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Abstract: The precise and fast detection of heparin, the most widely used anticoagulant,
remains a significant challenge for assessing its use in a clinical setting. In this work,
we adapt a well-established asymmetric cyanine fluorogenic platform for the purpose of
ultrasensitive heparin detection in the presence of common interferant chemical species.
Three analogous fluorescence probes are synthesized in order to optimize for the number
of binding moieties. Their interaction with heparin is studied using steady-state absorp-
tion, fluorescence, and circular dichroism spectroscopy. The obtained probes exhibit a
highly sensitive “turn-on” fluorescence response to heparin, with a LOD in the 10–25 nM
range, well within practical requirement, as well as a visible colorimetric change. The
heparin–probe complex is also employed as a sensitive detection platform for protamine,
both in the “turn-off” fluorescence and ratiometric detection schemes.

Keywords: heparin sensor; protamine sensor; fluorescence probe

1. Introduction
Heparin is a linear glycosaminoglycan, which consists primarily of trisulfated dis-

accharide repeating units, and has the highest negative charge density among all known
biopolymers. Heparin plays a role in the regulation of several biological processes, in-
cluding cell growth and regulation, blood clotting, and inflammation [1]. It exhibits high
binding affinity towards antithrombin, resulting in enhanced inhibition of the activity of
thrombin and other clotting factors. Thus, heparin is employed as an anticoagulant drug in
both prophylactic and therapeutic applications [2,3]. For the prevention of thrombosis dur-
ing surgery and for postoperative and long-term care, the recommended heparin dosages
are 2–8 IU/mL (17–67 µM) and 0.2–1.2 IU/mL (1.7–10 µM), respectively. [4] Dosages ex-
ceeding the therapeutic window could induce complications such as thrombocytopenia
and hemorrhaging [5,6]. In order for safe heparin levels in the blood to be maintained, the
fast and reliable detection of heparin concentration is crucial.

Numerous analytical methodologies for the detection and quantification of heparin
were developed based on various strategies, including electrochemical methods [7], colori-
metric assay [8–12], surface-enhanced Raman spectroscopy [13–15], capillary electrophore-
sis [16], and amperometric [17] and fluorescence methods [18–27]. Several of the reported
fluorescence detection methods rely on a “turn off” signal-response, which may often prove
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unreliable due to possible quenching by interfering compounds, normally present in the
analyzed sample. In order to obtain better selectivity, a “turn on” method of detection
would be advantageous [28–30].

In this article, we report the synthesis and study of the photophysical properties of
newly developed asymmetric monomethine cyanine dyes—molecular sensors for the visi-
ble detection of heparin. The new dyes are characterized by negligible intrinsic fluorescence,
high binding affinity, and significant fluorescence enhancement in the presence of heparin
as well. In the absence of a binding target, both segments of the probe conjugated system
exhibit a degree of rotational freedom with respect to each other via their connecting single
bond. In this state, when light absorption occurs, excited state electron energy is expended
primarily by means of a non-radiative torsional relaxation, thus low fluorescence intensity
is observed.

Taking into consideration the exceptionally high negative charge density of heparin,
we designed our sensor by functionalizing one or both segments of a thiazole orange (TO)
fluorophore with butyl-trimethylammonium moieties (Figure 1). In this way, we hope to
induce aggregation on the surface of the heparin molecule. Additionally, by providing one
or two cationic functions, we succeed in enhancing the water solubility of the molecules
and reducing their self-aggregation in aqueous solutions of the neat dyes. The introduction
of a trifluoromethyl group into the chromophore should provide a red shift in the long-
wavelength maximum compared to TO, ensuring a visible difference between the free and
bound states of the new molecular sensors. For more significant bioaggregation properties,
the introduction of a trifluoromethyl group into the chromophore, on the other hand, aims
to increase the hydrophobicity of the chromophore part itself.
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Figure 1. Chemical structures of fluorogenic probes with varying number of cationic binding moieties.

