henylbenzeneacetamide trifluoroacetate) [88], BIB03304 [89],
1229U91 [90]

[Leu31,Pro34]NPY [89],
[Pro30,Nle31,Bpa32,Leu34]NPY(28-36)

[91]
Gastric diseases [89]
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Table 2. Cont.

Selective Receptor Specific Ligand Antagonist Agonist Disease

Y2R NPY

SF-11 ([N-(4-ethoxyphenyl)-4-(hydroxydiphenylmethyl)-1-
piperidinecarbothioamide]) [92], JNJ-31020028 [93], BIIE0246

((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-
oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-

oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-
1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide) [94]

PYY(3-36) [89,95], NPY(13-36) [89],
Obinepitide (TM30338) [96]

Acute pancreatitis and
colitis [89,95]

AM1 AM Olcegepant [82], Telcagepant (MK-0974) [83], MK-3207 [84],
BMS-694153 [85], AM22-52 [97], CGRP8-37 [97] hAM1-52 [98] Migraine [87]

AM2 AM Olcegepant [82], Telcagepant (MK-0974) [83], MK-3207 [84],
BMS-694153 [85], SHF-638 [99] AM2/IMD [86] Migraine [87]

CRFR2 UCN II Anti-sauvagine30 [100], Astressin 2B [101] CT38s [102] Intestinal inflammation
[101]

NK1R SP Aprepitant [103], L-733060 [104], Lanepitant [105],
Befetupitant [105]

GR73632 (δAva[l-Pro9,
N-MeLeu10]SP-(7-11)), septide
([pGlu6,Pro9]SP-(6-11)) [106]

Cerebral hemorrhage
[103]

M2 CST Trospium chloride [107] Iperoxo [108], Xanomeline [107]
Alzheimer’s Disease

[107];
overactive bladder [107]
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3.1. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)

PACAP is a neuropeptide consisting of 38 amino acids that was first isolated from the
hypothalamus of sheep by Atsuro Miyata and colleagues in 1989 [109]. This neuropeptide
is widely distributed throughout the nervous and immune systems, is predominantly
found in thymic cells and lymphocytes, and is classified within the secretin/glucagon/VIP
superfamily [32]. The receptors VPAC1, VPAC2, and PAC1 are utilized by both PACAP and
VIP [110]. Although PACAP and VIP display similar affinities for VPAC1 and VPAC2 [111],
the affinity of PACAP for PAC1 is approximately 300–1000 times greater than that of
VIP [7]. VPAC1 is constitutively expressed in monocytes and T cells, whereas VPAC2
is predominantly present in thymocytes and mast cells. Conversely, PAC1 is expressed
mainly in macrophages and dendritic cells (DCs) in the lung [33]. PACAP and VIP primar-
ily exert immunoregulatory effects through their interaction with the VPAC1 or VPAC2
receptors, whereas the PAC1 receptor is involved mainly in the release of growth factors
and neuroprotective mechanisms [111].

Research has indicated that PACAP has a significant anti-inflammatory effect. Specifi-
cally, PACAP suppresses pro-inflammatory TH1 and TH17 responses while simultaneously
promoting TH2 and Treg responses [112]. Furthermore, studies on microglial inflammation
have demonstrated that PACAP can inhibit the production of pro-inflammatory media-
tors, such as TNFα, IL-1β, IL-6, and NO, which are induced by LPS-activated microglia
through its action on the VPAC1 receptor [113]. This action significantly reduces microglial
activity. Studies have shown that PACAP and VIP inhibit the Janus kinase (JAK)/signal
transducer and activator of the transcription 1 (STAT1)-signaling pathway, regulate cd40
gene expression (a key mediator of inflammation), and reduce IFNγ-induced microglial
inflammation [111]. In models of traumatic brain injury, PACAP has also been found
to inhibit secondary inflammation in microglia and neurons through the TLR4 pathway,
reducing neuronal death, easing inflammation, and facilitating the recovery of normal
functions [114].

