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Abstract: Quinones, one of the oldest organic compounds, are of increasing interest due
to their abundant presence in a wide range of natural sources and their remarkable bio-
logical activity. These compounds occur naturally in green leafy vegetables, fruits, herbs,
animal and marine sources, and fermented products, and have demonstrated promising
potential for use in health interventions, particularly in the prevention and management
of type 2 diabetes (T2DM). This review aims to investigate the potential of quinones as
a health intervention for T2DM from the multidimensional perspective of their sources,
types, structure–activity relationship, glucose-lowering mechanism, toxicity reduction, and
bioavailability enhancement. Emerging research highlights the hypoglycemic activities
of quinones, mainly driven by their redox properties, which lead to covalent binding,
and their structural substituent specificity, which leads to their non-covalent binding to
biocomplexes. Quinones can improve insulin resistance and regulate glucose homeosta-
sis by modulating mitochondrial function, inflammation, lipid profile, gastrointestinal
absorption, and by acting as insulin mimetics. Meanwhile, increasing attention is being
given to research focused on mitigating the toxicity of quinones during administration and
enhancing their bioavailability. This review offers a critical foundation for the development
of quinone-based health therapies and functional foods aimed at diabetes management.

Keywords: quinones; sources; types; antidiabetic effects; structure–activity relationship;
activity mechanism; toxicity; bioavailability

1. Introduction
In recent years, with the growing global awareness of health and disease prevention,

there has been an increasing focus on the use of natural products in health interventions,
particularly in the prevention and management of metabolic diseases such as type 2 di-
abetes (T2DM) [1]. Modifying lifestyle and nutrient intake through health interventions
using compounds from natural sources has become one of the core strategies used for
public health [2]. Active ingredients from natural products, such as phytonutrients and
natural antioxidants, have demonstrated a wide range of potential in the prevention and
mitigation of chronic diseases due to their remarkable biological activities and pharmaco-
logical effects [3]. Quinones, in particular, have become an important factor in diabetes
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prevention and treatment research in recent years due to their unique biological activities
and pharmacological effects.

Quinones of natural origin, such as pyrroloquinoline quinone (PQQ), vitamin K2
(VK2), and emodin, are widely found in vegetables, fruits, spices, herbs, animal and marine
sources, and fermented products [4–6]. They are capable of binding to or interacting with
various biological receptors, thereby eliciting a broad spectrum of pharmacological effects,
including anticancer, antidiabetic, anti-inflammatory, antiarthritic, antifungal, antibacterial,
antiviral, antiplatelet, and neuroprotective actions [7]. The diversity in substituents and
their locations, as well as the redox properties of unsaturated quinone rings, including the
electrophilic reactivity determined by the carbonyl group and the reaction of the polarized
double bond with the nucleophile, all contribute to the peculiar chemical properties of
quinones [8]. Quinones of natural origin have shown significant therapeutic potential in
diabetes control. PQQ, known in the world of medicine as the “14th vitamin”, cannot be
manufactured enough to meet the body’s needs by intestinal bacteria, and thus it must be
supplemented from dietary sources such as fruits, vegetables, fermented foods, and breast
milk [9]. Its hypoglycemic effects have been extensively researched [10]. PQQ demonstrates
potential in alleviating streptozotocin-induced diabetes mellitus and mitigating oxidative
stress in mice [11]. VK2 supplementation could alleviate impaired glucose homeostasis
and insulin sensitivity in T2DM through gut flora and fecal metabolites [12]. One of the
highest quality sources of VK2 is natto, which contains roughly 10 µg of menaquinone-7
per gram [13]. Cassia seed tea with a high anthraquinone content provides a range of health
advantages, including antidiabetic, antibacterial, anti-inflammatory, hepatoprotective, and
neuroprotective properties [14].

Diabetes mellitus, which has grown to be one of the most serious and common chronic
metabolic diseases of our time, is characterized by hyperglycemia [15]. The incidence of
diabetes has reached its peak globally due to factors such as a severely aging population
and increased risk factors such as obesity due to poor dietary habits. The 10th International
Diabetes Federation (IDF) report highlights diabetes as a rapidly growing global health
emergency in the 21st century, with a prevalence of 10.5% (537 million adults) in 2021 and
one death occurring every 5 s [16]. Over 90% of all cases of diabetes worldwide are caused
by T2DM, which is the most prevalent kind of the disease and is brought on by insufficient
insulin production or insulin resistance. Diabetes mellitus can reduce life expectancy and
cause life-threatening, disabling, and costly complications [17], including microvascular
complications, macrovascular complications, diabetic central nervous system complications,
diabetic foot, and so on. And, in accordance with recent research, diabetes mellitus is also a
significant risk factor for unfavorable outcomes in Coronavirus Disease 2019 (COVID-19).
People with diabetes mellitus are substantially more likely than those without diabetes
mellitus to require hospitalization and pass away from COVID-19 infection [18]. In recent
years, scientists have been committed to multi-faceted and multi-level research, aiming
to find more effective treatment drugs. Additionally, findings from the literature indicate
that the percentage of undiagnosed diabetes is relatively high, particularly in low-income
countries, where it may reach 50.5% in 2021 [16]. Therefore, interventions in daily life
through improved dietary habits and the intake of natural nutrients are gradually being
considered as effective strategies for coping with diabetes. Quinones of natural origin,
however, are becoming an important component in the field of diabetes health intervention
due to their wide range of sources and multiple biological effects.

Although natural quinones have shown great potential in the treatment and preven-
tion of diabetes, there are still some obvious gaps and challenges in the existing research.
First, the long-term safety and potential toxicity risks of quinones have not been adequately
studied. Prone to toxic effects, quinones are one of the major reactive toxic metabolites in the
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body, accounting for about 40% of the total, including quinone-imines, quinone-methides,
and imine-methides [19]. The hepatotoxicity of the hypoglycemic drug troglitazone has
been attributed primarily to the formation of the active metabolite o-quinone methide [20].
Electrophilic quinoline derivatives resulting from the metabolism of nevirapine, a non-
nucleoside human immunodeficiency virus -1 (HIV-1) reverse transcriptase inhibitor, could
react with nitrogen-based nucleophiles to produce severe hepatotoxicity and serious ad-
verse cutaneous reactions [21]. Therefore, the in-depth study and selection of quinones are
of utmost importance.

Overall, natural quinones present novel opportunities for managing diabetes and its
complications, especially in nutritional interventions and functional food development
with a wide range of applications. Although current research indicates that quinones ex-
hibit potential in regulating insulin signaling pathways, improving insulin resistance, and
suppressing inflammatory responses, their specific mechanisms of action remain incom-
pletely understood. Further exploration is needed, particularly regarding the molecular
mechanisms underlying their ability to ameliorate insulin resistance and modulate glu-
cose metabolism. Additionally, research on the bioavailability and metabolic pathways of
quinones is insufficient, especially the pharmacokinetics and biotransformation processes
in humans, which limits a comprehensive understanding of their clinical application. While
natural quinones are generally considered relatively safe, data on their potential toxicity
with long-term use and high doses, as well as their safety in specific populations (e.g.,
the elderly, pregnant women), remain lacking. Furthermore, studies on the application of
quinones in functional foods have predominantly focused on the activity of single compo-
nents, while their interactions and stability in complex food matrices are underexplored.
Challenges in quality control and standardization, such as batch variability and composi-
tional instability, may also affect their efficacy. This review will systematically summarize
structural classification, natural sources, and mechanisms of action related to the anti-
diabetic activity of natural quinones, with a focus on recent advances in bioactive quinones.
It will also discuss the current research status and gaps in bioavailability, toxicity, and safety.
By elucidating these research gaps, this review aims to provide a theoretical foundation for
the application of natural quinones in the treatment of diabetes and its complications while
promoting the development of dietary recommendations, development of supplements,
or incorporation into pharmacological therapies and providing concrete suggestions for
future research or clinical trials.

2. Types of Quinones
Quinones are cyclohexadienediones that are divided into numerous types, namely

benzoquinones, naphthoquinones, anthraquinones, and phenanthrenequinones, with their
carbonyl (C=O) groups in either between the 1 and 2 positions or the 1 and 4 positions to
one another [7]. The conformational flexibility and redox properties of quinones, such as
their ability to participate in electron transfer reactions, play a critical role in their biological
activity, particularly in modulating oxidative stress and mitochondrial function, which are
key factors in T2DM [22,23]. Among these, benzoquinones, represented by coenzyme Q10
(CoQ10), demonstrate weaker hypoglycemic effects, but excel in antioxidant activity and
cardiovascular protection [24]. This makes them particularly suitable for diabetic patients
with cardiovascular comorbidities, although their low bioavailability and mild glucose-
lowering effects often require combination therapy with other antidiabetic agents [25].
Naphthoquinones, such as rhinacanthin C (RC) and shikonin, also exhibit moderate hypo-
glycemic potential, primarily through the inhibition of α-glucosidase and the modulation
of lipid metabolism [26,27]. While their ability to control postprandial glucose levels is
notable, their cytotoxicity remains a significant limitation, restricting their broader clinical
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application. On the other hand, anthraquinones, such as emodin and chrysophanol, have
been extensively studied for their strong hypoglycemic effects. They improve insulin
sensitivity and β-cell function through multi-target mechanisms, including the activation of
insulin signaling pathways and inhibition of enzymes like PTP1B and DPP-4 [8]. Addition-
ally, their anti-inflammatory and antioxidant properties make them promising candidates
for managing diabetes and its complications. However, concerns about hepatotoxicity and
gastrointestinal side effects necessitate further research to ensure their safety [28]. Phenan-
threnequinones, however, have received limited attention in hypoglycemic research due to
their non-negligible toxicity. Consequently, most research efforts have focused on the first
three types of quinones (Figure 1). Table 1 lists representative quinones with hypoglycemic
potential, highlighting their diverse mechanisms and therapeutic profiles. Overall, while
quinones offer promising avenues for diabetes management, further clinical studies are
essential to validate their long-term safety and optimize their therapeutic applications.
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Table 1. Anti-diabetic effects of quinones in vitro or in vivo.