Regarding fluorescence, we expected that, in the presence of heparin, the ammo-nium
groups of the molecular sensor bind to the negatively charged sulfate groups of heparin due
to Coulombic attraction. Thus, the possibility for intramolecular rotation could be limited,
and excited state electrons decay mainly by means of fluorescence emission. As a result,
a significant fluorescence enhancement should be observed, allowing for the sensitive
detection and quantification of heparin in a model solution (Figure 2).
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2. Results and Discussion
2.1. Photophysical Properties

Changes in the absorption spectra of each probe were observed upon titration with
heparin (Figure 3). The observed hypsochromic shift in the absorption maxima of the
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fluorescent probes, as well as the large Stokes shift in probes 1 and 3 (146 nm), are definitely
indicative of the formation of molecular H-aggregates in the presence of heparin. In
the proximity of the highly negatively charged heparin backbone, electrostatic repulsion
between the anionic probes is partially compensated, allowing the probes to aggregate into
dimers or further, into oligomers.
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Additionally, in all dyes from the series, a hypochromic shift in the absorption band
of unbound probes in solution occurs, corresponding linearly to the concentration of
added heparin. For the purpose of molecular recognition based on aggregachromism,
chromophores with low self-aggregation in solution are considered most suitable.

As can be seen in Figures 4 and S5, the lowest intensity signal for the presence of
initial H-aggregates in TE buffer is characterized by probe 2, which has two positive
charges in the molecule and one butyl-trimethylammonium ion bound to the nitrogen of
the benzothiazole. In this probe (2), the decrease in the intensity of the chromophore is
the most significant, and the characteristic peak for trifluoromethyl analog 3 H-aggregate
is not observed. In the case of probe 1 (Figure 3), with increasing heparin concentration,
the signal for the monomeric dye remains the least changed in comparison to 2 and 3,
which surprisingly suggests a weaker interaction with heparin. Regarding the UV-VIS
absorption analysis of heparin in a model system, the most contrasting picture is with
probe 2 (Figure 3), which in our opinion makes it the best visual sensor in the current series.
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Figure 4. Photoluminescence spectra of probes 1–3 (20 µM), respectively, upon titration with heparin
solution in Tris-HCl buffer (10 mM, pH 7.4). Excitation wavelength for probe 1 and 2: 466 nm; for
probe 3: 461 nm.

A well-known characteristic of the TO fluorophore is its intrinsic low fluorescence
quantum yield, owing to the possibility for nonemissive torsional relaxation of its singlet
excited state. Specifically, when the molecular rotor action of the fluorophore is restricted,
a corresponding increase in photoluminescence is observed. This property can be seen
translated to the emission spectra of probes 1–3 shown in Figure 4. Each probe exhibits very
weak intrinsic emission and, upon titration with heparin, a linearly proportional increase
in emission intensity is measured within a range of heparin concentrations.
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2.2. Circular Dichroism Properties of Heparin–Probe Aggregates

A common feature of various chromophore aggregates is the emergence of an elec-
tronic circular dichroism (CD) signal, otherwise absent in solutions of free dye molecules.
Such signal correlates with the molecules in the aggregate arranging into a chiral forma-
tion. In the case of probe 1, as seen in Figure 5, a strong negative Cotton effect (CE) is
recorded at longer wavelengths, as well as a weaker, positive CE that corresponds to the
absorption maximum of the probe–heparin complex. Using the exciton chirality rule, the
sense of chirality of the aggregate could be inferred [31,32]. A longer wavelength negative
CE, followed by a shorter-wavelength positive CE, is indicative of a left-handed helical
arrangement of the probe molecules along the heparin backbone. In the case of probe 2, as
seen in Figure 5, no significant electronic CD signal emerges upon the addition of heparin
to the probe solution. Taking into consideration the difference in the photoluminescence
spectrum of probe 2 (Figure 4), compared to the other two probes, namely the lower Stokes
shift, it could be reasoned that the molecules of probe 2 appear to form distinct, nonchiral
aggregates in the proximity of heparin.
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Figure 5. CD spectra of probes 1–3 (20 µM) at increasing concentrations of heparin in Tris-HCl buffer
(10 mM, pH = 7.4).

A weak electronic CD signal Is elicited upon the addition of heparin to a solution of
probe 3 (Figure 5). The recorded spectrum represents a multiple CE curve, with a first broad
positive CE band centered around 505 nm, followed by a negative CE band, corresponding
to the absorption maximum of the probe–heparin complex, as well as a weak positive band,
peaking at 438 nm. The observed signals indicate the formation of a right-handed helical
aggregate being formed along the heparin backbone.

