Hypericins as Potential Leads for New Therapeutics
Abstract
:1. Introduction
1.1. Distribution, Plant Sources
1.2. Other Sources of Hypericin and Pseudohypericin
1.3. Endophytic Fungi
2. Biosynthesis
3. Properties
4. Stability
5. Extraction, Isolation and Synthesis of Hypericin and Pseudohypericin
5.1. Extraction and Isolation
5.2. Synthesis
5.2.1. Synthesis of hypericin and pseudohypericin
5.2.2. Synthesis of analogues with improved physicochemical properties, solubility and targeting of specific cellular sites
6. Photodynamic Therapy (PDT) and Cancer
6.1. Mechanisms Linked to Apoptotic/Necrotic or Cell Survival Processes
- high dose of light leads to necrosis.
- medium light doses activate different apoptotic pathways: (2a) activation of caspase -8 and final activation of the caspases -3, -6, -7; (2b) mitochondrial release of cytochrome C, accompanied by mitochondrial Ca2+ release leads to activation of the caspases -3, -6, -7 via activation of caspace -9. Bax/Bid proapoptotic proteins enhance the cytochrome C release, whereas the antiapoprotic Bcl-2 inhibits the cytochrome C reflux; (2c) Ca2+ release from the endoplasmic reticulum activates cytochrome C release from mitochondria.
- inhibition of the ERKs induces cytostatic responces.
- low light doses favor the MAPKs pathway leading to cell survival: activation of MAPKs JNK1 and p38α pathways leads to cell survival and angiogenesis.
6.2. Modulation by Redox Cellular Systems
6.3. Anti-angiogenic Antimetastatic Activity
7. Antidepressive Effects of Naphthodianthrones
9. Antimicrobial Activity
10. Other Activities
10.1. Ophthalmologic Applications
10.2. Anti-inflammatory
10.3. Interaction with b-Amyloid Peptides
References
- Brockmann, H; Haschad, MN; Maier, K; Pohl, F. Hypericin, the photodynamically active pigment from Hypericum perforatum. Naturwissenschaften 1939, 32, 550. [Google Scholar]
- Brockmann, H; Sanne, W. Pseudohypericin, a new red Hypericum pigment. Naturwissenschaften 1953, 40, 461. [Google Scholar]
- Cameron, DW; Raverty, WD. Pseudohypericin and other phenanthroperylene quinones. Aus. J. Chem 1976, 29, 1523–1533. [Google Scholar]
- AHP. American Herbal Pharmacopoeia; Upton, R, Ed.; St. John’s Wort (Hypericum perforatum): Santa Cruz, CA, USA, 1997; pp. 1–32. [Google Scholar]
- Wichtl, M. Teedrogen: ein Handbuch fur dir Praxis auf wissenschaftlicher Grundlage; Wissenschaftliche Verlagsgesellschaft mbH: Stuttgart, Germany, 1989. [Google Scholar]
- EP. European Pharmacopoeia, 6th ed; Council of Europe: Strasbourg, France, 2008; Volume 2, p. S2958. [Google Scholar]
- Bruni, R; Sacchetti, G. Factors affecting polyphenol biosynthesis in wild and field grown St. John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules 2009, 14, 682–725. [Google Scholar]
- Zobayed, SMA; Afreen, F; Goto, E; Kozai, T. Plant-Environment Interactions: Accumulation of hypericin in dark glands of Hypericum perforatum. Ann. Bot 2006, 98, 793–804. [Google Scholar]
- Poutaraud, A; Di Gregorio, F; Chan Fook Tin, V; Girardin, P. Effect of light on hypericins contents in fresh flowering top parts and in an extract of St John’s Wort (Hypericum perforatum). Planta Med 2001, 67, 254–259. [Google Scholar]
- Wirz, A; Meier, B; Sticher, O. Stability of hypericin and pseudohypericin in extract solutions of Hypericum perforatum and in standard solutions. Pharm. Ind 2001, 63, 410–415. [Google Scholar]
- Williams, FB; Lane, C; Sander, LC; Wise, SA; Girard, J. Development and evaluation of methods for determination of naphthodianthrones and flavonoids in St. John’s wort. J. Chromatogr. A 2006, 1115, 93–102. [Google Scholar]
- Mauri, P; Pietta, P. High performance liquid chromatography/electrospray mass spectrometry of Hypericum perforatum extracts. Rapid Commun. Mass Spectrom 2000, 14, 95–99. [Google Scholar]
- Crockett, SL; Schaneberg, B; Khan, IA. Phytochemical profiling of new and old world Hypericum (St. John’s wort) species. Phytochem. Anal 2005, 16, 479–485. [Google Scholar]
- Kitanov, MK. Hypericin and pseudohypericin in some Hypericum species. Biochem. Syst. Ecol 2001, 29, 171–178. [Google Scholar]
- Dewick, PM. Medicinal Natural Products: A Biosynthetic Approach, 2 ed; Jonh Wiley & sons: Baffins Lane, Chichester, West Sussex, UK, 2002; p. 67. [Google Scholar]
- Kusari, S; Zuhlke, S; Kosuth, J; Cellarova, E; Spiteller, M. Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J. Nat. Prod 2009, 72, 1825–1835. [Google Scholar]
- Kusari, S; Lamshöft, M; Zühlke, S; Spiteller, M. An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod 2008, 71, 159–162. [Google Scholar]