Num. Compound Structure Source Research Model Antidiabetic Effects Reference (Q/SQ•−)/mV

1 Coenzyme Q10
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Table 1. Cont.

Num. Compound Structure Source Research Model Antidiabetic Effects Reference (Q/SQ•−)/mV
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↑ represents an increase in expression level; ↓ represents a decrease in expression level; STZ, streptozotocin; HFD, high-fat diet; PTP1B, protein tyrosine phosphatase 1b; IGF-1,
insulin-like growth factor 1; eNOS, endothelial nitric oxide synthase; ROS, reactive oxygen species; TAC, total antioxidant capacity; MDA, malondialdehyde; COX-2, cyclooxygenase-2;
SOD, superoxide dismutase; GST, glutathione S-transferase; GPx, glutathione peroxidase; CAT, catalase; GSH, glutathione; IL-1β, interleukin 1beta; IL-6, interleukin-6; TNF-α,
tumor necrosis factor alpha; HbA1c, hemoglobin A1c; TC, total cholesterol; TG, triglycerides; VLDL, very low-density lipoprotein; LDL, low-density lipoprotein; HDL, high-density
lipoprotein; LPO, lipid peroxidation; LOOH, lipid hydroperoxides; IRS-1, insulin receptor substrate 1; GLUT4, glucose transporter 4; GLUT2, glucose transporter 2; PPARγ, peroxisome
proliferator-activated receptor γ; HOMA-IR, homeostatic model assessment for insulin resistance; RAGE, receptor for advanced glycation end; AGEs, advanced glycation ends; NF-κB,
nuclear factor kappa B; AST, aspartate aminotransferase; ALT, alanine aminotransferase; BUN, blood urea nitrogen; G6PDH, glucose-6-phosphate dehydrogenase; GDH, glutamate
dehydrogenase; SDH, sorbitol dehydrogenase; GK, glucokinase; PFK, phosphofructokinase; PK, pyruvate kinase; Bcl-2, B-cell lymphoma-2; Bax, Bcl-2-associated X; AKT, protein kinase
B; FABP4, fatty acid binding protein 4; LPL, lipoprotein lipase; SREBP1C, sterol regulatory element binding transcription factor 1; PPARγ, peroxisome proliferator-activated receptor
gamma; C/EBPα, CCAAT/enhancer binding protein alpha; GSK-3β, glycogen synthase kinase 3 beta; 11β-HSD1, 11β-hydroxysteroid dehydrogenase type 1; IFN-γ, interferon-gamma;
Fas, fatty acid synthase; Fadd, Fas associated via death domain; SIRT6, sirtuin 6; FBG, fasting blood glucose; AMPK, AMP-activated protein kinase.
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2.1. Benzoquinones

Benzoquinone is the quinone with the simplest structure, having a benzene ring and
two carbonyl groups. There are many classical natural quinones, such as p-benzoquinone
CoQ10 and o-benzoquinone PQQ, both of which are widely available and have been
intensively studied for their hypoglycemic activity. In the brains of streptozotocin-induced
diabetic mice, PQQ might ameliorate oxidative stress and lipid peroxidation [10]. Embelin, a
possible hypoglycemic drug with the ability to decrease lipid profiles, suppress intracellular
pro-inflammatory mediators, and improve oxidative stress, was extracted from E. basal
berries [32]. Thymoquinone, the predominant constituent of Nigella satica volatile oil,
exhibited antidiabetic effects through its action on the serum glucose and insulin levels
and body weight of the animals [30]. Genus Ardisia is the largest genus in the family
Myrsinaceae. Twenty-eight benzoquinones have been identified from several Aldisia plants,
including Ardisia gigantifolia, Ardisia quinquegona, Ardisia kivuensis, Ardisia virens, and
Ardisia japonica [41]. Based on the substituents on the quinone ring, these quinones could
be categorized into belamcandaquinones and alkylated benzoquinones.

2.2. Naphthoquinones

Both vitamin K1 (VK1) and VK2 are classical menaquinones. In one Danish Diet
Cancer and Health study, VK1 intake was found to be linearly inversely associated with
incident diabetes in all subgroups [42]. VK2 supplementation enhanced glucagon-like
peptide (GLP-1) levels in circulation, colon bile acid receptor activation, and amelioration
of host immune-inflammatory responses in diet-induced obese mice [12]. The main active
ingredients of Rhinacanthus nasutus are naphthoquinones. Up to now, more than twenty-six
naphthoquinones have been isolated and identified from Rhinacanthus nasutus. The nomen-
clature of naphthoquinones is characterized by “rhinacanthin”. Rhinacanthin-rich extract
(RRE) could be an immunomodulatory agent, regulating the levels of interleukin 1beta
(IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) [26]. Furthermore,
RRE successfully restored normalcy to the levels of protein that were causing hemoglobin
A1c (HbA1c), insulin resistance and β cell dysfunction (homeostasis model assessment-
insulin resistance (HOMA-IR) and homeostasis model assessment β cells (HOMA-β)),
serum levels of total cholesterol (TC), total triglycerides (TG), high-density lipoprotein
(HDL), and low-density lipoprotein (LDL), key enzymes related to liver function (aspartate
aminotransferase (AST) and alanine aminotransferase (ALT)), serum blood urea nitrogen
(BUN), and creatinine linked to kidney function [43]. Among them, RC showed the highest
hypoglycemic activity. In addition to Rhinacanthus nasus, there are other tropical plants
that are also rich in hypoglycemic naphthoquinones, such as Kigelia africana, Diospyros kaki,
Plumbago zeylanica, Impatiens balsamina, and Lawsonia inermis [35]. Plumbagin, the primary
naphthoquinone found in Plumbago zeylanica, could increase the release of insulin from
β-cells, potentially having antidiabetic effects at doses of 15 or 30 mg/kg [44].

2.3. Anthraquinones

Common hypoglycemic anthraquinones of plant origin, such as emodin, chrysophanol,
aloe-emodin, physcion, and rhein, are biosynthesized through the polyketide pathway
or the chorismate/O-succinylbenzoic acid pathway [45]. In 3T3-L1 adipocytes, emodin
had a favorable impact on glucose metabolism, which might have been mediated by an
increase in glycolysis through the adenosine monophosphate-activated protein kinase
(AMPK) signaling pathway [40]. Aloe-emodin could protect RIN-5F cells from nuclear
morphology and DNA damage and modulate the levels of pro-inflammatory cytokines [46].
Chrysophanol was a competitive protein tyrosine phosphatase 1b (PTP1B) inhibitor, and
its combination with emodin could suppress PTP1B activity and strongly enhance insulin
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sensitivity in high-fat diet (HFD)-fed mice [47]. Physcion isolated from Senna obtusifolia
could strongly inhibit PTP1B activity (IC50, 7.28 µM) [48]. Rhein isolated from Rheum
rhizome and Rheum emodi could promote glucose uptake in both Min6 cells and 3T3-L1
cells [8]. Reynoutria japonica, Rheum palmatum, Cassia obtusifolia, and Pleuropterus multiflorus
are typical herbs with anthraquinones as the dominant active ingredients [49]. Studies
have been conducted to compare these four herbs. The results of the comparison of
anthraquinone content were Rheum palmatum > Cassia obtusifolia > Reynoutria japonica >
Pleuropterus multiflorus, and the results of the comparison of total free anthraquinone content
were Rheum palmatum > Reynoutria japonica > Cassia obtusifolia > Pleuropterus multiflorus.
So different herbs might have different activities based on the different quinone types
and contents.

3. Sources of Quinones
Natural sources of quinones are extremely diverse (Figure 1), including vegetables,

fruits, and herbs from plant sources, meat, eggs, and dairy products from animal sources,
and fish, shellfish, and algae from marine sources. In addition, fermented products such
as natto and yogurt are equally important sources of quinones. These natural products
are playing an increasingly important role as part of a healthy green treatment, especially
in the management of T2DM. Studies have shown that an appropriate increase in the
intake of quinone-rich natural products, especially substances such as VK1 and VK2 and
CoQ10, can significantly improve glycemic control and insulin sensitivity. Specifically, VK1-
rich foods were strongly associated with a reduced risk of developing diabetes, and this
was further validated by multivariate-adjusted Cox proportional hazards modeling [42].
Primary dietary sources of VK2 in humans include dairy products as well as fermented
vegetables, which have been found to improve impaired glucose homeostasis and insulin
sensitivity [12,50]. Meat, fish, nuts, and certain oils represent the most abundant dietary
sources of CoQ10, which may help control blood glucose, lower total cholesterol, and
improve high-density lipoprotein cholesterol (HDL-C) in patients with T2DM [24,51]. Thus,
a green health intervention strategy based on natural quinones not only provides a new
perspective on the integrated management of type 2 diabetes, but also highlights the
potential of naturally sourced products in diabetes control. By emphasizing the diversity
and complementarity of natural products, this health intervention approach not only
focuses on dietary optimization, but also advances overall health management strategies.

3.1. Plant Sources

In line with efforts to valorize agricultural by-products, researchers have found many
vegetables, fruits, and oils to be valuable dietary sources of quinones. The specific con-
tents of some quinone sources can be found in Table 2. High PQQ content was found
in vegetables, such as parsley (34.2 ± 11.6 ng/g), green pepper (28.2 ± 13.7 ng/g), and
spinach (21.9 ± 6.19 ng/g), and fruits such as Kiwi fruit (27.4 ± 2.64 ng/g) and papaya
(26.7 ± 8.57 ng/g) [52]. Dietary sources of VK1 (phylloquinone) are mainly vegetables
(56.5–76.8%) [53]. Typical foods include spinach, kale, broccoli, lettuce, cabbage, and other
green leafy vegetables [5]. Spinach contains 240–1220 µg/100 g of K1 and kale contains
250–1139 µg/100g [50]. VK1 is relatively stable during cooking, and boiling and microwav-
ing have little effect on its content [50,54]. Vegetable oils (e.g., 180 µg/100 g of soybean
oil, 130 µg/100 g of rapeseed oil, and 55 µg/100 g of olive oil) are considered to be the
second largest contributor of VK1 to the human diet [54,55]. VK1 is fat-soluble, and the
absorption of VK1 is enhanced when other VK1-related foods are consumed with vegetable
oil [50]. Additionally, there has been a lot of attention in recent years on the use of spices
for the treatment of numerous ailments and their beneficial effects on health. Referring to
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the USDA’s FoodData Central database, although spices are not a major source of VK1 like
green vegetables, some of these herbs such as sage (Salvia officinalis), thyme (Thymus vul-
garis), basil (Ocimum basilicum), coriander leaf (Coriandrum sativum), parsley (Petroselinum
crispum), marjoram (Origanum Majorana), etc., still contain significant amounts of VK1 [56].
One of the representative active ingredients of black cumin (Nigella sativa) seeds is one
quinone compound, thymoquinone, which accounts for about 18–24% of volatile oil com-
ponents. Black cumin supplementation of 2 g/day for three months was administered
to 114 individuals with T2DM in one clinical study, which markedly improved glucose
homeostasis and reduced fasting blood glucose (FBG) and HbA1c levels [57].

Table 2. Dietary sources of quinones and their content.

Source Category Specific Food/Organism Quinone Type Content (Examples) Ref.

