Hyaluronan Benzyl Ester as a Scaffold for Tissue Engineering
Abstract
:1. Introduction
2. Skin
3. Cartilage
4. Adipose Tissue
5. Gland Tissue Reconstruction
6. Peripheral Nerve Regeneration
7. MSC Differentiation
8. HYAFF® for in Vivo Vessel Regeneration
9. Conclusions
References and Notes
- Benedetti, L; Cortivo, R; Berti, T; Berti, A; Pea, F; Mazzo, M; Moras, M; Abatangelo, G. Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats. Biomaterials 1993, 14, 1154–1160. [Google Scholar]
- Campoccia, D; Hunt, JA; Doherty, PJ; Zhong, SP; O'Regan, M; Benedetti, L; Williams, DF. Quantitative assessment of the tissue response to films of hyaluronan derivatives. Biomaterials 1996, 17, 963–975. [Google Scholar]
- Milella, E; Brescia, E; Massaro, C; Ramires, PA; Miglietta, MR; Fiori, V; Aversa, P. Physico-chemical properties and degradability of non-woven hyaluronan benzylic esters as tissue engineering scaffolds. Biomaterials 2002, 23, 1053–1063. [Google Scholar]
- Elvassore, N; Baggio, M; Pallado, P; Bertucco, A. Production of different morphologies of biocompatible polymeric materials by supercritical CO2 antisolvent techniques. Biotechnol. Bioeng 2001, 73, 449–457. [Google Scholar]
- Brun, P; Cortivo, R; Zavan, B; Vecchiato, N; Abatangelo, G. In vitro reconstructed tissues on hyaluronan-based temporary scaffolding. J. Mater. Sci. Mater. Med 1999, 10, 683–688. [Google Scholar]
- Esposito, E; Menegatti, E; Cortesi, R. Hyaluronan-based microspheres as tools for drug delivery: a comparative study. Int J Pharm 2005, 288, 35–49. [Google Scholar]
- Zavan, B; Vindigni, V; Vezzù, K; Zorzato, G; Luni, C; Abatangelo, G; Elvassore, N; Cortivo, R. Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: a placebo-controlled study. J. Mater. Sci. Mater. Med 2009, 20, 235–247. [Google Scholar]
- Rheinwald, JG; Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 2007, 6, 331–344. [Google Scholar]
- Green, H; Kehinde, O; Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 1979, 76, 5665–5668. [Google Scholar]
- Gallico, GG; O’Connor, NE; Compton, CC; Kehinde, O; Green, H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl. J. Med 1984, 311, 448–451. [Google Scholar]
- Gallico, GG; O’Connor, NE; Compton, CC; Remensnyder, JP; Kehinde, O; Green, H. Cultured epithelial autografts for giant congenital nevi. Plast. Reconstr. Surg 1989, 84, 1–9. [Google Scholar]
- Price, RD; Berry, MG; Navsaria, HA. Hyaluronic acid: the scientific and clinical evidence. J. Plast Reconstr. Aesth. Surg 2007, 60, 1110–1119. [Google Scholar]
- Atiyeh, BS; Costagliola, M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns 2007, 33, 405–413. [Google Scholar]
- Zacchi, V; Soranzo, C; Cortivo, R; Radice, M; Brun, P; Abatangelo, G. In vitro engineering of human skin-like tissue. J. Biomed. Mater. Res 1998, 40, 187–194. [Google Scholar]
- Tonello, C; Vindigni, V; Zavan, B; Abatangelo, S; Abatangelo, G; Brun, P; Cortivo, R. In vitro reconstruction of an endothelialized skin substitute provided with a microcapillary network using biopolymer scaffolds. FASEB J 2005, 19, 1546–1548. [Google Scholar]
- Trampezinski, S; Berthier-Vergnes, O; Denis, A; Schmitt, D; Viac, J. Comparative expression of vascular endothelia growth factor family members, VEGF-B, -C, and -D, by normal human keratinocytes and fibroblasts. Exp. Dermatol 2004, 13, 98–105. [Google Scholar]
- Turner, NJ; Kielty, CM; Walker, MG; Canfield, AE. A novel hyaluronan based biomaterial (Hyaff-11®) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials 2004, 25, 5955–5964. [Google Scholar]
- Rossi, WE; Rossi, A; Gerli, A; Lamponi, S; Magnani, A; Pasqui, D; Barbucci, R. Micropatterned hyaluronan surfaces promote lymphatic endothelial cell alignment and orient their growth. Lymphology 2004, 37, 15–21. [Google Scholar]
- Candrian, C; Bonacina, E; Frueh, JA; Vonwil, D; Dickinson, S; Wirz, D; Heberer, M; Jakob, M; Martin, I; Barbero, A. Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair. Osteoarthritis Cartilage 2009, 17, 489–96. [Google Scholar]