The antagonists of the VPAC1 receptor include PG 97-269 [58]. Noteworthy ago-
nists are [R16]-PACAP (1-23), [L22]-VIP, and [Lys15, Arg16, Leu27]-VIP (1-7)-GRF (8-27)-
NH2 [59,60]. Among these, PG 97-269 [58] has progressed to the pre-clinical research stage.
PACAP enhances the sensitivity of the trigeminal nerve, which leads to vasodilation and
subsequently initiates an inflammatory response. The VPAC1 antagonist PG 97-269 can
partially block the vasodilation induced by PACAP [59]. Therefore, PG 97-269, as a VPAC1
target antagonist, could serve as a treatment for migraines triggered by the trigeminal nerve
system [59]. However, its efficacy and safety profile require further validation through
clinical trials [59]. Furthermore, research has indicated that PG 97-269 may reduce the pro-
duction of cytokines (IL-1β and IL-6) by immune cells, such as monocytes, mast cells, and
macrophages, whereas it also inhibits their chemotactic activity, thus holding therapeutic
potential in the treatment of colitis [61].

The antagonists of the VPAC2 receptor include PG99-465 and VIpep-3 [62]. The
agonists include LBT-3627, RO25-1553, RO25-1392, and BAY 55-9837 [62,63]. Among
them, LBT-3627 [63] and RO25-1553 [115] have progressed to the pre-clinical research
stage. Notably, LBT-3627 has been shown to increase Treg activity, promote the survival of
dopaminergic neurons in the substantia nigra, and decrease microglial numbers, indicating
its therapeutic potential for Parkinson’s disease (PD) [63]. RO25-1553 selectively binds to
the VPAC2 receptor, which reduces the release of TNFα and IL-12 from macrophages and
monocytes, thereby contributing to its role in immune regulation [115].

The PAC1 receptor antagonist includes PACAP 6-38 [64], whereas its agonist is Maxadi-
lan [65]. Among them, PACAP 6-38 [64] and Maxadilan [65] have progressed to the
pre-clinical research stage. In vitro studies have demonstrated that PACAP enhances the ex-
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citability of various neurons through the activation of extracellular signal-regulated kinase
(ERK) [64]. PACAP 6-38 has the potential to ameliorate central sensitization in the trigemi-
nal nucleus caudalis of rats suffering from chronic migraine, providing a promising avenue
for treating this condition [64]. Maxadilan may offer antiatherosclerotic protection by
functioning downstream of cholesterol-induced vascular inflammation, thus safeguarding
against atherosclerosis in ApoE knockout (ApoE−/−) mice [65].

3.2. Vasoactive Intestinal Peptide (VIP)

VIP, which is composed of 28 amino acids, derives its name from its initial iden-
tification in the intestines and its role as a vasodilator [116]. VIP is a member of the
secretin/glucagon/VIP superfamily, a group of antimicrobial neuropeptides synthesized
by lymphocytes and nerve cells that exhibit extensive immune functions [117]. VIP is ex-
tensively distributed throughout the body, and as a neurotransmitter, it has been identified
in various organs and tissues. Within the immune system, VIPs originate primarily from
two sources: nerve terminals and immune cells [7]. A study identified CD4+ and CD8+

TH2 immune cells as the primary sources of VIP following inflammatory or antigenic
stimulation [118]. The literature has established that VIP and PACAP interact with the
same three receptors: VPAC1, VPAC2, and PAC1 [110].

Research indicates that VIP is a potent anti-inflammatory agent [7]. Similar to PACAP,
its immune modulatory effects are mediated through the receptors VPAC1 and VPAC2 [111].
VIP inhibits activated macrophages from producing IL-12, induces CD86 expression on DCs
and macrophages, and facilitates the aggregation of specific TH2 cells, thereby prolonging
their survival and promoting a TH2-type immune response [7]. Additionally, research
suggests that inhibiting VIP signal transduction may increase both the proliferation and
functional activity of CD8+ T cells in the context of viral infections and lymphoma [119].
Furthermore, VIP effectively modulates the balance between TH2 and TH1 responses
within the body, maintaining a stable equilibrium between anti-inflammatory and pro-
inflammatory factors to prevent the onset of autoimmune diseases [7]. Antagonists and
agonists targeting VIP-specific receptors are described in PACAP.