Plant Sources

Spinach, Kale, Broccoli,
Lettuce, Cabbage,

Vegetable oils, Green
powdered tea

Vitamin K1 (VK1)

Spinach: 240–1220 µg/100 g
Kale: 250–1139 µg/100 g

Soybean oil: 180 µg/100 g
Green powdered tea: 28.54–32.44 µg/g

[50,58]

Parsley, Green Pepper,
Spinach, Kiwi fruit,

Papaya
PQQ

Parsley: 34.2 ± 11.6 ng/g
Green pepper: 28.2 ± 13.7 ng/g

Kiwi fruit: 27.4 ± 2.64 ng/g
[52]

Black Cumin Seeds
(Nigella sativa) Thymoquinone 18–24% in seed oil [57]

Animal and Marine

Heart, Liver, Shoulder,
Sirloin, Thigh,

Tenderloin, Fish
CoQ10

Beef heart: 113.3 mg/kg
Pork heart: 118.1–282 mg/kg

Chicken liver: 116.2–132.2 mg/kg
Herring heart: 120.0–148.4 mg/kg

[51]

Milk PQQ Breast milk: 140–180 ng/ml [59]
Butter Vitamin K2 (VK2) Butter: 15 µg/100 g [5]

Wakame, Laver VK1 Wakame: 12,930 ng/g
Laver: 4130 ng/g [60]

Fermented Sources
Natto PQQ, VK2 PQQ: 61.0 ± 31.3 ng/g

VK2: 10 µg/g [13,52]

Parmesan cheese,
Emmental cheese, Gouda

cheese
VK2 Parmesan: 7.1–76.5 µg/100 g

Emmental, 43.3 µg/100 g [5]

Pickles VK2 Menaquinone-7: 5.55–14.48 µg/100 g
Menaquinone-4: 1.00–4.63 µg/100 g [61]

At the same time, quinones are also found in numerous medicinal plants, which
are often used in tea culture to achieve appropriate therapeutic effects. Certain bever-
ages were found to have extremely high levels of VK1, including green powdered tea
(28.54–32.44 µg/g), natural leaf tea (tea leaves) (17.58–19.94 µg/g), and black tea (tea
leaves) (9.45–11.27 µg/g), and it is vital to note that there was almost no VK1 in some
brewed tea beverages, such as brewed natural leaf tea and brewed black tea [58]. Quinones
are present in a wide variety of plant families, such as Ranunculaceae, Asphodelaceae,
Fabaceae, Ebenaceae, and Rhamnaceae [62]. Quinones have been isolated and identified
from fruits [32], flowers [63], nuts [64], seeds [48], stems [41], leaves [64], roots [65], and
whole plants [35]. In contrast, the presence of quinone in leaves and roots has been stud-
ied more. Aloe-emodin, initially derived from Aloe vera leaves, prevented glucotoxicity
in RIN-5F cells by controlling pro-inflammatory cytokines [46]. Lawsone, a significant
specialized 1,4-naphthoquinone synthesized from 1,4-dihydroxy-2-naphthoate (DHNA),
was responsible for the reddish-orange dye extracted from the leaves of Lawsonia iner-
mis [64]. Both the roots and the leaves of Rhinacanthus nasutus contain RC; however, the
roots have a higher concentration [66]. Administration of RC at doses of 5 mg/kg/day
or 20 mg/kg/day for 28 days notably enhanced FBG, HbA1c, insulin, and lipid levels
in male streptozotocin-nicotinamide-induced diabetic rats [67]. Quinone diterpenes are
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abundant in the Salvia species, mainly in the roots, and a total of 175 abietane quinone
diterpenes with o-quinone and p-quinone chromophores were detected in 130 species
of salvia [63]. Anthraquinones isolated from the roots of Knoxia valerianoides effectively
inhibited the formation of advanced glycation end products (AGEs) and rat lens aldose
reductase in vitro [68].

3.2. Animal and Marine Sources

Animals are also important natural sources of quinones, mainly benzoquinones and
naphthoquinones and their derivatives. Fish and many tissue types of meat such as
heart, liver, shoulder, sirloin, thigh, tenderloin, etc., are very rich sources of dietary
CoQ10, with heart being the most prominent (beef heart, 113.3 mg/kg; pork heart,
118.1–282 mg/kg; chicken heart, 92.3–192 mg/kg; herring heart, 120.0–148.4 mg/kg; mack-
erel heart, 105.5–109.8 mg/kg) [51]. Even though breast milk (140–180 ng/mL) contains
dozens of times more PQQ and its derivatives overall than the average meal, it has not
been proven that higher organisms can independently synthesize PQQ [59]. Butter as
a dairy product is rich in VK2 (15 µg/100 g) [5]. Tert-butylhydroquinone (TBHQ) is an
antioxidant widely used in animal-derived foods and oils, which could elevate insulin
resistance and liver steatosis through adenosine monophosphate-activated protein kinase
alpha 2 (AMPKα2)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling
in diabetes [69,70]. Quinones have also been found in some echinoderms, a class of ma-
rine invertebrates [62]. Many algae, such as wakame and laver, contain higher levels
of VK1 than terrestrial plants [60]. Sesquiterpene quinones and their derivatives, rec-
ognized as significant bioactive metabolites, are commonly found in the sponges of the
genus Dysidea [71]. They are usually not directly edible, but can be used as medicine.
21-Dehydroxybolinaquinone, derived from Hainan sponge Dysidea villosa, has been demon-
strated to inhibit the activity of hPTP1B, a prospective therapeutic target for the treatment
of T2DM and obesity [72]. Additionally, ascidians of the genus Aplidium are regarded as
a significant source of naturally occurring, chemically varied, and physiologically active
compounds [73]. Anthraquinones, such as altermodinacid A, emodic acid, and emodin,
were also found in some marine fishes due to the co-existence of fungi such as a halotolerant
fungus Alternaria sp. X112 isolated from Gadus macrocephalus [74].

3.3. Fermented Sources

Microbial communities are the most widely distributed in nature. Through phy-
tophagy, commensalism, and parasitism, they have tight ties to other creatures, including
animals, plants, and microbes, and are crucial components of the biosphere and ecosys-
tems [75]. Microorganisms are non-negligible sources of quinones and are the main force
behind the mass production of many quinones, such as some filamentous fungi like As-
pergillus, Penicillium, Talaromyces, Fusarium, Arthrinium, etc. [76]. Emodin may be found
in the fungi Aspergillus, Cladosporium, Chaetomium, Penicillium, and Penicilliosis as a red
pigment [6]. Wijesekara extracted physcion from the Microsporum sp. Fungus [77]. Mi-
crobial processing of dietary products can be seen everywhere in daily life. Aspergillus
is an important strain in the fermentation and food processing industries such as the
production of sauces, brewing, and vinegar, and nearly 60 strains have been utilized [78].
Penicillium is the core ingredient of the famous blue cheese [79]. However, little research
has been performed to date on the direct correlation between the nutrition or flavor of
foods fermented by these genera and the existence of quinones. In contrast to VK1, which
is primarily present in fruits and vegetables, VK2 is more commonly found in bacteria,
such as the gut microbiota, where it can be found in the bacterial membrane [80]. Our
daily intake of vitamin K needs to be 1 µg per kilogram of body weight [81]. Lactobacilli
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are one representative strain that produce VK2 (534 nmol/g VK2 of lyophilized cells) and
are considered starter cultures for food products with a Generally Recognized As Safe
(GRAS)-approved safety profile [81]. Lactobacillus-derived dietary resources are abundant
and include common cheese dairy products, yogurt dairy products, and some fermented
vegetables such as tempeh and pickles. There are also research data that support the factual
nature of the high VK2 content in fermented products: natto (10 µg/g menaquinone-7) [13],
cheese (parmesan, 7.1–76.5 µg/100 g; emmental, 43.3 µg/100 g; gouda, 47.3–72.9 µg/
100 g) [5], and pickle (1.00–4.63 µg/100 g menaquinone-4, 5.55–14.48 µg/100 g menaquinone-
7) [82]. PQQ is a coenzyme that resembles a vitamin, and PQQ disodium salt has received
significant attention as a brand-new nutritional supplement in China, the European Union,
and the United States. The PQQ’s biosynthesis in higher organisms has not been demon-
strated, so humans rely mainly on dietary intake, with the primary source of production
thought to be microorganisms. PQQ-producing strains are mainly Gram-negative bacteria,
and their biosynthetic process is mainly catalyzed by multiple proteins encoded by the
PQQ gene cluster [83]. The PQQ content of fermented soybeans (natto, 61.0 ± 31.3 ng/g;
green soybeans, 9.26 ± 3.82 ng/g) was significantly higher [52]. It has been demonstrated
that certain foods, such as vinegar, which are associated with acetic acid bacteria, contain
relatively high concentrations of PQQ [84]. In the future, more fermented resources rich in
quinones, which are potentially biologically active, may be identified.

4. Role of Quinones’ Physicochemical Properties in Diabetes Control
The chemistry of quinones bears many similarities to those of α-β unsaturated ketones.

A significant portion of their redox characteristics stem from their electrophilic reactivity,
which is dictated by the carbonyl groups, and their interaction with nucleophiles through
polarized double bonds [85]. They interact with biological systems as a class of highly
reactive organic chemical species, promoting anti-inflammatory, antibacterial, antimalarial,
anti-diabetic, and anticancer actions and inducing toxicities.

Quinones often use non-covalent or covalent binding to enzymes or biological com-
plexes to achieve their functions [61]. The polarity of the quinones influences the degree of
cellular uptake and subsequent binding across the lipid membrane to the corresponding
target to produce an active effect. Anders hypothesized that the more lipophilic quinones
would stay in the lipid layer for a longer period of time, and, due to the higher solubility
of oxygen in the lipid layer, quinones with an inherently lower reduction potential may
also predict a rapid electron transfer to oxygen (O2) [85]. Differences in chirality affect
activity, with dextro-sennidin A promoting adipocyte glucose incorporation more than
sennidin B [86]. The glycosylation of compounds can also cause changes in activity; for
example, increased glycosylation tends to reduce the inhibitory effect of rhubarb phenols
on PTP1B [48].

The physicochemical properties essentially influence quinones’ overall biological
activities (functional, toxic, mutagenic, or therapeutic effects) and their metabolism, which
is a comprehensive book of quinone pharmacology and toxicology [28]. What follows is an
analysis of which chemical properties affect the hypoglycemic activity of quinones in two
main aspects: redox reactions, and non-covalent interactions.

4.1. Role of Quinones in Redox Reactions

Quinones have excellent hypoglycemic activity, but they also produce toxic effects,
so quinones are regarded as a double-edged sword that acts as a hypoglycemic agent and
treats diabetes. The biological activity and toxicity of quinones are strongly influenced
by the redox properties of quinones, both in terms of their prooxidant action as electron
transfer agents and in terms of their addition-reduction reactions as electrophiles to bind
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biological complexes [62]. One quinone can undergo multiple redox transformations and
undergo different biotransformations at the same time.

4.1.1. Quinones as Electron Transfer Agents

The role of quinones in glucose-lowering interventions is closely related to their
unique redox properties. As electron transfer agents, quinones are able to participate in
free radical chain reactions, which in turn affect reactive oxygen species (ROS) levels in
the body. The extent to which these reactions are carried out determines the antidiabetic
effect of quinones and their potential toxicity. Under appropriate conditions, quinones can
exert their hypoglycaemic effects by modulating oxidative stress and promoting insulin
sensitivity. PQQ could ameliorate oxidative stress and lipid peroxidation in the brains
of streptozotocin-induced diabetic mice [10]. Chrysophanol ameliorates oxidative stress
and pyroptosis in mice with diabetic nephropathy by modulating the Kelch-like ECH-
associated protein 1/nuclear factor erythroid 2-related factor 2 signaling pathway [87].
However, elevated ROS levels could induce deoxyribonucleic acid (DNA) damage, disrupt
the DNA damage response (DDR), and lead to lipid peroxidation, as well as protein binding,
which may alter their conformation and function [88]. Thus, there is an exquisite line of
equilibrium between the antidiabetic effects of quinones and their toxicity.