- Chen, ZG; Fujii, I; Ebizuka, Y; Sankawa, U. Purification and characterization of emodinanthrone oxygenase from Aspergillus terreus. Phytochemistry 1995, 38, 299–305. [Google Scholar]
- Karppinen, K; Hohtola, A. Molecular cloning and tissue-specific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum. J. Plant Physiol 2008, 165, 1079–1086. [Google Scholar]
- Bais, HP; Vepachedu, R; Lawrence, CB; Stermitz, FR; Vivanco, JM. Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s Wort (Hypericum perforatum L.). J. Biol. Chem 2003, 278, 32413–32422. [Google Scholar]
- Kosuth, J; Katkovcinova, Z; Olexova, P; Cellarova, E. Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant Cell. Rep 2007, 26, 211–217. [Google Scholar]
- Etzlstorfer, C; Falk, H; Müller, N; Schmitzberger, W; Wagner, UG. Tautomerism and stereochemistry of hypericin: Force field, NMR, and X-ray crystallographic investigations. Monatsh. Chemie 1993, 124, 751–761. [Google Scholar]
- Gutman, I; Marković, Z; Solujić, S; Sukdolak, S. On the tautomers of hypericin. Monatsh. Chemie 1998, 129, 481–486. [Google Scholar]
- Kapinus, EI; Falk, H; Tran, HTN. Spectroscopic investigation of the molecular structure of hypericin and its Salts. Monatsh. Chemie 1999, 130, 623–635. [Google Scholar]
- Falk, H; Meyer, J. On the homo- and heteroassociation of hypericin. Monatsh. Chemie 1994, 125, 753–762. [Google Scholar]
- Falk, H; Schmitzberger, W. On the nature of “Soluble” hypericin in Hypericum species. Monatsh. Chemie 1992, 123, 731–739. [Google Scholar]
- Etzlstorfer, C; Falk, H; Müller, N; Tran, TNH. Structural aspects and electronic absorption of the hydroxyphenanthroperylene quinones fringlit D, hypericin, and stentorin. Monatsh. Chemie 1996, 127, 659–668. [Google Scholar]
- Shen, L; Ji, HF; Zhang, HY. Anion of hypericin is crucial to understanding the photosensitive features of the pigment. Bioorg. Med. Chem. Lett 2006, 16, 1414–1417. [Google Scholar]
- Gai, F; Fehr, MJ; Petrich, JW. Observation of excited-state tautomerization in the antiviral agent hypericin and identification of its fluorescent species. J. Phys. Chem 1994, 98, 5184–5195. [Google Scholar]
- English, DS; Zhang, W; Kraus, GA; Petrich, JW. Excited-state photophysics of hypericin and its hexamethoxy analog: intramolecular proton transfer as a nonradiative process in hypericin. J. Am. Chem. Soc 1997, 119, 2980–2986. [Google Scholar]
- Wirz, A; Meier, B; Sticher, O. Solubility of hypericin in methanol and methanol-pyridine. Pharmazie 2002, 57, 543–545. [Google Scholar]
- Butterweck, V; Petereit, F; Winterhoff, H. Solubilized hypericin and pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test. Planta Med 1998, 64, 291–294. [Google Scholar]
- Miskovsky, P. Hypericin-A new antiviral and antitumor photosensitizer: Mechanism of action and interaction with biological macromolecules. Curr. Drug Targets 2002, 3, 55–84. [Google Scholar]
- Brolis, M; Gabetta, B; Fuzzati, N; Pace, R; Panzeri, F; Peterlongo, F. Identification by high-performance liquid chromatography-diode array detection-mass spectrometry and quantification by high-performance liquid chromatography-UV absorbance detection of active constituents of Hypericum perforatum. J. Chromatogr. A 1998, 825, 9–16. [Google Scholar]
- Maisenbacher, P; Kovar, KA. Analysis and stability of Hyperici oleum. Planta Med 1992, 58, 351–354. [Google Scholar]
- Wirz, A; Meier, B; Sticher, O. Stability of hypericin and pseudohypericin in extract solutions of Hypericum perforatum and in standard solutions. Pharm. Ind 2001, 63, 410–415. [Google Scholar]
- Liu, F; Pan, C; Drumm, P; Ang, CYW. Liquid chromatography-mass spectrometry studies of St. John’s wort methanol extraction: Active constituents and their transformation. J. Pharm. Biomed. Anal 2005, 37, 303–312. [Google Scholar]
- Fourneron, JD; Herbette, G; Caloprisco, E. Pseudohypericin and hypericin in St. John’s wort extracts. C.R. Acad. Sc. Série II 1999, 127–131. [Google Scholar]
- Fourneron, JD; Naït-Si, Y; Rosas, R; Faure, R; Viant, P. Identification of isopseudohypericin, a new phenanthroperylene quinone obtained by the alkaline treatment of pseudohypericin. Tetrahedron Lett 2003, 44, 6285–6288. [Google Scholar]
- Karioti, A; Vincieri, FF; Bilia, AR. Rapid and efficient purification of naphthodianthrones from St. John’s Wort extract by using liquid-liquid extraction and size exclusion column chromatography. J. Sep. Sci 2009, 32, 1374–1382. [Google Scholar]
- Ang, CYW; Cui, Y; Chang, HC; Lou, W; Heinze, TM; Lin, LJ; Mattia, A. Determination of St. John’s Wort components in dietary supplements and functional foods by liquid chromatography. J. AOAC Int 2002, 85, 1360–1369. [Google Scholar]