3.3. α-Melanocyte Stimulating Hormone (α-MSH)

Melanocortin peptides, which include α-MSH β-MSH, γ-MSH, and adrenocorti-
cotropic hormone (ACTH), are produced by the hydrolysis of proopiomelanocortin
(POMC) [120]. α-MSH is composed of 13 amino acids and is well known for its role
in skin pigmentation [35]. The precursor gene pomc is expressed in lymphocytes, mono-
cytes, DCs, and islet cells, and the production of α-MSH can be induced by inflammatory
factors [34]. α-MSH predominantly exerts its effects via melanocortin receptors, which
consist of five distinct subtypes: MC-1R, MC-2R, MC-3R, MC-4R, and MC-5R [35]. Re-
search has shown that MC-1R, MC-3R, and MC-5R are involved in immune regulation
and exhibit anti-inflammatory properties. While MC-1R and MC-3R are located primarily
within the central nervous system, MC-5R is predominantly present in peripheral tissues
and is extensively distributed among macrophages and lymphocytes [36].

Research confirms that α-MSH has anti-inflammatory properties [36]. Its role in im-
mune regulation parallels that of VIP; however, α-MSH also stimulates the proliferation of
CD4+ and CD25+ regulatory T cells, consequently promoting the production of another
anti-inflammatory cytokine, TGFβ [7]. In vitro studies have demonstrated that during
an inflammatory response, the expression of MC-1R is significantly increased, with α-
MSH exerting a pronounced effect on the functionality of various cell types, including
monocytes [121]. This effect includes the inhibition of NF-κB activation, which is a critical
prerequisite for most inflammatory responses induced by inflammatory factors [121]. Ad-
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ditionally, MC-1R can exert anti-inflammatory effects by acting on the JAK–STAT pathway
downstream, thereby activating the cAMP response element-binding protein (CREB), a
transcription factor that binds to DNA and increases the expression of anti-inflammatory
genes [122].

The antagonists of the MC-1R include Ac-DPhe(pI)-DArg-Nal (2′)-Arg-NH2 [66]
and ASIP [67] among others. The agonists include PL8177 [68], MT-7117 [69], and BMS-
470539 [70]. Among these, PL8177 [68] has progressed to the pre-clinical research stage
and MT-7117 [69] has advanced to Phase 2 clinical trials. Notably, the agonist PL8177
has the potential to enhance macrophage efferocytosis but inhibits the release of pro-
inflammatory cytokines such as IL-1β, IL-6, and TNFα through cAMP accumulation [68].
Consequently, it serves as a promising target for treating inflammation-related diseases,
including arthritis [68]. MT-7117 also inhibits the activation of inflammatory cells, such
as monocytes and macrophages, as well as inflammatory signals such as IL-6, thereby
exerting anti-inflammatory effects [69]. Furthermore, MT-7117 has the capacity to suppress
fibroblast activation, suggesting its potential as a therapeutic agent for systemic sclerosis.
A Phase 2 clinical trial is currently in progress to evaluate the efficacy and tolerability
of MT-7117 in patients with early-stage progressive diffuse cutaneous systemic sclerosis
(ClinicalTrials.gov number, NCT04440592) [69].

For the MC-3R, the antagonist includes SHU-9119 [71], whereas agonists include g-2-
MSH [72] and [D-Trp8]-γ-MSH [73], among others. The antagonist of the MC-5R receptor
consists of x-Cha-DPhe-Arg-Trp-y and x-His-Nal (2′)-Arg-Trp-y [71]. Agonists for this
receptor include SHU-9119 (Ac-Nle-c[Asp-His-D-Nal(2′)-Arg-Trp-Lys]-NH2) [71] and PG-
901 [74]. Research indicates that selective activators of MC-5R could enhance therapeutic
approaches for immune disorders; however, the precise mechanisms underlying this effect
remain inadequately understood [74].

3.4. Ghrelin

Ghrelin is a neuropeptide composed of 28 amino acids that was first isolated from the
gastric tissue of rats [123]. It is primarily secreted by human P/D1 cells and rat X/A-like
cells [37]. Numerous studies have demonstrated that ghrelin regulates energy metabolism
and the inflammatory response during the aging process by acting on its receptor, GHS-
R [124]. The literature indicates that GHS-R, also known as GHS-R1a, is predominantly
distributed in the thymus cells of both humans and mice. GHS-R1b, a truncated isoform of
GHS-R1a lacking the sixth and seventh transmembrane domains, is coexpressed with GHS-
R1a but does not bind to ghrelin. The in vivo expression of GHS-R1b primarily depends
on its oligomerization with GHS-R1a [125]. GHS-R1b may have regulatory effects and can
also facilitate the oligomerization of GHS-R1a with other receptors [126].