The free radical chain reaction of quinone can be seen in Figure 2C. Quinone (Q) can be
reduced by enzymes, mostly flavoproteins, such as cytochrome P450 (CYP450) reductase,
ubiquinone oxidoreductase, cytochrome b5 reductase, etc., through two one-electron re-
ductions, first to semiquinone (SQ•−) and then to hydroquinone (H2Q) [89]. nicotinamide
adenine dinucleotide phosphate (NADPH) or nicotinamide adenine dinucleotide hydride
(NADH) is used as the electron source to provide the electrons for the reaction. Under
aerobic conditions in the body, SQ•− can be rapidly autoxidized to form Q, accompanied by
the production of superoxide radical anion (Q2

•−), due to the higher content of oxygen com-
pared to quinone. The redox cycle of quinones may continue with the accumulation of Q2

•−

up to anaerobic levels, followed by an increase in the accumulation of SQ•−, and the whole
cycle is prone to oxidative stress and cell damage [28]. H2Q can undergo autoxidation in
the presence of oxygen, and it has been shown that it can react with O2 to produce quinone
and hydrogen peroxide (H2O2) [90]. However, subsequent studies have shown that the
autoxidation of H2Q is not limited to this reaction, as H2Q can react with O2 to produce
SQ•− and Q2

•−. And SQ•− can further react with oxygen to produce quinone and Q2
•−,

or with Q2
•− to produce H2O2. In addition, H2Q can react with Q to produce SQ•− by one

disproportionation reaction. In terms of reaction kinetics, H2Q is more likely to undergo a
disproportionation reaction with quinone [91]. One important reason why quinones can
undergo redox cycling is that the quinone/quinol ring remains intact during the redox
reaction [90]. Hydroquinone can also be produced directly by a two-electron reduction
through DT-diaphorase, e.g., NADPH: quinone oxidoreductase, a common two-electron
reductase. Xanthine oxidase, lipoamide oxidoreductase, and xanthine dehydrogenase
catalyze both one- and two-electron reduction. Direct two-electron reduction to produce
hydroquinone has traditionally been considered a quinone detoxification mechanism [92].
If a water-soluble and stable H2Q is produced, it can be conjugated with glucuronides
or sulfates and excreted. Unstable hydroquinone can undergo chemical rearrangement,
leading to the alkylation of vital biomolecules (e.g., DNA), or engage in redox reactions
that generate highly reactive oxygen species [93].
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tion potential of quinones, it can be judged whether this quinone compound is a reactive 
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The whole redox process is governed by the reduction potential of the parent quinone,
namely the reduction potential Q/SQ•− and SQ•−/H2Q, with the reduction potential
Q/SQ•− dominating overall. A more positive reduction potential facilitates the redox
reaction, while a lower reduction potential for Q/SQ•− promotes the reduction in oxygen
to form Q2

•− and quinone via SQ−. At the same time, this reaction is reversible, and the
reduction potential of oxygen (O2/Q2

•−) is −180 mV [94]. Therefore, according to the
reduction potential of quinones, it can be judged whether this quinone compound is a
reactive ROS scavenger or an ROS producer. If the reduction potential Q/SQ•− is higher
than −180 mV, the consumption of O2

− by quinone is thermodynamically favorable [90].
In addition, it has been proposed that if Q/SQ•− is higher than −150 mV, the reaction
rate constant of SQ•− with oxygen follows the electron transfer of Marcus theory well,
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while below −150 mV, the rate constant is affected by diffusion [95]. The substituents
on the quinone ring affect its electron density of the quinone, which in turn affects the
reduction potential. If the electron donating group (−CH3, −OCH3) is substituted, the
reduction potential will decrease, and if the electron withdrawing group (−Cl, −COOH)
is substituted, the reduction potential will increase [96]. Figure 2A shows that, with the
increase in alkyl substitution of benzoquinone and 1,4-naphthoquinone, the negative charge
of single-electron reduction potential increases, and the reduction potential shows a linear
decrease, whereas an increasing the substitution of chlorine atoms on benzoquinone leads
to a linear increase in the reduction potential [90]. The substituent position of quinone
compounds is particularly important. Studies have shown that the prooxidant action of
lawsone with a hydroxyl substituent on the quinone ring is weaker than that of juglone
with a hydroxyl substituent on the benzene ring, and juglone has stronger toxic effects
than lawsone [97]. The pKa value of hydroquinone is also a reflection of the degree
of electron density, which is proportional to the pKa value of semiquinone, and is also
somewhat indicative of the reduction potential as well as the kinetic rate constant. With the
substitution of electron-giving groups on the quinone ring, H2Q has a higher pKa value,
which is inversely proportional to the reduction potential of quinone and is more likely
to drive the oxidation of SQ•− to generate Q2

•− and more likely to drive the autoxidation
of H2Q [90] (Figure 2B). Moreover, the autoxidation of H2Q is pH-dependent; the higher
the pH, the faster the reaction rate [98]. The reaction rate increases in the presence of
metal ions, and the rate of radical production is greater than the rate of radical elimination,
which predisposes to oxidative stress. Q2

•−, driven by metals, tends to trigger a cascade
reaction, leading to the production of H2O2 and hydroxyl radical (OH•) [28], which is
considered the most active ROS (Figure 2C). In addition, one general trend in reduction
potential is o-quinone > discrete quinone > p-quinone, e.g., 1,2-naphthoquinone (68 mV)
> 1,4-naphthoquinone (50 mV) [90,96]. The higher the reduction potential, the easier it is
to be reduced. The reduction potential is also to some extent related to molecular weight,
and the reduction potential decreases with the increase in molecular weight, e.g., 1,4-
benzoquinone (99 mV) > 1,4-naphthoquinone (50 mV) > 9,10-anthraquinone (−445 mV),
1,2-naphthoquinone (68 mV) > 9,10-phenanthrenequinone (−124 mV) [90,96].

In conclusion, quinones exhibit antidiabetic potential in regulating the generation and
scavenging of ROS through their redox properties. Their efficacy and safety are highly de-
pendent on a combination of factors such as their reduction potentials, molecular structures,
environmental conditions, and metal ion concentrations. Understanding these influencing
factors can help to better balance the glucose-lowering effects of quinones with the risk of
toxicity and provide more options for health interventions in diabetes management.

4.1.2. Quinones as Electrophiles

Another important redox property of quinones is that they are prone to the Michael
addition reaction of nucleophiles to form covalent bonds due to their electrophilic α- and
β-conjugated systems [62]. However, in general, the carbon atom next to the quinone group
is required to have no substituent, so anthraquinones generally do not undergo the Michael
addition reaction [28]. Substitution of 2-hydroxy-1,4-naphthoquinone and 2-amino-1,4-
naphthoquinone in the quinone ring at position 3 eliminates nephrotoxicity due to the
blocking of the Michael addition reaction [99]. The addition of quinones as electrophiles
is affected by substituents, electron symmetry, and polarity [28]. As mentioned earlier,
substituents of the quinones affect the reduction potential of the quinone. A lower reduction
potential of quinone correlates with a higher pKa value of hydroquinone, indicating reduced
electrophilicity [90], and it is more difficult to react with affinity reagents and the reaction
rate is slower. Moreover, the steric hindrance of substituents on quinones reduces the
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reactivity of quinones, as does the increased density of electron clouds on quinones [100].
The affinity reagents for quinone binding mainly include amines (the −NH2 part of free
amino acids, the amino groups on lysine and arginine, or the amino groups on DNA
bases) and thiols (e.g., glutathione). In comparison, there is a 108 rate difference between
the reaction with thiols and the amine reaction, and the content of thiols in the body is
higher, so thiols are the main reaction objects [90]. In general, the generated thioether
hydroquinone has an increased pKa value, which can undergo autoxidation, produce
free radicals, cause oxidative stress, or bind to DNA and proteins, directly affecting their
structure and efficacy [85]. Sulfhydryl groups in cysteine are the predominant redox-active
and nucleophilic functional groups within biological systems. This amino acid is integral
to various proteins, including the redox-active peptide glutathione, a tripeptide composed
of gamma-glutamyl–cysteine–glycine. Glutathione functions as a reducing agent and
nucleophile, protecting cells from chemical damage that could induce stress. Cysteine
thiols also play a vital role as nucleophiles in the catalytic centers of numerous enzymes,
including those involved in hypoglycemic effects, the glycolytic enzyme (Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH)), PTP1B, and kelch-like ECH-associated protein 1
(Keap1) [28].

4.2. Role of Quinones in Non-Covalent Interaction

The non-covalent binding of quinones to biological complexes such as protein targets
is usually low-energy and reversible and includes hydrophobic interactions, hydrogen
bonding, van der Waals forces, and electrostatic interactions (Figure 3). When hydrophobic
interactions dominate, the thermodynamic properties tend to be free energy greater than
or equal to 0 (∆H ≥ 0) and entropy greater than 0 (∆S > 0), and the binding of small
molecules to proteins is an entropy-driven process, whereas when hydrogen bonding and
van der Waals forces dominate, the thermodynamic parameters have free energy less than 0
(∆H < 0) and entropy less than 0 (∆S < 0), and binding is enthalpy-driven [101]. Currently,
the analysis of small molecule-protein binding is becoming increasingly sophisticated, not
only in terms of experimental characterization methods involving equilibrium dialysis,
isothermal titration calorimetry, size exclusion chromatography and affinity chromatog-
raphy, nuclear magnetic resonance spectroscopy, small-angle scattering techniques for
X-rays and neutrons, and mass spectrometry [102]. In addition, with the development of
theoretical calculations, computerized molecular simulation techniques have been widely
used in the field of pharmacological activity research, which lay a theoretical foundation
for experimental exploration to a certain extent.
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Many quinones exhibit their hypoglycemic potential through hydrophobic binding,
hydrogen bonding, and electrostatic interaction with target proteins. Important non-protein
electron carriers in the mitochondrial respiratory chain of animals and the photosynthetic
chain of plants, such as CoQ10 and plastoquinone, are characterized by their long side
chain structures [104]. At the same time, some studies have found that insulin receptors
have corresponding hydrophobic binding pockets, and the length of hydroxyalkyl chains
on quinones affects their efficacy [105]. In the study of the glucosidase inhibitory activity
of embelin derivatives, the two hydroxyl groups and the long-chain substituents were
the key factors affecting the inhibitory activity. Molecular docking results show that
hydrogen bonds were formed between the hydrophilic group on the active site and several
amino acids, and the hydrophobic interaction between the hydrophobic substituent at
position 3 and the hydrophobic pocket of benzoquinone was an important inhibitory
mechanism [103]. Glycosylated hydroquinones undergo halogenation on the benzene
ring, which can promote glucose phosphorylase. The hydroxyl group of hydroquinone
was methylated, and the activity was significantly increased. According to the results of
molecular docking, the inhibitor stabilized the enzyme’s low-active T state by means of
a complex network of van der Waals interactions with residues of the 280 s loop (Asn283
and Asn284), glycine helix (Gly134 and Gly137), and Glu88, as well as direct and water-
mediated hydrogen bonds and halide interactions. These forces stabilized the conformation
of the 280 s loop and organized glycogen entry [106].