2.3. Heparin Quantification

Each of the studied probes exhibits a different range of heparin concentrations, suitable
for heparin detection and quantification with the widest range being provided by probe
2: 0–11.27 µM (Figure 6). The highest degree of fluorescence enhancement at the upper
end of their linear signal–response range exhibited probe 3: 33.0-fold; followed by probe
2: 23.5-fold; and probe 1: 21.6-fold. Limit of detection (LOD) was determined using the
following formula:

LOD = 3.3 × σ/S, (1)

where σ is the standard deviation obtained from 20 blank measurements; and the factor S
represents the slope of the calibration curve.

The selective detection and quantification of heparin in biological samples could
potentially be hindered in the presence of structurally similar interferants, namely other
sulfated glycosaminoglycans, e.g., chondroitin sulfate and hyaluronic acid. (Figure 7).
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Figure 6. Increase of fluorescence intensity of probes 1–3 (20 µM), at their respective emission maxima,
with increasing concentration of heparin in Tris-HCl buffer (10 mM, pH = 7.4). Red line represents
best fit of calibration curve for signal–response of each probe, obtained by linear regression.
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To assess the selectivity of probes 1–3 in regard to heparin detection, the degree of
fluorescence enhancement of each probe was measured when titrated with ChS, HA, and
various chemical species commonly present in biological samples (Figure 8).
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2.4. Protamine Quantification

Heparin overdose is associated with many adverse and potentially life-threatening
side effects. In order to reduce the activity of heparin in patients, protamine, being the
only clinically approved antidote to heparin, is administered. The highly cationic nature
of protamine facilitates electrostatic binding to heparin with exceptional affinity, forming
a complex and thereby inactivating it. Considering the clinical importance of protamine,
its accurate dosing is crucial for neutralizing excess amounts of heparin in patients. Upon
introducing protamine to a solution of fluorescence probe and heparin, the absorption
spectrum of the probe–heparin complex gradually reverses into that of the unbound probe,
indicating competitive displacement of the probe by protamine from the heparin scaffold
(Figure 9A). The two distinct absorption maxima of unbound probe in solution and probe–
heparin complex allow for ratiometric quantification of added protamine, as shown on
Figure 9B. This detection scheme is characterized by a linear signal–response range of
0–2.0 µM and a protamine LOD of 0.37 nM for probe 2. Moreover, a reduction in the
emission Intensity of the probe–heparin complex is observed, linearly corresponding to the
amount of added protamine (Figure 9C).
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Figure 9. (A) UV-Vis spectra of probe 2 (20 µM) heparin complex (1.5 IU/mL) upon titration with
protamine in Tris-HCl buffer (10 mM, pH = 7.4); (B) ratiometric response in absorption of probe
2 (20 µM) heparin complex (1.5 IU/mL) upon titration with protamine in Tris-HCl buffer (10 mM,
pH = 7.4); (C) change in fluorescence intensity of probe 2 upon addition of increasing concentrations
of protamine in Tris-HCl buffer (10 mM, pH = 7.4).

3. Experimental Section
3.1. Materials and Methods

All chemicals and reagents were obtained from commercial sources and used with-
out further purification unless otherwise stated. 1,4-diiodobutane was purchased from
AlfaAesar (Karlsruhe, Germany). 4-chloro-7-trifluoromethylquinoine was purchased from
BLDpharm (Shanghai, China). Heparin (199 IU/mg) was purchased from Thermo Fis-
cher Scientific (Fair Lawn, NJ, USA). Protamine sulfate and hyaluronic acid sodium were
purchased from Sigma (Taufkirchen, Germany).

1H-NMR spectra and 13C-NMR spectra were measured on a Bruker Avance 500 MHz
spectrometer in DMSO-d6 (Bruker, Hanau, Germany). 19F-NMR spectra were measured on
a Bruker Avance 400 MHz spectrometer in DMSO-d6 (Bruker, Hanau, Germany). Melting
points were determined using an SMP40 melting point apparatus (Stuart Scientific, Redhill,
UK). MALDI-TOF measurements were performed on a Bruker rapifleX MALDI-TOF/TOF
mass spectrometer (Bruker, Hanau, Germany). Absorption and fluorescence spectra were
obtained on a Duetta Bio Fluorescence and Absorbance Spectrometer (HORIBA, Kyoto,
Japan). Circular dichroism spectra were obtained on a JASCO-1500 circular dichroism
spectrometer (Jasco, Pfungstadt, Germany).

3.2. Synthesis of Compounds

Probes 1–3 and their synthetic intermediates have been prepared by following the
procedure represented in Scheme 1.
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Scheme 1. Synthetic route for preparation of fluorogenic heparin probes 1, 2, and 3.