Ghrelin was identified in 1996, yet its role in immune regulation has remained insuffi-
ciently understood over the nearly 30 years since its discovery [127]. Although the majority
of researchers consider ghrelin to be an anti-inflammatory neuropeptide [38], a subset of
studies has confirmed that ghrelin can exert pro-inflammatory effects in the context of
colitis [128]. Primarily, ghrelin demonstrates anti-inflammatory properties by suppressing
the synthesis of pro-inflammatory cytokines, such as IL-6, IL-1β, and TNFα [38]. Notably,
ghrelin has been shown to exert a significant anti-inflammatory effect on human endothe-
lial cells, potentially through the inhibition of NF-κB activation [129]. Furthermore, in
murine studies, ghrelin significantly downregulated the mRNA expression levels of the
pro-inflammatory cytokines TNFα, IL-1β, and IL-6 in spinal microglia and infiltrating T
cells [39]. However, research on colitis has shown that ghrelin can induce PKC-dependent
NF-κB activation and IL-8 secretion in colon cells, subsequently promoting an inflammatory
response [128].
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There are several modulators of the GHS-R1a receptor, including antagonists such
as [D-Lys3]-GHRP-6 [75] and L-756867 [76], as well as agonists such as MK-0677 [77],
capromorelin [78], LY444711 [79], and GHRP-2 [80]. Inverse agonists include PF-05190457,
AZ-GHS-22, and AZ-GHS-38 [81]. Among them, [D-Lys3]-GHRP-6 [75], L-756867 [76],
LY444711 [79], GHRP-2 [80], and PF-05190457 [81] have progressed to the pre-clinical
research stage, and capromorelin [78] has entered Phase 1 clinical trials. Among these
compounds, the agonist LY444711 has been noted for its ability to inhibit the onset of brain
inflammation and enhance cognitive function, positioning it as a potential therapeutic
agent for Alzheimer’s disease [79]. Miriam Granado et al. demonstrated that the activation
agent GHRP-2 significantly reduces IL-6 levels released by macrophages induced by LPS
and inhibits inflammatory responses in rats with arthritis, suggesting that GHRP-2 may
be a promising therapeutic candidate for targeting the GHS-R1a receptor for arthritis
treatment [80]. In investigations of the inverse agonist of GHS-R1a, PF-05190457 displayed
significant oral bioavailability and favorable tolerability, highlighting its considerable
clinical potential for obesity treatment [81]. Moreover, the antagonist [D-Lys3]-GHRP-6
plays a role in regulating fasting glucose homeostasis [75], whereas L-756867 can suppress
appetite, positioning both as potential pharmacological agents for weight management [76].
Capromorelin, a promising therapeutic compound for the management of spinal cord
injury (SCI) constipation, has demonstrated an excellent safety profile in Phase 1 clinical
trials [78].

3.5. Adrenomedullin (AM)

AM is a neuropeptide consisting of 52 amino acids and shares structural similarities
with CGRP. It was first isolated from human pheochromocytoma in 1993 [130] and is classi-
fied within the amylin/intermedin/CGRP family [131]. Although AM was initially thought
to function primarily as a vasodilator, recent studies have revealed its diverse physiological
roles and remarkable anti-inflammatory properties. AM is expressed and secreted by DCs,
and stimulating these cells to mature through lipopolysaccharide (LPS) exposure has been
shown to increase AM expression [42]. Moreover, AMs can be synthesized by various
cell types, including endothelial cells, fibroblasts, and epithelial cells. Its expression is
upregulated in response to inflammatory conditions or hypoxia [41].

The AM receptor is a heterodimer composed of the calcitonin receptor-like receptor
(CRLR) and receptor activity-modifying proteins (RAMPs), which are classified into three
subtypes: RAMP1, RAMP2, and RAMP3. The binding affinity for CGRP is greater for
the CRLR/RAMP1 complex, whereas the affinities for AM are greater for CRLR/RAMP2
(AM1) and CRLR/RAMP3 (AM2) [40]. The CRLR/RAMP complexes are predominantly
localized in the brain, with CRLR/RAMP1 specifically identified in cerebral blood vessels
and the trigeminal ganglion, among other regions [132]. Additionally, AM1 and AM2
are more extensively distributed throughout the brain and are primarily localized in the
ventricles, trigeminal nerve, and choroid plexus [133].