- Draves, AH; Walker, SE. Determination of hypericin and pseudohypericin in pharmaceutical preparations by liquid chromatography with fluorescence detection. J. Chromatogr. B 2000, 749, 1057–1066. [Google Scholar]
- Smelcerovic, A; Spiteller, M; Zuehlke, S. Comparison of methods for the exhaustive extraction of hypericins, flavonoids, and hyperforin from Hypericum perforatum L. J. Agric. Food Chem 2006, 54, 2750–2753. [Google Scholar]
- Benthin, B; Danz, H; Hamburger, M. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 1999, 837, 211–219. [Google Scholar]
- Catchpole, OJ; Perry, NB; da Silva, BMT; Grey, JB; Smallfield, BM. Supercritical extraction of herbs I: Saw Palmetto, St John’s Wort, Kava Root, and Echinacea. J. Supercrit. Fluids 2002, 22, 2129–2138. [Google Scholar]
- Tolonen, A; Uusitalo, J; Hohtola, A; Jalonen, J. Determination of naphthodianthrones and phloroglucinols from Hypericum perforatum extracts by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom 2002, 16, 396–402. [Google Scholar]
- Kubin, A; Alth, G; Jindra, R; Jessner, G; Ebermann, R. Wavelength-dependent photoresponse of biological and aqueous model systems using the photodynamic plant pigment hypericin. J. Photochem. Photobiol. B 1996, 36, 103–108. [Google Scholar]
- Kacerovskà, D; Pizinger, K; Majer, F; Śmíd, F. Photodynamic therapy of non melanoma skin cancer with topical Hypericum perforatum extract-A pilot study. Photochem. Photobiol 2008, 84, 779–785. [Google Scholar]
- Sattler, S; Schaefer, U; Schneider, W; Hoelzl, J; Lehr, CM. Binding, uptake, and transport of hypericin by Caco-2 cell monolayers. J. Pharm. Sci 1997, 86, 1120–1126. [Google Scholar]
- Vandenbogaerde, AL; Kamuhabwa, A; Delaey, E; Himpens, BE; Merlevede, WJ; de Witte, PA. Photocytotoxic effect of pseudohypericin versus hypericin. J. Photochem. Photobiol. B 1998, 45, 87–94. [Google Scholar]
- Butterweck, V; Christoffel, V; Nahrstedt, A; Petereit, F; Spengler, B; Winterhoff, H. Step by step removal of hyperforin and hypericin: activity profile of different Hypericum preparations in behavioural models. Life Sci 2003, 73, 627–639. [Google Scholar]
- Smelcerovic, A; Laatsch, H; Lepojevic, Z; Djordjevic, S. The separation of hypericin and pseudohypericin from Hypericum perforatum L. Pharmazie 2002, 57, 178–180. [Google Scholar]
- Wirz, A. Analytical and phytochemical investigations on hypericin and related compounds of Hypericum perforatum. Thesis No. 13553, ETH Zurich, Switzerland, 2000.
- Brockmann, H; Kluge, F; Muxfeldt, H. Totalsynthese des hypericins. Chem. Ber 1957, 90, 2302–2318. [Google Scholar]
- Brockmann, H; Kluge, F. The synthesis of hypericin. Naturwissenschaften 1951, 38, 141. [Google Scholar]
- Falk, H; Meyer, J; Oberreiter, M. A convenient semistynthetic route to hypericin. Monatsh. Chemie 1993, 124, 339–341. [Google Scholar]
- Falk, H; Schoppel, GA. Synthesis of emodin anthrone. Monatsh. Chemie 1991, 122, 739–744. [Google Scholar]
- Aigner, S; Falk, H. A microwave-assisted synthesis of phenanthroperylene quinones as exemplified with hypericin. Monatsh. Chemie 2008, 139, 991–993. [Google Scholar]
- Motoyoshiya, J; Masue, Y; Nishi, Y; Aoyama, H. Synthesis of hypericin via emodin anthrone derived from a two-fold Diels-Alder reaction of 1,4-benzoquinone. Nat. Prod. Commun 2007, 2, 67–70. [Google Scholar]
- Lackner, B; Popova, Y; Etzlstorfer, C; Smelcerovic, AA; Klampfl, CW; Falk, H. Syntheses and Properties of Two Heterocyclically Substituted Hypericin Derivatives: 10,11-Dibenzothiazolyl-10,11-didemethylhypericin and 10,11-Dibenzoxazolyl-10,11-didemethylhypericin. Monatsh. Chemie 2005, 136, 777–793. [Google Scholar]
- Waser, M; Popova, Y; Klampfl, CW; Falk, H. 9,12-Dibenzothiazolylhypericin and 10,11-Dibenzothiazolyl-10,11-didemethylhypericin: Photochemical properties of hypericin derivatives depending on the substitution site. Monatsh. Chemie 2005, 136, 1791–1797. [Google Scholar]
- Lackner, B; Bretterbauer, K; Schwarzinger, C; Falk, H. A route to amino functionalized hypericin derivatives and their chemical and photochemical properties pertaining to photodynamic therapy. Monatsh. Chemie 2005, 136, 2067–2082. [Google Scholar]
- Waser, M; Falk, H. Condensed emodin derivatives and their applicability for the synthesis of a fused heterocyclic hypericin derivative. Eur J Org Chem 2006, 1200–1206. [Google Scholar]
- Zuschrader, J; Reiter, G; Falk, H. ω,ω′ -Urea- and -dithioacetal-derivatives of hypericin. Monatsh. Chemie 2008, 139, 995–998. [Google Scholar]