- Marcacci, M; Berruto, M; Brocchetta, D; Delcogliano, A; Ghinelli, D; Gobbi, A; Kon, E; Pederzini, L; Rosa, D; Sacchetti, GL; Stefani, G; Zanasi, S. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin. Orthop. Relat. Res 2005, 435, 96–105. [Google Scholar]
- Brun, P; Abatangelo, G; Radice, M; Zacchi, V; Guidolin, D; Gordini, DD; Cortivo, R. Chondrocyte aggregation and reorganization into three-dimensional scaffolds. J. Biomed. Mater. Res 1999, 46, 337–346. [Google Scholar]
- Girotto, D; Urbani, S; Brun, P; Renier, D; Barbucci, R; Abatangelo, G. Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials 2003, 24, 3265–3275. [Google Scholar]
- Brun, P; Dickinson, SC; Zavan, B; Cortivo, R; Hollander, AP; Abatangelo, G. Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther 2008, 10, R132. [Google Scholar]
- Tognana, E; Borrione, A; De Luca, C; Pavesio, A. Hyalograft C: hyaluronan-based scaffolds in tissue-engineered cartilage. Cells Tissues Organs 2007, 186, 97–103. [Google Scholar]
- Hollander, AP; Dickinson, SC; Sims, TJ; Brun, P; Cortivo, R; Kon, E; Marcacci, M; Zanasi, S; Borrione, A; De Luca, C; Pavesio, A; Soranzo, C; Abatangelo, G. Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng 2006, 12, 1787–1798. [Google Scholar]
- Pavesio, A; Abatangelo, G; Borrione, A; Brocchetta, D; Hollander, AP; Kon, E; Torasso, F; Zanasi, S; Marcacci, M. Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found. Symp 2003, 249, 203–217. [Google Scholar]
- Itoi, Y; Takatori, M; Hyakusoku, H; Mizuno, H. Comparison of readily available scaffolds for adipose tissue engineering using adipose-derived stem cells. J Plast Reconstr Aesth Surg, 2009; in press. [Google Scholar]
- Baumann, L. Dermal filler. J. Cosmet. Dermatol 2004, 3, 249–250. [Google Scholar]
- Halbleib, M; Skurk, T; de Luca, C; von Heimburg, D; Hauner, H. Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I. In vitro differentiation of human adipocyte precursor cells on scaffolds. Biomaterials 2003, 24, 3125–3132. [Google Scholar]
- Hemmrich, K; von Heimburg, D; Rendchen, R; Di Bartolo, C; Milella, E; Pallua, N. Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials 2005, 26, 7025–7037. [Google Scholar]
- von Heimburg, D; Zachariah, S; Low, A; Norbert, P. Influence of different biodegradable carriers on the in vivo behavior of human adipose precursor cells. Plast. Reconstr. Surg 2001, 108, 411–420. [Google Scholar]
- Hemmrich, K; Van de Sijpe, K; Rhodes, NP; Hunt, JA; Bartolo, CD; Pallua, N; Blondeel, P; Von Heimburg, D. Autologous in vivo adipose tissue engineering in hyaluronan-based gels - a pilot study. J. Surg. Res 2008, 144, 82–88. [Google Scholar]
- Messina, A; Bortolotto, SK; Cassell, OC; Kelly, J; Abberton, KM; Morrison, WA. Generation of a vascularized organoid using skeletal muscle as the inductive source. FASEB J 2005, 19, 1570–1572. [Google Scholar]
- Knight, KR; Uda, Y; Findlay, MW; Brown, DL; Cronin, KJ; Jamieson, E; Tai, T; Keramidaris, E; Penington, AJ; Rophael, J; Harrison, LC; Morrison, WA. Vascularized tissue-engineered chambers promote survival and function of transplanted islets and improve glycemic control. FASEB J 2006, 20, 565–567. [Google Scholar]
- Catapano, G; De Bartolo, L; Vico, V; Ambrosio, L. Morphology and metabolism of hepatocytes cultured in Petri dishes on films and in non-woven fabrics of hyaluronic acid esters. Biomaterials 2001, 22, 659–665. [Google Scholar]
- Zavan, B; Cortivo, R; Tonello, C; Abatangelo, G. Gland cell cultures into 3D hyaluronan-based scaffolds. J. Mater. Sci. Mater. Med 2003, 14, 727–729. [Google Scholar]
- Zavan, B; Brun, MP; Vindigni, V; Amadori, A; Habeler, W; Pontisso, P; Montemurro, D; Abatangelo, G; Cortivo, R. Extracellular matrix-enriched polymeric scaffolds as a substrate for hepatocyte cultures: in vitro and in vivo studies. Biomaterials 2005, 26, 7038–7045. [Google Scholar]