2-((7-(trifluoromethyl)-1-(4-(trimethylammonium)butyl)quinolin-4(1H)-ylidene)methyl)-
3-(4-(trimethylammonium)butyl)benzo[d]thiazol-3-ium iodide (1):

Intermediate compounds 4 (1.00 g, 1.93 mmol) and 6 (1.16 g, 1.93 mmol) were dissolved
in a 10 mL mixture of equal volumes of ethanol and dichloromethane. DIPEA (0.74 mL,
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4.25 mmol) was added dropwise. The obtained precipitate was concentrated under reduced
pressure. Filtration and washing with cold ethanol yielded the product in the form of a
red powder (510 mg, 28.0%). Melting point > 250 ◦C. 1H-NMR (500 MHz, DMSO-d6), δ
(TMS, ppm): 9.02–9.00 (d, 1H), 8.65–8.64 (d, 1H), 8.33 (s, 1H), 8.10–8.09 (d, 1H), 7.95–7.93
(d, 1H), 7.89–7.87 (d, 1H), 7.64–7.61 (t, 1H), 7.47–7.44 (t, 1H), 7.41–7.39 (d, 1H), 6.94 (s, 1H),
4.71–4.67 (t, 4H), 3.38–3.31 (m, 4H), 3.02 (s, 18 H), 1.98–1.92 (m, 2H), 1.79–1.73 (m, 6 H).
13C-NMR (125 MHz, ppm), δ (TMS, ppm): 161.32, 148.33, 145.68, 140.23, 137.49, 133.07,
132.75, 129.07, 128.55, 127.00, 125.77, 124.81, 123.71, 122.56, 115.91, 114.01, 109.22, 89.35,
65.23, 65.10, 53.83, 52.85 ((-N+(CH3)3)2), 45.99, 26.17, 24.49, 20.03, 19.98. 19F-NMR (376 MHz,
DMSO-d6), δ (TMS, ppm): 61.11. MS (MALDI-TOF): calculated for C32H44F3N4S, m/z:
573.3239; found, 573.2336.

2-((1-ethyl-7-(trifluoromethyl)quinolin-4(1H)-ylidene)methyl)-3-(4-(trimethylammon
ium)butyl)benzo[d]thiazol-3-ium iodide (2):

Intermediate compounds 4 (669 mg, 1.29 mmol) and 7 (500 mg, 1.29 mmol) were
dissolved in a 10 mL mixture of equal volumes of ethanol and dichloromethane. DIPEA
(491 µL, 2.84 mmol) was added dropwise. The obtained precipitate was concentrated under
reduced pressure. Filtration and washing with cold ethanol yielded the product in the form
of a red powder (419 mg, 43.6%). Melting point > 250 ◦C. 1H-NMR (500 MHz, DMSO-d6),
δ (TMS, ppm): 9.05–9.03 (d, 1H), 8.71–8.70 (d, 1H), 8.42 (s, 1H), 8.16–8.14 (d, 1H), 8.01–7.99
(d, 1H), 7.93–7.91 (d, 1H), 7.71–7.67 (t, 1H), 7.53–7.50 (t, 1H), 7.48–7.47 (d, 1H), 6.99 (s,
1H), 4.76–4.71 (m, 4 H), 3.43–3.40 (t, 2H), 3.08 (s, 9H), 1.99–1.96 (m, 2H), 1.85–1.79 (m, 2H),
1.49–1.46 (t, 3H). 13C-NMR (125 MHz, ppm), δ (TMS, ppm): 161.14, 148.36, 145.40, 140.26,
137.31, 133.09, 132.76, 128.99, 128.43, 127.01, 125.65, 124.77, 123.70, 122.49, 116.02, 113.88,
109.47, 89.12, 65.25, 52.86 (-N+(CH3)3), 49.96, 45.89, 24.47, 20.00, 15.13. 19F-NMR (376 MHz,
DMSO-d6), δ (TMS, ppm): 61.22. MS (MALDI-TOF): calculated for C27H32F3N3S, m/z:
487.3084; found, 487.2269.