5. Mechanisms of Anti-Diabetic Activity of Quinones
As an important part of endocrine homeostasis, diabetes affects the physiological

homeostasis of all tissues and organs. Correspondingly, the preventive and therapeutic
effects of quinones are found in all parts of the body and are inseparably interrelated.
Many quinones have been reported to have dose-dependent hypoglycemic effects, such as
thymoquinone [107]. Quinones show different mechanisms for the regulation of glucose
homeostasis in different organs (Figure 4). The main mechanisms of the hypoglycemic
effect of quinones are described in detail below.

5.1. ROS Adjustment and Mitochondrial Homeostasis

Natural quinones can reduce insulin resistance to achieve a hypoglycemic effect by
regulating ROS level and mitochondrial function balance (Figure 5A). In T2DM, hyper-
glycemia and insulin resistance are observed, with studies indicating that approximately
10% of consumed oxygen may be lost in the form of ROS [108]. This phenomenon is closely
associated with the critical role of oxidative stress in the pathogenesis of diabetes. Oxidative
stress primarily arises from an imbalance between pro-oxidants, such as ROS, and antioxi-
dants, including catalase (CAT) and superoxide dismutase (SOD) [109]. When ROS levels
become excessive and antioxidants are unable to effectively neutralize them, the cellular
redox balance is disrupted, leading to cellular damage and dysfunction. This imbalance
not only exacerbates the oxidative stress response, but also impairs mitochondrial function.
Mitochondria are the primary source of ROS within cells, and while they generate energy
through oxidative phosphorylation, they also release substantial amounts of ROS in the
process [110]. In mitochondria, elevated redox potential causes changes in the oxidative
state, leading to the uncoupling of oxidative phosphorylation, a process that inhibits the
efficiency of the electron transport chain. This results in an inhibition of electron transport
and an increase in the transfer of electrons to oxygen, subsequently leading to the formation
of O2

− [31]. Since mitochondrial complex I is the primary rate-limiting site in the electron
transport chain, it has become a critical target in diabetes research. When quinones bind to
mitochondrial complex I, studies show that they induce conformational shifts that affect its
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function, which may impact mitochondrial activity and oxidative phosphorylation [111]. It
has also been shown that during the action of quinones on the mitochondrial respiratory
complex, NADH-induced changes can only occur in the open conformation of the complex,
whereas quinone reduction can only occur in the closed state, with proton pumps involved
in the transition between the two states [112]. This conformational shift may lead to the
dysfunction of complex I, thereby impacting the entire mitochondrial energy metabolism
and ROS production.
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In the treatment of diabetes, the activation of AMPK is considered an important regu-
latory pathway. AMPK could improve insulin sensitivity by promoting glucose uptake, gly-
colysis, and fatty acid oxidation while also inhibiting glycogen and protein synthesis [113].
These effects make AMPK a potential target for the treatment of diabetes. Emodin could
promote AMPK activation and stimulate glucose uptake in a ROS-calmodulin-dependent
protein kinase kinase (CaMKK)-dependent manner [114]. PQQ has been found that it could
facilitate the ’recoupling’ of endothelial nitric oxide synthase (eNOS) and mitochondrial
oxidative phosphorylation, stimulate phosphorylation and the activation of the Cyclic
Adenosine Monophosphate (cAMP) response element-binding protein (CREB), and en-
hance the expression of the peroxisome proliferator-activated receptor-gamma coactivator-1
alpha (PGC-lα) [4]. Elevated levels of PGC-lα binded to and co-activated the transcriptional
function of nuclear respiratory factor (Nrf-1/2) at the Tfam promoter, which was essen-
tial for the regulation of mtDNA amplification and mitochondrial biogenesis. Nrf2:INrf2
(Keap1) function as cellular sensors of oxidative and electrophilic stress [115]. And an-



Molecules 2025, 30, 665 19 of 39

hydroexfoliamycin isolated from Streptomyces could protect cells from oxidative stress,
improve mitochondrial function, act on the Nrf2-ARE pathway, inhibit the effect of the
mitochondrial uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP)
over cytosolic Ca2+, and reduce caspase-3 activity [116]. In experimental studies, oxidative
stress is generally judged by measuring the expression levels of glutathione (GSH), SOD,
CAT, malondialdehyde (MDA), and glutathione peroxidase (GPx). Reactive aldehyde MDA
is one of the reactive electrophiles known to produce toxicity [117]. Increased oxidative
stress and free radical production may be compensated for by elevated levels of GSH and
SOD [32]. The activity of the peroxisome-based enzyme CAT, which converts hydrogen
peroxide into water and oxygen, is increased in the diabetic rats’ erythrocytes, heart, aorta,
kidney, and liver [118]. GSH and GSH/GPx enzyme systems are essential for normal
intracellular homeostasis, which could become disrupted in pathophysiologic conditions,
such as endothelial dysfunction [119]. Many quinones, such as embelin, RC and emodin,
were found to have a modulating effect on oxidative stress, with decreased levels of MDA
and increased expression of SOD, CAT, MDA, and GPx [8,32,34]. These quinones could
act by enhancing the expression of antioxidant enzymes and improving mitochondrial
antioxidant capacity, ultimately reducing ROS levels and mitigating the deleterious effects
of oxidative stress in diabetes. In conclusion, natural quinones show promising effects
in modulating oxidative stress and mitochondrial dysfunction, which are key factors in
diabetes. However, further clinical studies and experimental data are required to better
understand their precise mechanisms and therapeutic potential in diabetes management.
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5.2. Insulin Mimetics

According to modern research, insulin mimetics have two main mechanisms of action
(Figure 5B): (1) activation of the tyrosine kinase structural domain of IR, specifically IRS-1,
which causes autophosphorylation of the receptor and thus the activation of downstream
signaling pathways that are essential for the metabolic action of insulin, and (2) the inhibi-
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tion of tyrosine protein phosphatases, which dephosphorylate IR and IRS, thus impeding
the insulin signaling pathway [120].

Demethylasterriquinone B1 (DAQ B1), a symmetrical bisindolequinone natural com-
pound, triggered the insulin receptor tyrosine kinase at concentrations of 3–6 µM, inducing
phosphorylation of insulin [121]. And it has been found to promote glucose uptake in
rat adipocytes and mouse soleus muscle in ob/ob mice, which might be associated with
its capacity to phosphorylate IR-β and then initiate the PI3K/AKT/glucose transporter
protein 4 (GLUT4) pathway. 5,8-diacetyloxy-2,3-dichloro-1,4-naphthoquinone (DDN) was
also a molecular activator for the insulin receptor, which could be used in combination with
insulin acting in the extracellular domain and DDN acting in the intracellular domain [122].
Emodin improved insulin sensitivity and alleviated insulin resistance by increasing hepatic
glucose utilization and muscle and fat glucose uptake through the IRS/PI3K/Akt/forkhead
box O 1 (FoxOl) pathway [123].

As a member of the PTPs family, PTP1B negatively regulated the insulin and leptin
signaling pathways [124]. According to Kennedy et al., mice with the PTPIB gene lacking
showed higher insulin sensitivity. Insulin treatment in these mice produced enhanced and
extended phosphorylation of the insulin receptor in the liver and muscle tissue, indicating
that PTPIB was critical in initiating the dephosphorylation of insulin receptors [125]. As
a result, it was identified as a crucial target for the treatment of obesity and T2DM. Er-
tiprotafib and trodusquemine were two representative small molecule PTP1B inhibitors
currently in development [126]. With an IC50 value of 6.70 µM, dysidine was a new slow-
binding PTP1B inhibitor that activated the insulin signaling pathway and facilitated GLUT4
translocation. In 3T3-L1 cells, it has been demonstrated to stimulate a 2.3-fold increase
in glucose uptake [72]. PQQ could activate insulin signaling independently of the ligand
through redox cycling reactions, and the redox product hydrogen peroxide catalyzed the
oxidative modification of cysteine to inhibit PTP1B activity [4].

Analysis of the PTP1B inhibition by 1,2-naphthoquinone derivatives revealed the
importance of the substituent at the R4 position [126]. Additionally, it has been shown
that, independent of the linkage site, the inhibitory effect of anthraquinones on PTP1B
was enhanced by an increase in the amount of hydroxyl groups [8]. Hydroxyl groups
on R1 or R4 of anthraquinones were essential for upsetting a number of intracellular
signaling pathways, according to research by Fukuda et al. [127]. Jung et al. found
that chrysophanol’s glycosylation tended to reduce PTP1B inhibition, with chrysophanol
> chrysophanol-8-O-β-D-glucopyranoside > chrysophanoltriglucoside > chrysophanol
fourraglucoside as the sequence of glycosylation [48]. This refined understanding of
quinones, particularly those targeting the insulin receptor and PTP1B, underscores their
potential as therapeutic agents in T2DM treatment, while also highlighting key structural
elements that influence their bioactivity and efficacy. Further studies are required to
optimize these compounds for clinical application, especially in terms of improving their
bioavailability and ensuring long-term safety in chronic treatment settings.

5.3. Regulation of Inflammation

Inflammation in the onset and course of diabetes plays a causal and potentially innate
role (Figure 5C). The release of pro-inflammatory factors in the immune system can lead
to insulin resistance. Pro-inflammatory factors contribute to the transition from normal
to impaired glucose homeostasis in adipose, liver, pancreatic, and skeletal muscle cells,
particularly in the obese condition [128]. Due to its limited capacity for storing energy,
adipose tissue accumulates excess calories and eventually experiences hypoxia. This acti-
vates hypoxia-inducible factor-1 (HIF-1), which then causes increased expression of c-Jun
N-terminal kinase (JNK) and IκB kinase (IKK), which in turn causes the release and accu-
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mulation of inflammatory cytokines and free fatty acid (FFA), ultimately resulting in insulin
resistance, ectopic fat deposition, and an imbalance in the production of adipokines [128].
Activated or inflammatory macrophages may interfere with the functioning of pancreatic
β-cells. The cytokine IL-1β can impair insulin secretion and promote Fas expression, lead-
ing to Fas-triggered islet cell apoptosis [129]. M1-polarized inflammatory macrophages
within kupffer cells are affected by FFA as well as cytokines in vivo, which not only reduce
glucose uptake in skeletal muscle, but also induce insulin resistance in the liver [130]. The
pro-inflammatory factor IL-6 can cause insulin resistance in skeletal muscle as well as the
liver due to defects in IRS phosphorylation [131]. TNF-α has antagonistic activity against
insulin because of its ability to enhance phosphorylation of IRS on serine or threonine
residues. This leads to a reduction in tyrosine phosphorylation of protein kinase C (PKC),
nuclear factor kappa B (NF-κB), and kappa B kinase β (IKKβ), thereby affecting down-
stream signaling pathways, including fatty acid regulation, glucose uptake, and triglyceride
synthesis [32]. Additionally, it has been emphasized how important intestinal inflammation
is for the development of diabetes [132].