- Aigner, S; Falk, H. On synthesis and properties of hypericin-porphyrin hybrids. Monatsh. Chemie 2008, 139, 1513–1518. [Google Scholar]
- Geisslmeir, D; Falk, H. ω,ω′-Appended nucleo-base derivatives of hypericin. Monatsh. Chemie 2008, 139, 1127–1136. [Google Scholar]
- Crnolatac, I; Huygens, A; van Aerschot, A; Busson, R; Rozenski, J; de Witte, PAM. Synthesis, in vitro cellular uptake and photo-induced antiproliferative effects of lipophilic hypericin acid derivatives. Bioorg. Med. Chem 2005, 13, 6347–6353. [Google Scholar]
- Kim, SW; Park, JH; Yang, SD; Hur, MG; Choi, CW; Yu, KH. Synthesis and in vitro/vivo evaluation of iodine-123/124 labelled hypericin derivatives. Bull. Korean Chem. Soc 2008, 29, 2023–2025. [Google Scholar]
- Fonge, H; Jin, L; Wang, H; Bormans, G; Ni, Y; Verbruggen, A. Synthesis and preliminary biological evaluation of a 99mTc-labeled hypericin derivative as a necrosis avid imaging agent. J. Labelled Comp. Rad 2008, 51, 33–40. [Google Scholar]
- Zuschrader, J; Schoefberger, W; Falk, H. A carbohydrate-linked hypericinic photosensitizing agent. Monatsh. Chemie 2008, 139, 1387–1390. [Google Scholar]
- Hager, B; Strauss, WSL; Falk, H. Cationic hypericin derivatives as novel Agents with photobactericidal activity: Synthesis and photodynamic inactivation of Propionibacterium acnes. Photochem. Photobiol 2009, 85, 1201–1206. [Google Scholar]
- Castano, AP; Demidova, TN; Hamblin, MR. Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther 2004, 1, 279–293. [Google Scholar]
- Castano, AP; Demidova, TN; Hamblin, MR. Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death. Photodiagn. Photodyn. Ther 2005, 2, 1–23. [Google Scholar]
- Vandenbogaerde, AL; Kamuhabwa, A; Delaey, E; Himpens, BE; Merlevede, WJ; de Witte, PA. Photocytotoxic effect of pseudohypericin versus hypericin. J. Photochem. Photobiol. B 1998, 45, 87–94. [Google Scholar]
- Thomas, C; MacGill, RS; Miller, GC; Pardini, RS. Photoactivation of hypericin generates singlet oxygen in mitochondria and inhibits succinoxidase. Photochem. Photobiol 1992, 55, 47–53. [Google Scholar]
- Thomas, C; Pardini, RS. Oxygen dependence of hypericin-induced phototoxicity to EMT6 mouse mammary carcinoma cells. Photochem. Photobiol 1992, 55, 831–837. [Google Scholar]
- Kubin, A; Wierrani, F; Burner, U; Alth, G; Grünberger, W. Hypericin-The facts about a controversial agent. Curr. Pharm. Des 2005, 11, 233–253. [Google Scholar]
- Agostinis, P; Vantieghem, A; Merlevede, W; de Witte, PA. Hypericin in cancer treatment: more light on the way. Int. J. Biochem. Cell. Biol 2002, 34, 221–241. [Google Scholar]
- Davids, LM; Kleemann, B; Kacerovskà, D; Pizinger, K; Kidson, SH. Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells. J. Photochem. Photobiol. B 2008, 91, 67–76. [Google Scholar]
- Davids, LM; Kleemann, B; Cooper, S; Kidson, SH. Melanomas display increased cytoprotection to hypericin-mediated cytotoxicity through the induction of autophagy. Cell Biol. Int 2009, 33, 1065–1072. [Google Scholar]
- Kober, M; Pohl, K; Efferth, T. Molecular mechanisms underlying St. John’s Wort drug interactions. Curr. Drug Metabol 2008, 9, 1027–1037. [Google Scholar]
- Schneider-Yin, X; Kurmanaviciene, A; Roth, M; Roos, M; Fedier, A; Minder, EI; Walt, H. Hypericin and 5-aminolevulinic acid-induced protoporphyrin IX induce enhanced phototoxicity in human endometrial cancer cells with non-coherent white light. Photodiagn. Photodyn. Ther 2009, 6, 12–18. [Google Scholar]
- Kleban, J; Szilardiova, B; Mikes, J; Horvath, V; Sackova, V; Brezani, P; Hofmanova, J; Kozubik, A; Fedorocko, P. Pre-treatment of HT-29 cells with 5-LOX inhibitor (MK-886) induces changes in cell cycle and increases apoptosis after photodynamic therapy with hypericin. J. Photochem. Photobiol. B 2006, 84, 79–88. [Google Scholar]
- Kleban, J; Mikes, J; Horvath, V; Sackova, V; Hofmanova, J; Kozubik, A; Fedorocko, P. Mechanisms involved in the cell cycle and apoptosis of HT-29 cells pre-treated with MK-886 prior to photodynamic therapy with hypericin. J. Photochem. Photobiol. B 2008, 93, 108–118. [Google Scholar]
- Robertson, CA; Hawkins, D; Abrahamse, H. Photodynamic Therapy (PDT): A short review on ellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B 2009, 96, 1–8. [Google Scholar]
- Lavie, G; Mazur, Y; Lavie, D; Meruelo, D. The chemical and biological properties of hypericin-a compound with a broad spectrum of biological activities. Med. Res. Rev 1995, 15, 111–119. [Google Scholar]
- Duo, H; Olivo, M; Mahendran, R; Bay, BH. Modulation of matrix metalloproteinase-1 in nasopharyngeal cancer cells by photoactivation of hypericin. Int. J. Oncol 2004, 24, 657–662. [Google Scholar]