AM acts as an endogenous immune regulator, demonstrating significant anti-
inflammatory properties [7]. AM exerts these effects by inhibiting the synthesis of TNFα,
IL-6, IL-12, IL-1β, and nitric oxide through macrophage activation [7]. Furthermore, AM
can mediate its anti-inflammatory actions via the activation of NF-κB [134]. Research
indicates that AM can alleviate inflammation in the early stages of pulmonary fibrosis by
targeting the AM1 receptor and can also play a role in mediating fibroblast suppression
during the progression of pulmonary fibrosis disease [135].

The antagonists of CRLR/RAMP1, AM1, and AM2 include olcegepant [82], telcagepant
(MK-0974) [83], MK-3207 [84], and BMS-694153 [85]. AM22-52 and CGRP8-37 serve as
potent antagonists of the AM1 receptor [97], whereas the antagonist SHF-638 demonstrates
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pronounced selectivity for the AM2 receptor [99]. Among them, telcagepant [83] has pro-
gressed to the pre-clinical research stage. Telcagepant, a potential therapeutic agent, targets
CRLR/RAMP1 to inhibit the release of CGRP and alleviate pain [87]. Nevertheless, the
observation of abnormal liver function resulting from its use compelled the cessation of
clinical development [87]. Additionally, CRLR/RAMP1 antagonists include KB peptides
(e.g., KBP-042, KBP-088, and KBP-089) [86], whereas the AM1 agonist is hAM1-52 [98] and
the AM2 antagonist is AM2/IMD [86]. The study confirmed that the KB peptide effectively
preserved the therapeutic potency of salmon CT, which is commonly used for treating
Paget’s disease and osteoporosis in humans, while simultaneously enhancing its tolerability
in mice [86].

3.6. Calcitonin-Gene Related Peptide (CGRP)

CGRP, which is composed of 37 amino acids, is a member of the calcitonin family [136].
It functions as an immune regulator and is widely distributed throughout the nervous
system [137] and the immune system. CGRP plays a crucial role in modulating immune
responses in macrophages [138], DCs, T cells, and various other immune cell types [43].
CGRP is involved in a range of physiological functions within the body, including vasodi-
lation [139], and exerts its immunoregulatory effects through interactions with specific
receptors. Both CGRP and AM belong to the calcitonin family, which shares similarities
in their receptors, which form a heterodimer consisting of CRLR and PAMRs (PAMP1,
PAMP2, and PAMP3). Notably, the CRLR/PAMP1 complex has a relatively high affinity
for CGRP [40].

The regulatory role of CGRP in inflammatory responses remains a subject of debate,
with some researchers contending that it promotes pro-inflammatory effects, whereas
others assert anti-inflammatory effects. Some studies indicate that CGRP can facilitate the
onset of inflammatory responses. For example, in macrophages infected with HSV-1,CGRP
either alone or in combination with SP, the secretion of the pro-inflammatory cytokines
IL-1β and TNF was significantly increased [47]. CGRP has the capacity to activate mast
cells, promoting the release of histamine, which in turn increases vascular permeability
and fosters an environment conducive to inflammation (Figure 3) [27]. Research on satellite
glial cells has shown that CGRP can induce the expression of pro-inflammatory genes
and facilitate the release of IL-1β. However, the molecular mechanisms through which
CGRP mediates its pro-inflammatory effects on satellite glial cells remain inadequately
understood [140].

Studies have indicated that CGRP functions as an anti-inflammatory neuropep-
tide [141]. In DCs, CGRP inhibits the secretion of pro-inflammatory cytokines, includ-
ing TNFα and IL-12 [44], thereby suppressing IL-12 production and hindering TH1 cell
differentiation [142]. Furthermore, when human bronchial epithelial cells (HBECs) are
pretreated with ovalbumin, T cell proliferation displays a dose-dependent association.
Here, CGRP not only inhibits T cell proliferation but also reduces the secretion of the
pro-inflammatory cytokine IFNγ [143], whereas it modulates IL-17 expression to enhance
Th17-mediated inflammatory responses [144]. Additionally, CGRP has been found to
suppress the release of pro-inflammatory mediators such as IL-8, the chemokine CCL2,
and the chemokine CXCL1 in human endothelial cells. Simultaneously, it promotes the
secretion of the anti-inflammatory cytokine IL-10 by macrophages and trigeminal glial
cells [45]. In experiments conducted on a mouse model of colitis, the knockout of CGRP
or the administration of CGRP antagonists resulted in increased susceptibility to colitis in
the mice, thereby indirectly reinforcing the anti-inflammatory properties of CGRP [141].
Antagonists and agonists targeting CGRP-specific receptors are described in AM.
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3.7. Substance P (SP)