Recent studies on benzoquinones, such as those derived from the roots of Averrhoa
carambola L., highlight their potential anti-inflammatory effects. These compounds have
been shown to reduce the expression of pro-inflammatory cytokines like TNF-α and IL-6
in pancreatic tissue, as well as downregulate the toll-like receptor 4 (TLR4)/NF-κB path-
way [65]. Rhein reduced the expressions of inflammatory markers (TNF-α and IL-6),
hexosamine, and mitogen-activated protein kinase p38 pathways, and could potentially
prevent oxidative complications induced by diabetes [133]. Furthermore, emodin safe-
guarded RINm5F cells and mouse islets from cytokine-induced damage by inhibiting
inducible nitric oxide synthase expression and reducing nitric oxide production [134]. This
cytoprotective effect may be linked to inhibition of NF-κB signaling through a reduction
in inhibitor of kappa B (IκB) kinase activity. These findings suggest that quinones had the
potential to modulate inflammation in diabetes, offering a promising therapeutic strategy
to mitigate insulin resistance and other disease complications.

5.4. Regulation of Lipid Profile

Diabetes is significantly linked to changes in the plasma lipid profile (Figure 5D).
These disturbances in lipid metabolism, characterized by increased levels of TG and FFA,
contribute to pancreatic β-cell dysfunction, induce insulin resistance in various organs,
and exacerbate the overall metabolic imbalance [135]. LDL and very low-density lipopro-
tein (VLDL) transport cholesterol to peripheral tissues, where it is deposited, while HDL
facilitates the transfer of cholesterol from peripheral tissues to the liver, promoting its
excretion and metabolism [32]. Elevated serum levels of LDL and VLDL are hallmark
indicators of the initiation of the atherosclerotic process, which is often exacerbated in
diabetic individuals, increasing their risk for cardiovascular diseases [136]. Leptin and
adiponectin, which are also secreted by adipocytes, have been associated with the develop-
ment of insulin resistance. Plasma leptin/adiponectin ratio (LAR) is inversely correlated
with insulin sensitivity indexes [137]. Specifically, leptin levels are negatively correlated
with insulin sensitivity, with elevated leptin contributing to insulin resistance [138]. In
contrast, adiponectin could regulate Rho/ROCK-dependent actin cytoskeleton remodeling,
thereby enhancing glucose uptake and metabolism [139]. Embelin, a compound derived
from the plant Embelia ribes, has demonstrated promising effects on diabetes management.
Embelin has been shown to enhance insulin secretion in pancreatic β cells while concur-
rently reducing the levels of TC, TG, LDL, and VLDL and increasing the expression of
HDL in the bloodstream [32]. Additionally, administration of RC to diabetic rats led to an
increase in the atherogenic index (LDL/HDL ratio), HOMA-IR, and HOMA-β cell function
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index, thereby ultimately reducing the risk of cardiovascular complications associated
with diabetes [67]. These changes ultimately suggested a reduced risk of cardiovascular
complications typically associated with diabetes. Furthermore, emodin, another bioactive
compound, has been found to significantly alter lipid and inflammatory markers in di-
abetic mice. In KKAy mice, a diabetic model, treatment with emodin led to substantial
changes in lipid profiles, including reductions in TC, triglycerides (TAG), and LDL-C,
while simultaneously increasing HDL-C levels. Moreover, emodin intervention resulted in
lowered FFA levels and reduced inflammatory markers such as high-sensitivity C-reactive
protein (hs-CRP) and TNF-α [123]. These findings highlight the potential of emodin as a
therapeutic agent not only for improving glucose metabolism, but also for ameliorating the
dyslipidemia and inflammation that accompany diabetes. In summary, the interplay be-
tween the lipid metabolism, insulin resistance, and the cardiovascular risks associated with
diabetes underscores the importance of managing lipid profiles alongside blood glucose
levels. Compounds like embelin and emodin show potential in targeting these metabolic
disturbances, suggesting their possible therapeutic roles in improving insulin function,
reducing atherosclerotic risk, and modulating inflammation in diabetic patients. Further
clinical investigations are needed to confirm their efficacy and safety for long-term use in
diabetes management.

5.5. Regulation of Gastrointestinal Absorption

The regulation of gastrointestinal absorption is a significant approach in the treatment
of T2DM with quinones (Figure 5E). Intake of food begins with the breakdown of amylase
into small molecules. Many current hypoglycemic studies focus on the inhibition of amylase
activity, with the aim of specifically forming inhibitory complexes with α-amylase in the
mouth and intestines to block the breakdown and absorption of starch. By delaying the
breakdown of dietary disaccharides or oligosaccharides into absorbable monosaccharides,
α-glucosidase inhibition decreases glucose uptake and lowers blood sugar levels [8]. By
analysis of α-glucosidase inhibition on embelin derivatives, it is found that the hydroxyl
group at the second or fifth position of p-benzenquinone was important, and the long chain
substituents at the third position were preferred [103]. Hydrogen bonds formed between
the hydrophilic group of the active site and several amino acids and the hydrophobic
interaction between the hydrophobic substituent at position three of p-benzoquinone
and the hydrophobic pocket, which was long and relatively narrow, were important
mechanisms of inhibition. RC demonstrated good α-glucosidase inhibition, and studies
of RC interaction at the enzyme binding site show that alkaline residues around the
naphthone ring helped bind the more electronegative parts of the enzyme [140]. Emodin
and its derivatives, such as aloe-emodin, alaternin, and questin, were isolated from S.
obtusifolia L. and R. emodi Wall. These compounds exhibited significant inhibitory activity
against α-glucosidase, with IC50 values of 1.02 µM for emodin, 1.40 µM for aloe-emodin,
0.99 µM for alaternin, and 136.19 µM for questin [8]. And it was found that the number of
hydroxyl groups had an impact on α-glucosidase inhibition, with the hydroxyl group at
the R1 position being particularly important [8]. The presence of methoxy was shown to be
important, as physcion inhibited α-glucosidase more than chrysophanol [48]. In most cases,
glycosylation resulted in increased activity of obtusifolin, while chrysophanol showed
decreased activity [48].

The inhibitory impact of dipeptidyl peptidase-4 (DPP-4) can raise the glucagon-like
peptide 1 (GLP-1) and gastric inhibitory peptide (GIP) levels in the intestine, which in turn
can alter the islet cells to decrease glucagon release and boost the cAMP level in the islet
cells. This conveys signals during protein phosphorylation, delays gastric emptying, and
reduces food intake by central appetite restriction [8]. GLP-1, secreted by intestinal cells,
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plays a crucial role in regulating blood glucose levels by promoting insulin secretion and
inhibiting glucagon release. Emodin, which was found in R. palmatum L., was shown to
effectively suppress DPP-4 activity with an IC50 value of 5.76 µM. However, the binding
affinity of emodin to DPP-4 protein at Glu205 and Glu206 sites was relatively low [141].
Chrysophanol was observed to bind to the active site of DPP-4 with a docking score of
−5.67 kcal/mol and to glibenclamide with a docking score of −3.9 kcal/mol, forming
interactions through five hydrogen bonds. These findings indicated that chrysophanol had
the potential to act as a DPP-4 inhibitor [142].

Intestinal microbiota is implicated in various physiological processes, including nu-
trition, substance metabolism, immune function regulation, and inflammatory response.
Dysbiosis within the intestinal microbiota can adversely impact the metabolism of energy
and substances, induce inflammatory responses, and result in metabolic disorders such
as diabetes. Increased studies have shown that a high-fat diet and intestinal flora imbal-
ance can weaken the intestinal mucosal barrier, thus increasing the body’s inflammatory
response, inducing insulin resistance, and promoting the occurrence and development
of diabetes. Aloe-emodin, rhein, and emodin, as effective components of Guanxin Xi-
aoban capsules, could effectively inhibit the advanced glycation end products–receptor for
advanced glycation end products (AGE-RAGE) signaling pathway, and this mechanism
seemed to be related to changes in intestinal flora, with an increase in the proportion
of Akkermansia and a significant decrease in the proportion of Faecalibaculum [143].
Some studies have found that menaquinones were the main growth factors of bacteria
in the human intestinal microbiota, including Faecalibacterium, Bacteroides, Bilophila,
Gordonibacter, and Sutterella [144]. Dietary vitamin K was remodeled by intestinal flora
and affected the flora composition in male and female C57BL6 mice [80].

The analysis highlights the intricate mechanisms of gastrointestinal regulation through
quinones, specifically their impact on digestive enzyme inhibition, intestinal microbiota
modulation, and DPP-4 activity, all of which are significant in the management of T2DM.
Further research focusing on the pharmacokinetics and bioavailability of quinone com-
pounds is essential to fully understand their therapeutic potential and optimize their use in
diabetes treatment.

6. Toxicity
6.1. Quinone Toxicity in Metabolism

Quinones, such as VK1, VK2, CoQ10, rhodopsin, and components of certain plant-
based ingredients, have complex chemical structures that are both biologically active and
potentially toxic. With the widespread use of these compounds in nutritional and medici-
nal supplements, it has become increasingly important to study their toxicity and effects
on human health. The cytotoxicity and biological activity of quinones, however, are not
uniform and can vary significantly depending on their specific chemical structure. For
instance, a study on p-benzoquinone congeners revealed that the most cytotoxic quinones
were those with the highest electron affinity and the smallest molecular volume [145]. They
are capable of accepting and transferring electrons and participating in redox reactions
that both provide cellular protection and may, in some cases, lead to cellular damage and
toxicity. Quinones have the potential to induce oxidative stress by generating free radicals,
which can cause damage to cellular membranes and DNA [28]. At appropriate doses,
quinones usually have favorable pharmacological effects and are less toxic. However,
excessive doses or prolonged use can upset this balance and increase the risk of toxicity,
potentially triggering hepatotoxicity, nephrotoxicity, and genotoxicity [146]. This “dose-
dependent duality” is the central paradox in assessing its safety. Both 1,4-naphthoquinone
and 1,2-naphthoquinone demonstrated substantial genotoxicity and cytotoxicity. In con-
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trast, benzo[a]anthracene-7,12-quinone exhibited high genotoxicity and cardiovascular
toxicity, and 9,10-phenanthrenequinone displayed negligible genotoxicity but nearly the
highest cytotoxicity [147]. It has been demonstrated that chrysophanol, emodin, dantron,
and aloe-emodin were mutagenic in bacteria, mostly through frameshift mutations and
DNA damage [28]. 2,3-Dimethoxy-1,4-naphthoquinone (DMNQ) has the ability to cause
hepatotoxicity, which in turn can be intensified by CYP450 inhibition [148]. Meanwhile,
studies on the toxicity of emodin have shown that emodin has testicular reproductive
toxicity due to the disruption of testicular gene expression [149].

Although plant-derived quinones show potential in the management of T2DM, the
risks of their long-term use need to be critically weighed. Frangula purshiana, known
for its anthraquinone content, particularly emodin, could inhibit insulin aggregation and
fibrillation, potentially improving insulin function in diabetic models [150]. However,
chronic use raised concerns about gastrointestinal toxicity, including melanosis coli and
potential colorectal cancer risks [151,152]. Similarly, Senna alexandrina contained sennosides
that demonstrated hypoglycemic effects; however, long-term consumption was associated
with severe adverse reactions such as kidney and liver toxicity, gastrointestinal hemorrhage,
and other complications [151]. Aloe vera was recognized for its glucose-lowering effects due
to its polysaccharides and anthraquinones. Nevertheless, chronic use could lead to diarrhea,
hypokalemia, and even carcinogenicity linked to whole leaf extracts [153]. Overall, while
quinones may offer therapeutic benefits for T2DM management, their long-term safety
remains a critical concern that requires further investigation to ensure that the risks do not
outweigh the benefits in chronic treatment settings.