- Miccoli, L; Beurdeley-Thomas, A; De, PG; Sureau, F; Oudard, S; Dutrillaux, B; Poupon, MF. Light-induced photoactivation of hypericin affects the energy metabolism of human glioma cells by inhibiting hexokinase bound to mitochondria. Cancer Res 1998, 58, 5777–5786. [Google Scholar]
- Agostinis, P; Assefa, Z; Vantieghem, A; Vandenheede, JR; Merlevede, W; de Witte, P. Apoptotic and anti-apoptotic signaling pathways induced by photodynamic therapy with hypericin. Adv. Enzyme. Regul 2000, 40, 157–182. [Google Scholar]
- Mikes, J; Kleban, J; Sackova, V; Horvath, V; Jamborova, E; Vaculova, A; Kozubik, A; Hofmanova, J; Fedorocko, P. Necrosis predominates in the cell death of human colon adenocarcinoma HT-29 cells treated under variable conditions of photodynamic therapy with hypericin. Photochem. Photobiol. Sci 2007, 6, 758–766. [Google Scholar]
- Berlanda, J; Kiesslich, T; Oberdanner, CB; Obermair, FJ; Krammer, B; Plaetzer, K. Characterization of apoptosis induced by photodynamic treatment with hypericin in A431 human epidermoid carcinoma cells. J. Environ. Pathol. Toxicol. Oncol 2006, 25, 173–188. [Google Scholar]
- Theodossiou, TA; Noronha-Dutra, A; Hothersall, JS. Mitochondria are a primary target of hypericin phototoxicity: Synergy of intracellular calcium mobilisation in cell killing. Int. J. Biochem. Cell Biol 2006, 38, 1946–1956. [Google Scholar]
- Pfaffel-Schubart, G; Rück, A; Scalfi-Happ, C. Modulation of cellular Ca2+ signaling during hypericin-induced photodynamic therapy (PDT). Med. Laser Appl 2006, 21, 61–66. [Google Scholar]
- Buytaert, E; Callewaert, G; Hendrickx, N; Scorrano, L; Hartmann, D; Missiaen, L; Vandenheede, JR; Heirman, I; Grooten, J; Agostinis, P. Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. FASEB J 2006, 20, 756–758. [Google Scholar]
- Nutt, LK; Pataer, A; Pahler, J; Fang, B; Roth, J; McConkey, DJ; Swisher, SG. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J. Biol. Chem 2002, 277, 9219–9225. [Google Scholar]
- Buytaert, E; Callewaert, G; Vandenheede, JR; Agostinis, P. Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum. Autophagy 2006, 2, 238–240. [Google Scholar]
- Dua, HY; Olivo, M; Mahendran, R; Huang, Q; Shen, HM; Ong, CN; Bay, BH. Hypericin photoactivation triggers down-regulation of matrix metalloproteinase-9 expression in well-differentiated human nasopharyngeal cancer cells. Cell. Mol. Life Sci 2007, 64, 979–988. [Google Scholar]
- Lewis, TS; Shapiro, PS; Ahn, NG. Signal transduction through MAP kinase cascades. Adv. Cancer Res 1998, 74, 49–139. [Google Scholar]
- Kyriakis, JM. Making the connection: coupling of stressactivated ERK/MAPK (extracellular-signal-regulated kinase/mitogen-activated protein kinase) core signalling modules to extracellular stimuli and biological responses. Biochem. Soc. Symp 1999, 64, 29–48. [Google Scholar]
- Ballif, BA; Blenis, J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 2001, 12, 397–408. [Google Scholar]
- Raingeaud, JS; Gupta, JS; Rogers, M; Dickens, J; Han, R; Ulevitch, J; Davis, RJ. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem 1995, 270, 7420–7426. [Google Scholar]
- Sen, P; Chakraborty, PK; Raha, S. Activation of p38MAPK by repetitive low-grade oxidative stress leads to prosurvival effects. Biochim. Biophys. Acta 2007, 1773, 367–374. [Google Scholar]
- Zarubin, T; Han, J. Activation and signaling of the p38 MAP kinase pahtway. Cell Res 2005, 15, 11–18. [Google Scholar]
- Assefa, Z; Vantieghem, A; Declercq, W; Vandenabeele, P; Vandenheede, JR; Merlevede, W; de Witte, PAM; Agostinis, P. The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin. J. Biol. Chem 1999, 274, 8788–8796. [Google Scholar]
- Hendrickx, N; Volanti, C; Moens, U; Seternes, OM; de Witte, P; Vandenheede, JR; Piette, J; Agostinis, P. Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J. Biol. Chem 2003, 278, 52231–52239. [Google Scholar]
- Sanovic, R; Krammer, B; Grumboeck, S; Verwanger, T. Time-resolved gene expression profiling of human squamous cell carcinoma cells during the apoptosis process induced by photodynamic treatment with hypericin. Int. J. Oncol 2009, 35, 921–939. [Google Scholar]
- Chan, PS; Koon, H; Wu, ZG; Wong, RNS; Lung, ML; Chang, CK; Mak, NK. Role of p38 MAPKs in hypericin photodynamic therapy-induced apoptosis of nasopharyngeal carcinoma cells. Photochem. Photobiol 2009, 85, 1207–1217. [Google Scholar]
- Buytaert, E; Matroule, JY; Durinck, S; Close, P; Kocanova, S; Vandenheede, JR; de Witte, PA; Piette, J; Agostinis, P. Molecular effectors and modulators of hypericin-mediated cell death in bladder cancer cells. Oncogene 2008, 27, 1916–1929. [Google Scholar]