SP is a peptide composed of 11 amino acids and was first isolated from the brains and
intestines of equines by Von Euler and Gaddum in 1931 [145]. As an immunomodulator,
SP is primarily secreted by neurons and produced by specific inflammatory cells, including
macrophages and DCs [146]. Research has shown that SP is encoded by the tac1 gene and
is expressed in various cell types, such as microglia, macrophages, DCs, and epithelial
cells [33]. SP belongs to the tachykinin family, which includes three primary receptors:
NK1R, NK2R, and NK3R. Among these, NK1R is widely distributed throughout both the
central and peripheral nervous systems, whereas NK2R and NK3R are mainly localized
within the peripheral nervous system [33].

Research indicates that SP is a pro-inflammatory neuropeptide that plays a critical role
in immune regulation through its specific binding to the neurokinin-1 receptor (NK1R) on
cells [146]. In activated human T lymphocytes, SP enhances the expression of the chemokine
MIP-1β via an NF-κB-mediated pathway, facilitating the migration of T lymphocytes to
sites of inflammation [33]. In mast cells, SP promotes the secretion of pro-inflammatory
mediators, including TNFα, IL-1, and IL-4, which subsequently affect macrophages and
lymphocytes [28,147] (Figure 3). Additionally, SP stimulates endothelial cells to release NO,
thereby initiating inflammatory responses [148]. Moreover, SP has been shown to increase
the expression of the pro-inflammatory cytokines IL-12p40 and IL-23 while concurrently
suppressing the production of the anti-inflammatory cytokine IL-10. In this manner, it
plays a pivotal role in immune regulation by facilitating inflammatory responses [33].

Antagonists of NK1R include aprepitant [103], L-733060 [104], lanepitant [105], and
befetupitant [105], whereas the agonist GR73632 [106]. Among them, aprepitant [103]
has progressed to the clinical research stage. Aprepitant is efficacious in the manage-
ment of chemotherapy-induced nausea and vomiting (CINV) and represents a promising
therapeutic strategy when combined with various targeted anticancer agents [149]. To
date, Aprepitant has been approved by the U.S. Food and Drug Administration (FDA) for
low-dose administration to manage chemotherapy-induced nausea and vomiting [150].
Furthermore, aprepitant has been shown to facilitate the polarization of M2 microglia
via the PKC/p38MAPK/NF-κB-signaling pathway and mitigate hemorrhagic areas, and
has emerged as a promising therapeutic agent for treating posthemorrhagic brain condi-
tions [103].

3.8. Neuropeptide Y (NPY)

NPY, composed of 36 amino acid residues, was first isolated from porcine brain
tissue in 1982 and is classified within the neuroendocrine peptide (NPY) family [151].
NPY is recognized as the most abundant neuropeptide in both the central and peripheral
nervous systems [152], exhibiting widespread distribution throughout the body, including
the intestines, thymus, smooth muscle, and various other tissues [153]. Notably, it can
be synthesized and secreted by immune cells such as monocytes, lymphocytes, and NK
cells [152]. NPY interacts with six receptors: Y1R, Y2R, Y3R (yet to be cloned in mammals),
Y4R, Y5R, and Y6R [51]. The primary receptors expressed in the human body include
Y1R, Y2R, Y4R, and Y5R [154]. Notably, Y1R is found across nearly all immune cell types,
whereas the distributions of Y2R, Y4R, and Y5R are predominantly observed in neutrophils.
Current research highlights the significant roles of Y1R and Y2R in immune regulation [51].