The toxicity of quinones is not limited to exogenous uptake; their pathways as endoge-
nous metabolites are equally critical. Quinones are an active metabolite in the body that
cannot be ignored. Many drugs, foods, or inhalants entering the body can be metabolized
by the body’s metabolic enzyme system to produce quinones, which are highly reactive and
easily bind to biological macromolecules in the body. Hypoglycemic drugs, such as trogli-
tazone, are catalyzed by enzymes such as CYP450 and peroxidase to produce troglitazone
quinone, which is prone to hepatotoxicity [20]. It has also been found that the observed
toxicity of phenols can be correlated with the properties of their orthoquinone oxidation
products or metabolites [154]. In addition, inhalants such as air pollutants, including fossil
and diesel combustion and tobacco smoke, contain significant amounts of polynuclear
aromatic hydrocarbons, such as naphthalene, which can be metabolized to quinones in the
body and produce physiological toxicity [89].

6.2. Strategies to Reduce Quinone Toxicity

To reduce the toxicity of quinones, recent studies have begun to explore co-
administration, structural modifications, and novel delivery systems. By combining
quinones with other antioxidants or anti-inflammatory components, the oxidative stress and
inflammatory responses they provoke are reduced. CoQ10 and sitagliptin co-administration
for the treatment of diabetic nephropathy showed better renoprotective effects than CoQ10
or sitagliptin given alone [155]. By modifying the chemical structure of quinones, com-
pound forms that retain their pharmacological activity while reducing toxicity are explored.
Sulfonation of anthraquinones may reduce their toxicity because of their enhanced polarity,
decreased cellular permeability, and decreased capacity to attach to DNA molecules to
form complexes [28]. And it has been studied to achieve the goal of controlled masking
and targeted release of redox cycling through the C-C bond-cleaving 1,6-elimination of
orthoquinones [156]. At the same time, delivery systems such as nanoparticles and hy-
drogels can be used to achieve the targeted delivery of drugs, resulting in more targeted
and less toxic therapeutic regimens. The use of Pluronic F-127 to encapsulate emodin in
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a hydrogel to create a topical delivery system improved the solubility of emodin while
greatly reducing the liver injury associated with systemic emodin administration [157].
Nanoparticles encapsulating chrysophanol have been shown to improve its bioavailability
and augment its nephroprotective properties [158].

6.3. Artificial Intelligence and Computational Approaches in Toxicology

Studies on the toxicity of quinones, which are potentially toxic due to their com-
plex structure, are particularly critical in medicinal safety. The combination of modern
technologies, including artificial intelligence and advanced computational methods, with
toxicological studies represents a major paradigm shift. This shift has increased the speed,
efficiency, and accuracy of toxicological evaluations, allowing for researchers to address
complex questions about food safety exposures. High-throughput screening techniques
enable the rapid assessment of the toxic effects of a large number of compounds, and,
in combination with advanced tools such as mass spectrometry and nuclear magnetic
resonance, scientists can accurately analyze chemicals and their metabolites in food at the
molecular level [159]. Such techniques significantly reduce the time required for traditional
toxicity assessments and provide more detailed insights into the metabolic pathways of
chemicals in the human body and their interactions with biological systems. Recent devel-
opments in deep learning algorithms have proven effective for constructing quantitative
structure–activity relationship (QSAR) models aimed at predicting toxicity. The models
leverage large datasets to enhance the accuracy of toxicity predictions, enabling researchers
to rapidly assess potential hazards associated with chemical compounds [160]. Computer-
aided predictive modeling, including the application of computational platforms such as
Discovery Studio, ProTox-II, Derek Nexus, ChemSpider, VEGA QSAR, Tox21 Data Chal-
lenge, SimCYP, etc., has significantly improved the efficiency of food safety assessments.
Hughes et al. offer a rapid screening mechanism for critical drug toxicity risk with their
simulation of quinone formation [19]. The model had an area under the receiver operat-
ing characteristic curve (AUC) accuracy of 97.6% for predicting pairs of atoms forming
quinones and an AUC of 88.2% for identifying molecules forming quinones. Such high
precision underscores the potential of AI-driven tools in toxicity assessments. At the same
time, the integration of toxicology with genomics and bioinformatics has further deepened
the understanding of the complex interactions between chemical substances and biological
systems through gene expression and molecular dynamics analyses [161]. Toxicogenomics
uses gene expression analysis to reveal the molecular mechanisms of toxicity, providing
a theoretical basis for more accurate toxicity assessments. In summary, the application of
modern technology, especially artificial intelligence, big data, and predictive modeling, has
enabled toxicological studies to more efficiently and accurately address the assessment
of potentially hazardous substances, especially the toxicity of complex structures such as
quinones, which is of great significance in enhancing medicinal safety.

6.4. Research Challenges and Future Directions of Quinone Toxicity

In the realm of diabetes management, quinones found in various foods have shown
promise in enhancing glucose metabolism [162,163]. However, their use presents potential
toxicity risks, particularly with long-term consumption. To address these risks, regular
blood tests to monitor liver and kidney function are essential for early toxicity detec-
tion [164]. Additionally, controlling the dosage and duration of quinone intake, especially
for anthraquinones that may cause gastrointestinal issues, is crucial [165]. Personalized
medicine approaches, based on individual genetic profiles, can further tailor treatment
plans to minimize toxicity [166]. Encouraging the intake of quinones from natural food
sources, which may have lower toxicity due to accompanying protective compounds, is
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another effective strategy. Adherence to established safety guidelines and education of
patients and healthcare providers are vital for early intervention. Lastly, exploring adjunct
therapies that enhance quinone benefits while reducing toxicity can offer a safer and more
effective management approach [167,168]. By implementing these strategies, healthcare
providers can safely leverage the benefits of quinones in diabetes management while
minimizing associated risks.

Toxicity studies on quinones are still in a deepening stage. Despite their significant
biological activity, the potential toxicity risks of these compounds cannot be ignored.
Current studies have revealed the dual nature and complexity of quinones; however, the
understanding of their mechanisms of toxicity, long-term exposure risks, and individual
differences is incomplete. Research on natural product-based health interventions should
shift focus from isolated active components to a more holistic approach, emphasizing the
synergistic effects of various bioactive compounds found in these natural sources. The
complexity of interactions among multiple compounds within natural products—such
as herbs, fruits, and other herbs—could play a significant role in the prevention and
management of chronic diseases [169]. Current studies have mostly focused on single
quinones, overlooking the potential synergistic or antagonistic effects of their co-ingestion
as part of a broader natural product intake. In addition, individual metabolic differences
are influenced by genetic, health status, and environmental factors, and exposure risks
are under-assessed, especially for specific populations with lower metabolic efficiency,
where toxicity risks may be higher [170]. However, most studies have been limited to
healthy adults and lack comprehensive assessments of the elderly, children, or diseased
groups. Existing toxicity studies rely mainly on in vitro experiments and animal models,
but extrapolation to humans is limited due to species differences and complex metabolic
pathways in the human body. Assessments of short-term or single-dose exposures ignore
the risk of chronic toxicity from long-term low-dose intake. Quinones can accumulate
over long periods of time and participate in body metabolism, which may pose potential
health risks. In addition, the stability of quinones during food or herb processing and the
formation of their toxic derivatives under high-temperature conditions still lack in-depth
studies. The development of modern technologies, especially the application of big data
analysis, artificial intelligence, and computational modeling, has provided new tools for
toxicity studies and is expected to optimize the toxicity assessment process. However, future
studies still need to strengthen the investment in human trials, develop more sophisticated
in vivo and ex vivo simulation models, and conduct comprehensive assessments of long-
term exposure risks in order to reveal more accurately the health effects of quinones and
their safety limits.

7. Bioavailability
Quinones have significant biological activities in food and drugs, especially in the

prevention and treatment of metabolic diseases such as diabetes, which show great potential.
However, the problem of bioavailability of quinones has been a major obstacle limiting
the research and application of their pharmacological effects. Bioavailability refers to the
extent to which an active ingredient is effectively utilized by the body during digestion
and absorption and is influenced by factors such as solubility, absorption rate, metabolic
pathway, and distribution in the body [171]. Some important quinones, such as rhodopsin,
VK1/2, PQQ, and CoQ10, despite their good hypoglycaemic activity, usually have low
bioavailability due to their poor water solubility, rapid metabolism, and excretion, limiting
their clinical applications.

Bioavailability of oral PQQ appears to be low in several body systems [172]. The
concentration of PQQ in human serum reached its peak 3 h post-administration, with
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its clearance profile in serum closely mirroring that observed in urine [173]. Although
PQQ demonstrates high redox cycling capacity, its hydrophilic nature and rapid systemic
clearance result in suboptimal pharmacokinetics. To improve absorption, formulations
integrating PQQ into food matrices or liposomal carriers have shown promising results,
enhancing its intestinal uptake and stability in circulation [168]. PQQ undergoes minimal
enzymatic modification in the body and is excreted in its intact form through urine. It is
metabolically stable, with its primary role being redox cycling, which supports mitochon-
drial function and reduces oxidative stress, beneficial for glucose regulation in T2DM [173].
CoQ10 is converted to its reduced form, ubiquinol, by NAD(P)H-dependent quinone
reductases in tissues. Ubiquinol acts as a potent antioxidant, neutralizing free radicals
and improving mitochondrial function in T2DM patients [174]. Its metabolism is highly
dependent on age and individual mitochondrial activity. Due to its pronounced hydropho-
bicity and substantial molecular weight, CoQ10 exhibits slow and inefficient absorption
in the gastrointestinal tract, with oral bioavailability typically remaining below 5% [25].
Recent advancements in formulation technologies, such as nanoemulsions, phytosomes,
and ubiquinol-based formulations, have improved CoQ10’s solubility and absorption. Na-
noemulsions have increased its bioavailability by up to threefold, ensuring higher plasma
concentrations and better therapeutic efficacy [167]. The bioavailability of vitamin K has
also been the focus of research. VK1 has a low dietary absorption rate of approximately
5–15% and a short half-life [53]. VK1 is more readily absorbed from vegetable oils than
from vegetables. VK1 is capable of self-renewal through redox cycling in the liver and
can be reused many times, which explains its lower daily requirement [53]. In contrast,
Vitamin K2, particularly MK-7, has superior bioavailability due to its extended isoprenoid
chain, slower clearance, and higher systemic retention. MK-7 also exhibits a longer half-life,
allowing for better distribution in tissues and sustained therapeutic effects [175]. Novel
emulsification techniques have further enhanced the bioavailability of Vitamin K2. Vita-
min K is metabolized in the liver via reduction to its active hydroquinone form, which
plays a key role in γ-carboxylation reactions critical for glucose metabolism and vascular
health [176]. Anthraquinones also show good hypoglycaemic activity, e.g., rhein, emodin,
chrysophanol, and aloeemodin, which are mainly absorbed in the intestine. It was found
that the order of bioavailability of some anthraquinones is rhein > emodin > chrysophanol
> aloeemodin [177]. Due to their high lipid solubility, free anthraquinones are absorbed at
a faster rate than conjugated glycosides. The fluctuating blood concentrations and multiple
absorption peaks of anthraquinones may be related to hepatic and intestinal circulation
and reabsorption. Anthraquinones are widely distributed throughout the body, especially
in organs and tissues with abundant blood flow [177]. Most anthraquinones are conjugated
to glucuronides or sulfates, which are excreted through bile or urine.