- Hendrickx, N; Dewaele, M; Buytaert, E; Marsboom, G; Janssens, S; van Boven, M; Vandenheede, JR; de Witte, P; Agostinis, P. Targeted inhibition of p38α MAPK suppresses tumor-associated endothelial cell migration in response to hypericin-based photodynamic therapy. Biochem. Biophys. Res. Commun 2005, 337, 928–935. [Google Scholar]
- Bredel, M. Anticancer drug resistance in primary human brain tumors. Brain Res. Rev 2001, 35, 161–204. [Google Scholar]
- Lazo, JS; Kuo, SM; Woo, ES; Pitt, BR. The protein thiol metallothionein as an antioxidant and protectant against antineoplastic drugs. Chem Biol Interact 1998, 111–112, 255–262. [Google Scholar]
- Neumann, C; Grünert, BR; Bednarski, PJ. Nicotinamide adenine dinucleotide phosphate-regenerating system coupled to a glutathione-reductase microtiter method for determination of total glutathione concentrations in adherent growing cancer cell lines. Anal. Biochem 2003, 320, 170–178. [Google Scholar]
- Townsend, DM; Tew, KD; Tapiero, H. The importance of glutathione in human disease. Biomed. Pharmacother 2003, 57, 145–155. [Google Scholar]
- Masella, R; di Benedetto, R; Varì, R; Filesi, C; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem 2005, 16, 577–586. [Google Scholar]
- Fojo, T; Bate, S. Strategies for reversing drug resistance. Oncogene 2003, 22, 7512–7523. [Google Scholar]
- Zhao, Y; Seefeldt, T; Chen, W; Carlson, L; Stoebner, A; Hanson, S; Foll, R; Matthees, DP; Palakurthi, S; Guan, X. Increase in thiol oxidative stress via glutathione reductase inhibition as a novel approach to enhance cancer sensitivity to X-ray irradiation. Free Rad. Biol. Med 2009, 47, 176–183. [Google Scholar]
- Oberdanner, CB; Plaetzer, K; Kiesslich, T; Krammer, B. Photodynamic treatment with fractionated light decreases production of reactive oxygen species and cytotoxicity in vitro via regeneration of glutathione. Photochem. Photobiol 2005, 81, 609–613. [Google Scholar]
- Karioti, A; Sorrentino, F; Gratteri, P; Rigobello, MP; Scutari, G; Messori, L; Bindoli, A; Bergonzi, MC; Bilia, AR. Rapid and efficient purification of hypericin and pseudohypericin and inhibition of thioredoxin reductase. Planta Med. Abstr 2009, 75, 885. [Google Scholar]
- Dabrowski, MJ; Zebala, DMJ; Lu, WD; Mahajan, S; Kavanagh, TJ; Atkins, WM. Glutathione S-transferase P1–1 expression modulates sensitivity of human kidney 293 cells to photodynamic therapy with hypericin. Arch. Biochem. Biophys 2006, 449, 94–103. [Google Scholar]
- Theodossiou, TA; Noronha-Dutra, A; Hothersall, JS. Mitochondria are a primary target of hypericin phototoxicity: Synergy of intracellular calcium mobilisation in cell killing. Biochem. Cell Biol 2006, 38, 1946–1956. [Google Scholar]
- Du, HY; Li, Y; Olivo, M; Yip, WCG; Bay, BH. Differential up-regulation of metallothionein isoforms in well-differentiated nasopharyngeal cancer cells in vitro by photoactivated hypericin. Oncol. Rep 2006, 16, 1397–1402. [Google Scholar]
- Lavie, G; Mandel, M; Hazan, S; Barliya, T; Blank, M; Grunbaum, A; Meruelo, D; Solomon, A. Anti-angiogenic activities of hypericin in vivo: Potential for ophthalmologic applications. Angiogenesis 2005, 8, 35–42. [Google Scholar]
- Bhuvaneswari, R; Gan, YYY; Lucky, SS; Chin, WWL; Ali, SM; Soo, KC; Olivo, M. Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy. Mol Cancer 2008, 7, 56. [Google Scholar]
- Bhuvaneswari, R; Gan, YYY; Yee, KKL; Soo, KC; Olivo, M. Effect of hypericin-mediated photodynamic therapy on the expression of vascular endothelial growth factor in human nasopharyngeal carcinoma. Int. J. Mol. Med 2007, 20, 421–428. [Google Scholar]
- Yee, KKL; Soo, KC; Olivo, M. Anti-angiogenic effects of hypericin-photodynamic therapy in combination with Celebrex® in the treatment of human nasopharyngeal carcinoma. Int. J. Mol. Med 2005, 16, 993–1002. [Google Scholar]
- Martinez-Poveda, B; Quesada, AR; Medina, MA. Hypericin in the dark inhibits key steps of angiogenesis in vitro. Eur. J. Pharmacol 2005, 516, 97–103. [Google Scholar]
- Blank, M; Lavie, G; Mandel, M; Hazan, S; Orenstein, A; Meruelo, D; Keisari, Y. Antimetastatic activity of the photodynamic agent hypericin in the dark. Int. J. Cancer 2004, 111, 596–603. [Google Scholar]
- Suzuki, O; Katsumata, Y; Oya, M; Bladt, S; Wagner, H. Inhibition of monoamine oxidase by hypericin. Planta Med 1984, 50, 272–274. [Google Scholar]
- Curle, P; Kato, G; Hiller, KO. Neurochemical Studies on Valeriana and Hypericum. Report Nr. 2107; Battelle-Europe: St. John’s, Gernany, 1988.