NPY serves as a crucial immune regulator, exerting anti-inflammatory effects through
its interaction with Y1R [152]. Most studies indicate that NPY plays a pivotal role in im-
mune regulation via two primary mechanisms. First, NPY acts as an immune mediator,
influencing immune cells through autocrine or paracrine mechanisms [152]. For example,
the presence of Y1R antagonists or a deficiency in Y1R results in the reduced secretion
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of IL-12 and TNFα by activated macrophages, suggesting that NPY released from these
macrophages is essential for the production of pro-inflammatory factors [155]. Further-
more, NPY has direct effects on immune cells via its receptors [51]. Research indicates that
NPY enhances the secretion of IL-1β in human peripheral blood monocytes and mouse
macrophages while simultaneously inhibiting the release of the pro-inflammatory cytokine
TNFα from LPS-stimulated macrophages. Additionally, it promotes the production of the
anti-inflammatory factor TGF-β1, thereby clarifying its role in mitigating inflammatory
responses [152]. In microglia, NPY can reduce the secretion of the pro-inflammatory cy-
tokines IL-1β and TNFα through the activation of Y1R [51]. Moreover, findings from animal
studies indicate that NPY (10−9 M) effectively stimulates immature DCs to upregulate the
expression of IL-6 and IL-10 via Y1R, enhances the secretion of IL-4 via TH2 polarization,
and suppresses IFNγ secretion by these cells [156].

Y1R antagonists include BIBP3226 [88], BIB03304 [89], and 1229U91 [90]. Agonists
include [Leu31,Pro34]NPY [89] and [Pro30,Nle31,Bpa32,Leu34]NPY (28-36) [91]. Among
them, [Leu31,Pro34]NPY [89] and IBP3226 [88] have progressed to the pre-clinical research
stage. The agonist [Leu31, Pro34]NPY has been shown to inhibit gastric acid secretion,
reduce gastric mucosal injury, impede the progression of gastric lesions, and may serve as
a potential therapeutic agent for gastric disorders [89]. NPY interacts with Y1R to suppress
the release of IL-1β and TNFα from microglia; the antagonist BIBP3226 can decrease the
immune activity of microglia by inhibiting NPY through Y1R [88].

Y2R antagonists include SF-11 [92], JNJ-31020028 [93], and BIIE0246 [94]. Agonists
include PYY(3-36) [89,95], NPY(13-36) [89], and obinepitide (TM30338) [96]. Among them,
PYY(3-36) [89,95] has progressed to the pre-clinical studies stage. In a murine model of acute
pancreatitis, the peptide PYY(3-36) has been demonstrated to increase pancreatic cell prolif-
eration while concurrently inhibiting amylase secretion (a biomarker for pancreatitis) [89].
In murine models of colitis, treatment with the PYY(3-36) agonist significantly reduced
the levels of myeloperoxidase (MPO), TNFα, and IL-6 in affected mice [95]. Therefore,
PYY(3–36) can be considered a promising candidate for the pharmacological management
of both acute pancreatitis and colitis.

3.9. Urocortin II (UCN II)

UCN II is a peptide consisting of 38 amino acids [100] and is distributed throughout
the brain, small intestine, heart, and skeletal muscle [157]. It can be detected in immune
cells, including macrophages, endothelial cells, and fibroblasts, in humans [54]. UCN II
is classified as a member of the corticotropin-releasing factor (CRF) family, which also
includes UCN I. This family consists of two receptors: CRFR1 and CRFR2 [100]. CRFR1
is primarily localized in the brainstem and hypothalamus, whereas CRFR2 shows a more
restricted distribution within the central nervous system and is also expressed in peripheral
tissues, such as the heart and skeletal muscle [158]. Research indicates that UCN I has
comparable affinity for both CRFR1 and CRFR2, whereas UCN II has a binding preference
for CRFR2 and exhibits negligible affinity toward CRFR1 [100].

Numerous experimental studies have demonstrated that UCN II functions as an
anti-inflammatory neuropeptide. In a study on intestinal inflammation, the knockout
of CRFR2 resulted in exacerbated intestinal inflammation and increased mortality rates
in experimental mice. UCN II produced by CD141+ DCs (dendritic cast-off cells) was
found to facilitate the generation of functionally inhibitory Tregs and effectively suppress
allogeneic T cell-mediated skin inflammation in a murine model [54]. UCN II acts by
specifically targeting CRFR2, leading to the rapid induction of apoptosis in macrophages.
This process inhibits the release of TNFα but enhances the production of IL-10, ultimately
contributing to its anti-inflammatory effects [100]. Furthermore, UCN II may also mediate



Molecules 2025, 30, 568 18 of 27

anti-inflammatory effects by increasing the expression and activation of STAT3 while
simultaneously suppressing the expression and activation of STAT1 [159].