3-ethyl-2-((1-ethyl-7-(trifluoromethyl)quinolin-4(1H)-ylidene)methyl)benzo[d]thiazol-
3-ium iodide (3)

Intermediate compounds 5 (398 mg, 1.30 mmol) and 7 (503 mg, 1.30 mmol) were
dissolved in a 10 mL mixture of equal volumes of ethanol and dichloromethane. DIPEA
(494 µL, 2.86 mmol) was added dropwise. The obtained precipitate was concentrated
under reduced pressure. Filtration and washing with cold ethanol yielded the product in
the form of a red powder (354 mg, 51.3%). Melting point > 250 ◦C. 1H-NMR (500 MHz,
DMSO-d6), δ (TMS, ppm): 9.04–9.02 (d, 1H), 8.67–8.65 (d, 1H), 8.38 (s, 1H), 8.14–8.12 (d,
1H), 7.99–7.97 (d, 1H), 7.88–7.87 (d, 1H), 7.69–7.66 (t, 1H), 7.51–7.48 (t, 1H), 7.43–7.41 (d,
1H), 7.01 (s, 1H), 4.77–4.69 (m, 4H), 1.48–1.45 (t, 3H), 1.42–1.39 (t, 3H). 13C-NMR (125 MHz,
ppm), δ (TMS, ppm): 160.79, 148.20, 145.16, 139.91, 137.26, 133.03, 132.71, 129.05, 128.30,
126.98, 125.59, 124.90, 123.63, 122.43, 115.83, 113.76, 109.24, 88.96, 49.86, 41.98, 15.06, 12.94.
19F-NMR (376 MHz, DMSO-d6), δ (TMS, ppm): 61.27. MS (MALDI-TOF): calculated for
C22H20F3N2S, m/z: 401.1299; found, 401.2010.

3.3. Heparin Sensing

Stock solutions of heparin, chondroitin sulfate (ChS), and hyaluronic acid (HA) were
prepared with a concentration of 750 µM in Tris-HCl buffer (10 mM, pH = 7.4). The
protamine stock solution used had a concentration of 100 µM, prepared in the same buffer.
Titration was performed by adding stock solutions of the respective biopolymer in 3 µL
increments, into a 10 mm quartz cuvette, containing 3 mL, 20 µM dye solution with
continuous gentle stirring. Calculations of the molarity of heparin and ChS solutions were
performed using the mass of their main disaccharide repeat unit: 665 g/mol for heparin
and 500 g/mol for ChS.
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3.4. Protamine Sensing

A stock solution of protamine with a concentration of 100 µM was prepared in Tris-HCl
buffer (10 mM, pH = 7.4). Titration was performed by adding the stock solution in 6 µL
increments, to a 10 mm quartz cuvette, containing 3 mL 20 µM dye solution and 7.56 µM
(1 IU/mL) heparin.

4. Conclusions
In this work, three novel fluorescence probes were designed, synthesized, and em-

ployed for the ultrasensitive detection and quantification of heparin and protamine within
a clinically relevant range of concentrations. All three fluorescent probes exhibited heparin
LOD in the nanomolar range. An inverse correlation between the number of cationic
binding moieties and heparin LOD was observed. In addition, electronic circular dichroism
measurements revealed a divergence in the chiral sense of the aggregates that the studied
probes form in proximity of the heparin backbone. Among the probes in this work, probe 2
exhibited a superior linear detection range for heparin, as well as insensitivity towards a va-
riety of interfering chemical species, commonly present in clinical samples. The probe offers
several desirable sensing modalities, rivaling and even surpassing in their characteristics
those of several other sensing platforms currently present in the published literature.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules30030570/s1. Table S1: Spectral characteristics of
probes 1–3 in presence of heparin. Figures S1–S3: Excitation spectra of probes 1–3 (20 µM) before and
after addition of 1 IU/mL Hep in Tris-HCl buffer (10 mM, pH = 7.4). Figure S4: Emission intensity
of probes 1–3 at increasing concentration, in presence of 2 IU/mL Hep in Tris-HCl buffer (10 mM,
pH = 7.4). Figure S5: Absorption spectra of 10 µM TE buffer solution of probe 1 neat, and in presence
of dsDNA, RNA, or heparin. Figures S6–S8: 1H-NMR spectra of compounds 1–3 in DMSO-d6.;
Figures S9–S11: 13C-NMR spectra of compounds 1–3 in DMSO-d6. Figures S12–S14: 19F-NMR spectra
of compounds 1–3 in DMSO-d6. Figures S15–S17: MALDI-TOF spectra of probes 1–3.
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