- Denke, A; Schneider, W; Elstner, FF. Biochemical activities of extracts from Hypericum perforatum L. 2nd communication: Inhibition of metenkephaline and tyrosine dimerization. Drug Res 1999, 49, 109–114. [Google Scholar]
- Cott, JM. In vitro receptor binding and enzyme inhibition by Hypericum perforatum extract. Pharmacopsychiatry 1997, 30(Suppl. 2), 108–112. [Google Scholar]
- Butterweck, V; Bockers, T; Korte, B; Wittkowski, W; Winterhoff, H. Long-term effects of St. John’s wort and hypericin on monoamone levels in rat hypothalamus and hippocampus. Brain Res 2002, 930, 21–29. [Google Scholar]
- Obry, T. Einfluβ eines ethanolischen Auszuges aus Hypericum perforatum auf die Enzyme der Noradrenalinsynthese und auf die Diaphorase [diploma work]; Maximilians-Universität: München, Germany, 1991. [Google Scholar]
- Kleber, E; Obry, T; Hippeli, S; Schneider, W; Elstner, EF. Biochemical activity of extracts from Hypericum perforatum L. 1st communication: Inhibition of dopamine-beta-hydroxylase. Drug Res 1999, 49, 106–109. [Google Scholar]
- Butterweck, V; Korte, B; Winterhoff, H. Pharmacological and endocrine effects of Hypericum perforatum and hypericin after repeated treatment. Pharmacopsychiatry 2001, 34(Suppl. 1), 2–7. [Google Scholar]
- Butterweck, V; Winterhoff, H; Herkenham, M. St. John’s wort, hypericin, and imipramine: a comparative analysis of mRNA levels in brain areas involved in HPA axis control following short-term and longterm administration in normal and stressed rats. Mol. Psychiatry 2001, 6, 547–564. [Google Scholar]
- Simmen, U; Bobirnac, I; Ullmer, C; Lübbert, H; Berger Büter, K; Schaffner, W; Schoeffter, P. Antagonist effect of pseudohypericin at CRF1 receptors. Eur. J. Pharmacol 2003, 458, 251–256. [Google Scholar]
- Wang, X; Liu, Z; Jiang, H; Liu, L; Lan, A. Inhibitory effect of monomeric hypericin on human cytomegalovirus in vitro. J. Wuhan Univ.: Med. Ed 2006, 27, 303–306. [Google Scholar]
- Wang, SY; Chen, JH; Liang, JP; Cui, Y; Shang, RF; Wang, XH; Hua, LY. Studies on the inhibitory effects of hypericin on the adsorption ability of foot-and-mouth virus to host cells in vitro. J. Chin. Vet. Med 2009, 28, 5–8. [Google Scholar]
- Pu, X; Liang, J; Xu, T; Shang, R; Wang, X; Hua, L; Liu, Y; Xing, Y. Study on the activity in vitro of hypericin against highly pathogenic porcine reproductive and respiratory syndrome virus. Chin. J. Vet. Sci 2008, 38, 810–815. [Google Scholar]
- Naesens, L; Bonnafous, P; Agut, H; De Clercq, E. Antiviral activity of diverse classes of broad-acting agents and natural compounds in HHV-6-infected lymphoblasts. J. Clin. Virol 2006, 37, S69–S75. [Google Scholar]
- Hu, DH; Gao, Y; Shao, C; Feng, QK; Wang, R. Study on hypericin in Hypericum perforatum L and its interactions with human immunodeficiency virus-1 reverse transcriptase. J. Mol. Sci 2008, 24, 280–283. [Google Scholar]
- Qu, XB; Su, ZM; Hu, DH; Bao, YL; Meng, XY; Wu, Yin; Li, YX. Studies on molecular structure of hypericin and its interactions with HIV-1 protease. By molecular modeling. Chem. J. Chin. Univ 2009, 30, 1402–1405. [Google Scholar]
- Di Carlo, G; Borrelli, F; Ernst, E; Izzo, AA. St. John’s wort. Prozac from the plant kingdom. Trends Pharmacol. Sci 2001, 2, 292–297. [Google Scholar]
- Conforti, F; Statti, GA; Tundis, R; Bianchi, A; Agrimonti, C; Sacchetti, G; Andreotti, E; Menichini, F; Poli, F. Comparative chemical composition and variability of biological activity of methanolic extracts from Hypericum perforatum L. Nat. Prod. Res 2005, 19, 295–303. [Google Scholar]
- Cecchini, C; Cresci, A; Coman, MM; Ricciutelli, M; Sagratini, G; Vittori, S; Lucarini, D; Maggi, F. Antimicrobial activity of seven Hypericum entities from central Italy. Planta Med 2007, 73, 564–566. [Google Scholar]
- Pistelli, L; Bertoli, A; Morelli, I; Menichini, F; Musmanno, RA; Di Maggio, T; Coratza, G. Chemical and antibacterial evaluation of Hypericum triquetrifolium Turra. Phytother. Res 2005, 19, 787–791. [Google Scholar]
- Higuchi, A; Yamada, H; Yamada, E; Jo, N; Matsumura, M. Hypericin inhibits pathological retinal neovascularization in a mouse model of oxygen-induced retinopathy. Mol. Vision 2008, 14, 249–254. [Google Scholar]