CRFR2 antagonists, such as anti-sauvagine30 [100] and astressin 2B [101], and ago-
nists such as CT38s [102], have distinct effects. Anti-sauvagine30, a specific antagonist,
effectively blocks the pro-apoptotic effects of CRFR2 [100]. Among these, astressin 2B [101]
has progressed to the pre-clinical research stage, and CT38s [102] has entered clinical trials.
Astressin 2B can downregulate inflammatory mediators such as keratinocyte chemokines
and monocyte chemoattractant protein 1, helping to prevent inflammation in the intesti-
nal tract [101]. The agonist CT38s induces dose-dependent changes in norepinephrine
and corticosterone release, along with effects on gastrointestinal motility, urine output,
heart rate (HR), and mean arterial pressure (MAP), and the clinical trials are underway
(ClinicalTrials.gov number, NCT03613129) [102].

3.10. Catestatin (CST)

CST is a 21-amino acid peptide derived from chromogranin A (CgA) that acts on
adrenal chromaffin cells and effectively inhibits catecholamine secretion [160]. Studies
have shown that CST has various physiological functions, including vasodilation and
immune regulation [161]. It primarily interacts with the type 2 muscarinic acetylcholine
receptor (M2 receptor) [54] and nicotinic acetylcholine receptor (nAChR) [162]. AChRs
are therapeutic targets for several neurological disorders, and the M2 receptor is widely
distributed in brain tissues [163].

Research suggests that CST functions as an anti-inflammatory neuropeptide. Feng et al.
reported that CST activates the M2 receptor, triggering the ERK1/2 and PI3K/Akt path-
ways, which reduce stress-induced cell apoptosis and inflammation-related tissue dam-
age [55]. CST also limits immune cell infiltration in inflamed tissues and promotes the
differentiation of macrophages into anti-inflammatory phenotypes [56]. Additionally, CST
inhibits the expression of pro-inflammatory factors such as TNFα and IL-1β and modulates
M1 macrophage markers such as Mcp1 and iNOS to exert anti-inflammatory effects [57].

M2 receptor antagonists include trospium chloride, which is used to treat overactive
bladder [107]. Trospium chloride [107] has entered clinical trials (ClinicalTrials.gov number,
NCT03697252). Further large-scale and extended-duration trials are necessary to establish
the safety and efficacy of this drug in patients with schizophrenia [107]. Agonists such
as iperoxo [108] and xanomeline [107] hold the potential for treating conditions such as
Alzheimer’s disease [107].

4. Future Perspectives and Conclusions
The nervous system is closely associated with the immune system and helps maintain

immunological balance in both health and disease [164]. Investigating the immunoregula-
tory roles of neuropeptides, a key biochemical language shared by both systems has become
increasingly important, especially in relation to therapies targeting their receptors in pre-
clinical and/or clinical studies. Existing evidence indicates that neuropeptides likely play a
crucial role in modulating immune responses and neuroinflammatory processes [165,166].

In this review, we mainly examined 10 antimicrobial neuropeptides, summarizing
their expression characteristics and the immunomodulatory mechanisms mediated by their
specific receptors. Importantly, the majority of these antimicrobial neuropeptides (eight
out of ten) also exhibit significant anti-inflammatory properties, thereby contributing to
the maintenance of tolerance in various immune disorders. Consequently, the combined
antimicrobial and anti-inflammatory activities of neuropeptides could play a pivotal role in
fortifying the defense mechanisms of the elimination of pathogens by the central nervous
system (CNS) and the preservation of immune homeostasis. Moreover, these antimicrobial
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neuropeptides play a pivotal role in the pathogenesis and progression of neurodegenerative
and metabolism-associated diseases. However, although these antimicrobial neuropeptides
have exhibited significant clinical therapeutic potential, the majority of studies have been
performed in animal models [12]. Therefore, caution is advised when extrapolating these
findings to human diseases. Additionally, we explored potential drugs that target these
antimicrobial neuropeptide receptors. However, the preferred strategy of pharmaceutical
companies is to develop metabolically stable analogs, which is crucial for successful clinical
application. In this case, we recommend exploring modifications to these analogs (such
as single amino acid substitutions) or encapsulating these analogs within micelles or
nanoparticles [12] to enhance metabolic stability and reduce degradation rates.
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