- Chalfoun, CT; Wirth, GA; Evans, GR. Tissue engineered nerve constructs: Where do we stand? J. Cell Mol. Med 2006, 10, 309–317. [Google Scholar]
- Evans, GR. Approaches to tissue engineered peripheral nerve. Clin. Plast. Surg 2003, 30, 559–563. [Google Scholar]
- Johnson, EO; Zoubos, AB; Soucacos, PN. Regeneration and repair of peripheral nerves. Injury 2005, 36, S24–S49. [Google Scholar]
- Zavan, B; Abatangelo, G; Mazzoleni, F; Bassetto, F; Cortivo, R; Vindigni, V. New 3D hyaluronan-based scaffold for in vitro reconstruction of the rat sciatic nerve. Neurol. Res 2008, 30, 190–196. [Google Scholar]
- Aguiari, P; Leo, S; Zavan, B; Vindigni, V; Rimessi, A; Bianchi, K; Franzin, C; Cortivo, R; Rossato, M; Vettor, R; Abatangelo, G; Pozzan, T; Pinton, P; Rizzuto, R. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc. Natl. Acad. Sci. USA 2008, 105, 1226–1231. [Google Scholar]
- Zavan, B; Giorgi, C; Bagnara, GP; Vindigni, V; Abatangelo, G; Cortivo, R. Osteogenic and chondrogenic differentiation: comparison of human and rat bone marrow mesenchymal stem cells cultured into polymeric scaffolds. Eur. J. Histochem 2007, 51, 1–8. [Google Scholar]
- Radice, M; Brun, P; Cortivo, R; Scapinelli, R; Battaliard, C; Abatangelo, G. Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors. J. Biomed. Mater. Res 2000, 50, 101–109. [Google Scholar]
- Grigolo, B; Lisignoli, G; Desando, G; Cavallo, C; Marconi, E; Tschon, M; Giavaresi, G; Fini, M; Giardino, R; Facchini, A. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng Part C Methods 2009, 27. Epub ahead of print. [Google Scholar]
- Pasquinelli, G; Orrico, C; Foroni, L; Bonafè, F; Carboni, M; Guarnieri, C; Raimondo, S; Penna, C; Geuna, S; Pagliaro, P; Freyrie, A; Stella, A; Caldarera, CM; Muscari, C. Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair. J. Anat 2008, 213, 520–530. [Google Scholar]
- Lisignoli, G; Cristino, S; Piacentini, A; Toneguzzi, S; Grassi, F; Cavallo, C; Zini, N; Solimando, L; Mario, MN; Facchini, A. Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials 2005, 26, 5677–5686. [Google Scholar]
- Ibrahim, S; Ramamurthi, A. Hyaluronic acid cues for functional endothelialization of vascular constructs. J. Tissue Eng. Regen. Med 2008, 2, 22–32. [Google Scholar]
- Al’Qteishat, A; Gaffney, J; Krupinski, J; Rubio, F; West, D; Kumar, S; Kumar, P; Mitsios, N; Slevin, M. Changes in hyaluronan production and metabolism following ischaemic stroke in man. Brain 2006, 129, 2158–2176. [Google Scholar]
- Lepidi, S; Abatangelo, G; Vindigni, V; Deriu, GP; Zavan, B; Tonello, C; Cortivo, R. In vivo regeneration of small-diameter (2 mm) arteries using a polymer scaffold. FASEB J 2006, 20, 103–105. [Google Scholar]
- Zavan, B; Vindigni, V; Lepidi, S; Iacopetti, I; Avruscio, G; Abatangelo, G; Cortivo, R. Neoarteries grown in vivo using a tissue-engineered hyaluronan-based scaffold. FASEB J 2008, 22, 2853–2861. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vindigni, V.; Cortivo, R.; Iacobellis, L.; Abatangelo, G.; Zavan, B. Hyaluronan Benzyl Ester as a Scaffold for Tissue Engineering. Int. J. Mol. Sci. 2009, 10, 2972-2985. https://doi.org/10.3390/ijms10072972
Vindigni V, Cortivo R, Iacobellis L, Abatangelo G, Zavan B. Hyaluronan Benzyl Ester as a Scaffold for Tissue Engineering. International Journal of Molecular Sciences. 2009; 10(7):2972-2985. https://doi.org/10.3390/ijms10072972
Chicago/Turabian StyleVindigni, Vincenzo, Roberta Cortivo, Laura Iacobellis, Giovanni Abatangelo, and Barbara Zavan. 2009. "Hyaluronan Benzyl Ester as a Scaffold for Tissue Engineering" International Journal of Molecular Sciences 10, no. 7: 2972-2985. https://doi.org/10.3390/ijms10072972
APA StyleVindigni, V., Cortivo, R., Iacobellis, L., Abatangelo, G., & Zavan, B. (2009). Hyaluronan Benzyl Ester as a Scaffold for Tissue Engineering. International Journal of Molecular Sciences, 10(7), 2972-2985. https://doi.org/10.3390/ijms10072972