- Hammer, KDP; Hillwig, ML; Solco, AKS; Dixon, PM; Delate, K; Murphy, PA; Wurtele, ES; Birt, DF. Inhibition of Prostaglandin E2 production by anti-inflammatory Hypericum perforatum extracts and constituents in RAW264.7 mouse macrophage cells. J. Agric. Food. Chem 2007, 55, 7323–7331. [Google Scholar]
- Sosa, S; Pace, R; Bornancin, A; Morazzoni, P; Riva, A; Tubaro, A; Della Loggia, R. Topical anti-inflammatory activity of extracts and compounds from Hypericum perforatum L. J. Pharm. Pharmacol 2007, 59, 703–709. [Google Scholar]
- Sgarbossa, A; Buselli, D; Francesco Lenci, F. In vitro perturbation of aggregation processes in b-amyloid peptides: A spectroscopic study. FEBS Lett 2008, 582, 3288–3292. [Google Scholar]
- Kraus, B; Wolff, H; Heilmann, J; Elstner, EF. Influence of Hypericum perforatum extract and its single compounds on amyloid-β mediated toxicity in microglial cells. Life Sci 2007, 81, 884–894. [Google Scholar]
- Stupakova, V; Varinska, L; Mirossay, A; Sarissky, M; Mojzis, J; Dankovcik, R; Urdzik, P; Ostro, A; Mirossay, L. Photodynamic effect of hypericin in primary cultures of human umbilical endothelial cells and glioma cell lines. Phytother. Res 2009, 23, 827–832. [Google Scholar]
- Wang, X; Zhang, J; Liu, J; Yang, R. Photocytotoxic effect of hypericin and extract in Hypericum perforatum L. on HepG2 cancer cell line of human liver in vitro. J. Chin. Integr. Med 2008, 19, 69–71. [Google Scholar]
- Seitz, G; Krause, R; Fuchs, J; Heitmann, H; Armeanu, S; Ruck, P; Warmann, SW. In vitro photodynamic therapy in pediatric epithelial liver tumors promoted by hypericin. Oncol. Rep 2008, 20, 1277–1282. [Google Scholar]
- Wang, X; Liu, J; Zhang, J; Yang, R. Killing effects of hypericin and extracts from hypericin on SpcA 1 lung cancer cell lines of human in vitro. Chin. Pharmaceut. J 2008, 17, 13–15. [Google Scholar]
- Wang, X; Zhang, J; Liu, J; Yang, R. In vitro damage effects of hypericin extract from Hypericum perforatum on human lung cancer cells A549. Chin. Tradit. Patent Med 2007, 29, 1058–1061. [Google Scholar]
- Wang, X; Zhang, J; Liu, J; Yang, R. Photocytotoxic effect of hypericin extract from Hypericum perforatum L. on MDA231 human mammary carcinoma cell lines in vitro. Chin. J. Morden Appl. Pharm 2008, 25, 1–4. [Google Scholar]
- Wessels, JT; Busse, AC; Rave-Fraenk, M; Zaenker, S; Hermann, R; Grabbe, E; Mueller, GA. Photosensitizing and radiosensitizing effects of hypericin on human renal carcinoma cells in vitro. Photochem. Photobiol 2008, 84, 228–235. [Google Scholar]
- Seitz, G; Warmann, SW; Armeanu, S; Heitmann, H; Ruck, P; Hoffman, RM; Fuchs, J; Wessels, JT. In vitro photodynamic therapy of childhood rhabdomyosarcoma. Int. J. Oncol 2007, 30, 615–620. [Google Scholar]
Cell culture | Light | Reference | |
---|---|---|---|
human umbilical endothelial cells and human glioma cancer cells U-87 MG & U-373 MG | + | sensitive only to photoactivated hypericin | [153] |
human HepG2 cancer cells | + | [154] | |
hepatic hepatoblastoma HUH6, & HepT1 cells | + | severe alterations only after illumination | [155] |
pediatric hepatocellular carcinoma HepG2 cells | + | severe alterations only after illumination | [155] |
human lung SpcA1 cancer cells | + | light emitting diode as light source for photoactivation | [156] |
human lung cancer cells A549 | + | [157] | |
MDA231 human mammary carcinoma cells | + | light emitting diode as light source for PDT | [158] |
human renal carcinoma cells | + | [159] | |
rhabdomyosarcoma cells and fibroblasts | + | nearly complete inhibition of cell proliferation only after photoactivation | [160] |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Karioti, A.; Bilia, A.R. Hypericins as Potential Leads for New Therapeutics. Int. J. Mol. Sci. 2010, 11, 562-594. https://doi.org/10.3390/ijms11020562
Karioti A, Bilia AR. Hypericins as Potential Leads for New Therapeutics. International Journal of Molecular Sciences. 2010; 11(2):562-594. https://doi.org/10.3390/ijms11020562
Chicago/Turabian StyleKarioti, Anastasia, and Anna Rita Bilia. 2010. "Hypericins as Potential Leads for New Therapeutics" International Journal of Molecular Sciences 11, no. 2: 562-594. https://doi.org/10.3390/ijms11020562
APA StyleKarioti, A., & Bilia, A. R. (2010). Hypericins as Potential Leads for New Therapeutics. International Journal of Molecular Sciences, 11(2), 562-594. https://doi.org/10.3390/ijms11020562