To improve the bioavailability of quinones, nanotechnology has been widely used
in recent years. By encapsulating quinones in nanoparticles, liposomes, or polymeric
carriers, their solubility, absorption, and in vivo stability have been significantly improved.
Emodin-loaded Poly-PEGMA-DMAEMA-MAM nanoparticles have shown efficacy in al-
leviating diabetic neuropathic pain by inhibiting purinergic P2X3 receptor expression,
reducing TNF-α levels, and suppressing ERK1/2 activation in the dorsal root ganglia
of type 2 diabetic rats [178]. Additionally, rhein-chitosan in situ hydrogel significantly
accelerated wound healing in diabetic mice over a short period of two weeks [179]. This
approach utilized the unique properties of hydrogels to provide a moist environment
conducive to healing while delivering therapeutic agents effectively. In order to improve
the in vivo utilization of CoQ10, novel CoQ10 formulations have been studied, such as
CoQ10 nano-liposomes, lipid-CoQ10 conjugate nanodispersion (BPM31510), multicompos-
ite CoQ10 terclatrate (Q-TER), CoQ10/b-cyclodextrin complexes, and nano-micellar CoQ10
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formulations (Ubisol-Q10 and micellular formation with caspofungin), among others [25].
Formulations have been shown to have higher delivery efficiencies in vitro, and some of
them have been shown to provide better CoQ10 bioavailability in vivo [180]. Intravenous
administration of some formulations is particularly attractive for overcoming the poor
and variable absorption of oral CoQ10 [181]. This method allowed for direct delivery into
the bloodstream, bypassing gastrointestinal barriers and enhancing systemic availability.
Controlled release systems have also been developed to optimize the pharmacokinetics
and therapeutic efficacy of quinones. For instance, pH-sensitive polymeric nanoparticles
have been engineered to release their quinone payloads specifically at the target site, en-
hancing local concentrations and minimizing systemic side effects [182]. Furthermore,
stimuli-responsive delivery platforms, such as temperature or redox-sensitive carriers,
enable the controlled release of quinones in response to specific physiological conditions,
improving therapeutic precision [183]. In addition, traditional Chinese medicine (TCM)
theory mentions that drug–drug interactions can enhance the absorption of quinones, such
as that the components in wine-steamed rhubarb can accelerate the hydrolysis reaction
through the metabolism of ethanol, which improves its bioavailability [184]. Combining
quinones with bioavailability enhancers, such as bile salts, surfactants, or dietary lipids,
has proven to be effective. Vitamin K1, for example, is better absorbed when ingested with
vegetable oils rather than as part of raw vegetables [176].

In conclusion, although quinones show great promise in the treatment of metabolic
diseases, especially diabetes mellitus, their low bioavailability remains an urgent challenge.
In recent years, strategies such as nanotechnology, liposomes, self-emulsifying systems,
chemical modifications, and eutectic technologies have made significant progress in en-
hancing the solubility, absorption, and in vivo stability of quinones. Future studies should
continue to focus on the optimization of delivery systems and the assessment of long-term
safety with a view to achieving a wider range of clinical applications for quinones.

8. Limitations and Prospects
Quinones, such as CoQ10, RC, VK1/2, and emodin, show potential health benefits,

particularly in regulating blood sugar levels and managing diabetes. However, research on
their mechanisms of action still faces a series of limitations and challenges. Quinones can
regulate blood glucose balance by modulating mitochondrial function, inflammation, lipid
profile, gastrointestinal absorption, etc., but the specific molecular mechanisms are still
not fully understood. A systematic mechanistic framework has not yet been established,
and there are still some unknown mechanisms that need to be discovered and validated.
Multi-target mechanisms of action are a major feature of natural product interventions with
active molecules, complicating the study of their precise mechanisms of action [185].

PQQ, as a potent antioxidant and mitochondrial function modulator, has demon-
strated the ability to lower blood glucose levels and improve insulin sensitivity in animal
experiments by enhancing mitochondrial function and inhibiting PTP1B enzyme activity.
However, there are currently few clinical trials in humans, with research primarily focused
on cognitive function and antioxidant effects, leaving limited direct clinical evidence for
its use in diabetes treatment [186]. Meanwhile, CQ10 has shown significant anti-diabetic
effects in clinical studies. Eight clinical trials have revealed that CQ10 could improve
endothelial function, thereby reducing the occurrence of diabetic complications such as
vascular lesions and nephropathy. Additionally, two double-blind placebo-controlled
trials have, respectively, confirmed the significant improvement of diabetic neuropathy
and retinopathy symptoms with CQ10 supplementation [187]. In studies on vitamin K,
a 2 h oral glucose tolerance test demonstrated that vitamin K supplementation could ef-
fectively reduce blood glucose and insulin levels in prediabetic populations [188]. While
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these findings are promising, much of the current research on quinones’ glucose-lowering
mechanisms is based on in vitro experiments and animal models, limiting their broader
clinical applicability. Therefore, large-scale rigorously designed clinical trials are needed to
verify its efficacy, long-term effects, and safety [189]. These clinical data will help to study
individualized treatment regimens in different diabetes subtypes, age groups, genetic back-
grounds, lifestyles, and diets, and to more effectively assess the possible toxic side effects
of long-term use. In addition, the low bioavailability of quinones, which is determined
by their chemical structure, limits their hypoglycemic effect. Therefore, future research
may need to focus on developing effective drug delivery systems or on improving their
biological properties.

The natural sources of quinones are diverse and include a wide range of vegetables,
fruits, herbs, animal and marine products, and fermented products. The chemical structures
are also highly diverse, and this diversity increases the complexity of quinones research and
makes it difficult to develop uniform research standards. Quinones are usually found in
low concentrations in the natural product, and there are many challenges in their extraction
and standardization, and the extraction process needs to be further explored to be more
efficient, economical, and environmentally friendly [190]. In addition, the stability problem
of quinones is also a focus that should not be ignored, such as the photosensitivity problem
of some quinones, such as RC and VK1 [50,191].

In diabetes prevention and treatment research, a multi-dimensional systematic model
of health control can be proposed (Figure 6). Unlike traditional research that focuses on
single components, this model highlights the multifaceted interactions of bioactive ingredi-
ents in natural products. By studying the synergistic effects of different natural product
chemical compositions, revealing how they work together through multi-target mecha-
nisms to influence physiological processes such as glucose metabolism, lipid metabolism,
and inflammatory response, thereby improving the prevention and treatment of diabetes
more comprehensively [192]. And one core of this research model lies in the realization
of personalized health interventions. Due to the wide range of people with diabetes, their
cultural backgrounds, personal preferences, comorbidities, and the socio-economic envi-
ronments in which they live, a “one-size-fits-all” approach to prevention and treatment is
impractical [193]. Moreover, considering the significant differences in the biological effects
of natural products in different individuals, it is possible to tailor health interventions in
combination with genomics, metabolomics, and gut microbiome technologies to achieve
precision treatment [194]. This approach not only maximizes the therapeutic effect of
natural products, but also improves the overall effect of the intervention by optimizing the
combination and dosage of active ingredients to overcome fluctuations in effect due to indi-
vidual differences. In addition, integrated interdisciplinary research and the application of
digital health technologies are important directions to promote the development of this re-
search model. The in-depth integration of food science, nutrition, pharmacy, metabolomics,
gut microbiology, and information technology will provide more systematic and precise
theoretical support for the application of natural products in diabetes nutrition prevention
and treatment [195]. With the help of big data analysis and digital health platforms, the
dynamic monitoring and real-time analysis of individual health data can be realized, thus
continuously optimizing nutritional intervention strategies and ensuring more accurate
and personalized treatment plans [196]. Ultimately, with the development of this model,
the application of natural products in health intervention for diabetes and other chronic
diseases will be more systematic and personalized. The model also advocates green and
sustainable health intervention strategies, emphasizing the use of natural products to lower
blood sugar through green pharmaceutical technology while promoting a healthy lifestyle,
such as a balanced diet and moderate exercise, to support the long-term management
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and prevention of diabetes. At the same time, combining the bioactive mechanisms of
natural products with modern drug development and innovative drug delivery systems
(e.g., nano-delivery technology) will further enhance the effectiveness of natural products
in clinical treatment and open up a broader prospect for diabetes prevention and treatment.
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Expanding on this multi-dimensional approach, quinones hold significant promise
beyond diabetes, with emerging applications in diverse health domains. Their inherent
antioxidant, anti-inflammatory, and mitochondrial-modulating properties position them
as versatile candidates for cancer therapy (e.g., tumor-targeted prodrugs and chemosen-
sitization), neurodegenerative disease mitigation (via mitochondrial biogenesis and ROS
scavenging), and cardiovascular health (reducing arterial calcification and lipid dysreg-
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ulation) [5,197,198]. In antimicrobial resistance, quinones like juglone disrupt biofilms,
while in autoimmune disorders, compounds such as emodin suppress NF-κB-driven in-
flammation [146,199]. Their role in anti-aging, particularly in combating sarcopenia and
metabolic decline through mitochondrial support, further underscores their broad util-
ity [31]. To optimize these applications, personalized strategies integrating genomics,
metabolomics, and gut microbiome profiling could tailor quinone-based interventions to
individual biological variability, enhancing efficacy and minimizing toxicity. Innovations
like nano-delivery systems may overcome bioavailability challenges, while digital health
platforms could enable the real-time monitoring of therapeutic responses. Interdisciplinary
collaboration—spanning pharmacology, food science, and green chemistry—will drive
sustainable production methods and synergistic formulations, aligning with the model’s
emphasis on eco-friendly solutions. By embedding quinones within this systematic frame-
work, future research can unlock their potential across oncology, neurology, and infectious
diseases, advancing precision medicine and holistic health strategies.

9. Conclusions
Quinones in natural products have received much attention for their potential in

hypoglycaemic activity. Despite their abundant sources and diverse classes, they still face
major challenges in terms of bioavailability and toxicity. In recent years, the bioavailability
and toxicity of these compounds have been significantly improved through nanotechnol-
ogy, self-emulsifying systems, and chemical modifications, offering more possibilities for
their applications. Future studies need to continue to explore the targeted delivery and
multicomponent synergistic effects of quinones while devoting more attention to their
toxicity and long-term safety assessment in order to promote their practical applications
in diabetes treatment while promoting the formulation of dietary recommendations, the
development of supplements or incorporation into drug therapies, or providing specific
recommendations for future studies or clinical trials.
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