Antioxidant Properties of the Edible Basidiomycete Armillaria mellea in Submerged Cultures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yields from Mycelia and Broth
2.2. Antioxidant Activity
2.3. Reducing Power
2.4. DPPH Radical-Scavenging Effect
2.5. Chelating Abilities on Ferrous Ions
2.6. Scavenging Effect on Superoxide Anion
2.7. EC50 Values in Antioxidant Properties
2.8. Antioxidant Components
3. Experimental Section
3.1. Chemicals
3.2. Mushroom Mycelia and Broth
3.3. Preparation of Hot Water Extracts from Mycelia
3.4. Preparation of Methanolic Extracts from Mycelia
3.5. Preparation of Methanolic Extracts from Broth
3.6. Antioxidant Activity
3.7. Reducing Power
3.8. DPPH Radical Scavenging Activity
3.9. Chelating Effects on Ferrous Ions
3.10. Scavenging Effects on Superoxide Anions
3.11. Determination of Antioxidant Components
3.12. Statistical Analysis
4. Conclusions
Acknowledgments
Abbreviations
BCRC | Bioresources Collection and Research Center in Hsinchu, Taiwan |
BHA | butylated hydroxyanisole |
DPPH | 2,2-diphenyl-1-picryl hydrazyl radical |
EC50 | the effective concentration where the antioxidant property is 50% |
EDTA | ethylenediaminetetraacetic acid |
HWEM | hot water extracts from dried mycelia by A. mellea submerged cultures |
MEB | methanolic extracts from mycelia-free broth by A. mellea submerged cultures |
MEM | methanolic extracts from dried mycelia by A. mellea submerged cultures |
NBT | nitro blue tetrazolium |
PDB | potato dextrose broth |
ROS | reactive oxygen species |
PMS | ferrozine, phenazine methosulfate |
References
- Lung, MY; Tsai, JC; Huang, PC. Antioxidant properties of edible basidiomycete Phellinus igniarius in submerged cultures. J. Food Sci 2010, 75, E18–E24. [Google Scholar]
- Turkoglu, A; Duru, ME; Mercan, N; Kivrak, I; Gezer, K. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem 2007, 101, 267–273. [Google Scholar]
- Grice, HC. Safety evaluation of butylated hydroxyanisole from the perspective of effects on forestomach and oesophageal aquamous epithelium. Food Chem 1988, 26, 717. [Google Scholar]
- Yang, JS; Chen, YW; Feng, XZ; Yu, DQ; Liang, XT. Chemical constituents of Armillaria mellea mycelium. I. Isolation and characterization of armillarin and armillaridin. Planta Med 1984, 50, 288–290. [Google Scholar]
- Sun, YX; Liang, HT; Zhang, XT; Tong, HB; Liu, JC. Structural elucidation and immunological activity of a polysaccharide from the fruiting body of Armillaria mellea. Bioresour. Technol 2009, 100, 1860–1863. [Google Scholar]
- Wu, SJ; Tsai, JY; Lai, MN; Ng, LT. Armillariella mellea shows anti-inflammatory activity by inhibiting the expression of NO, iNOS, COX-2 and cytokines in THP-1 cells. Am. J. Chin. Med 2007, 35, 507–516. [Google Scholar]
- Gao, JM; Yang, X; Wang, CY; Liu, JK. Armillaramide, a new sphingolipid from the fungus Armillaria mellea. Fitoterapia 2001, 72, 858–864. [Google Scholar]
- Momose, I; Sekizawa, R; Hosokawa, N; Iinuma, H; Matsui, S; Nakamura, H; Naganawa, H; Hamada, M; Takeuchi, T. Melleolides K, L and M, new melleolides from Armillariella mellea. J. Antibiot (Tokyo) 2000, 53, 137–143. [Google Scholar]
- Kim, JH; Kim, YS. A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Biosci. Biotechnol. Biochem 1999, 63, 2130–2136. [Google Scholar]
- Kim, SW; Park, SS; Min, TJ; Yu, KH. Antioxidant activity of ergosterol peroxide (5,8- epidioxy-5a,8a-ergosta-6,22E-dien-3b-ol) in Armillariella mellea. Bull. Kor. Chem. Soc 1999, 20, 819–823. [Google Scholar]
- Ng, LT; Wu, SJ; Tsai, JY; Lai, MN. Antioxidant activities of cultured Armillariella mellea. Appl. Biochem. Microbiol 2007, 43, 444–448. [Google Scholar]
- Kim, SK; Im, J; Yun, CH; Son, JY; Son, CG; Park, DK; Han, SH. Armillariella mellea induces maturation of human dendritic cells without induction of cytokine expression. J. Ethnopharmacol 2008, 119, 153–159. [Google Scholar]
- Gao, LW; Li, WY; Zhao, YL; Wang, JW. The cultivation, bioactive components and pharmacological effects of Armillaria mellea. Afr. J. Biotechnol 2009, 8, 7383–7390. [Google Scholar]
- Wong, JY; Chye, FY. Antioxidant properties of selected tropical wild edible mushrooms. J. Food Comp. Anal 2009, 22, 269–277. [Google Scholar]
- Liang, CH; Syu, JL; Mau, JL. Antioxidant properties of solid-state fermented adlay and rice by Phellinus linteus. Food Chem 2009, 116, 841–845. [Google Scholar]
- Lee, YL; Jian, SY; Lian, PY; Mau, JL. Antioxidant properties of extracts from a white mutant of the mushroom Hypsizigus marmoreus. J. Food Comp. Anal 2008, 21, 116–124. [Google Scholar]
- Mau, JL; Chang, CN; Huang, SJ; Chen, CC. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 2004, 87, 111–118. [Google Scholar]
- Tsai, SY. Antioxidant Properties and Their Cytotoxic Activities on Tumor Cells of Ganoderma Tsugae and Agrocybe Cylindracea and Antimutagenic Properties of Agrocybe Cylindracea. Master Thesis, National Chung-Hsing University, Taichung, Taiwan, 2002. [Google Scholar]
- Wang, J; Zhang, Q; Zhang, Z; Li, Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int. J. Biol. Macromol 2008, 42, 127–132. [Google Scholar]
- Meir, S; Kanner, J; Akiri, B; Hadas, SP. Determination and involvement of aqueous reducing compounds in oxidative defence systems of various senescing leaves. J. Agric. Food Chem 1995, 43, 1813–1815. [Google Scholar]
- Rice-Evans, CA; Miller, NJ; Bolwell, PG; Bramley, PM; Pridham, JB. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res 1995, 22, 375–383. [Google Scholar]
- Cotelle, N; Bernier, JL; Catteau, JP; Pommery, J; Wallet, JC; Gaydou, EM. Antioxidant properties of hydroxy-flavonones. Free Radic. Biol. Med 1996, 20, 35–43. [Google Scholar]
- Dahl, MK; Richardson, T. Photogeneration of superoxide anion in serum of bovine milk and in model systems containing riboflavin and amino acid. J. Dairy Sci 1978, 61, 400–407. [Google Scholar]
- MacDonald, J; Galley, HF; Webster, NR. Oxidative stress and gene expression in sepsis. Br. J. Anaesth 2003, 90, 221–232. [Google Scholar]
- Halliwell, B; Gutteridge, JMC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J 1984, 219, 1–14. [Google Scholar]
- Beyer, RE. The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q. J. Bioenerg. Biomembr 1994, 26, 349–358. [Google Scholar]
- Jayakumar, T; Thomas, PA; Geraldine, P. In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innov. Food Sci. Emerg. Technol 2009, 10, 228–234. [Google Scholar]
- Heinonen, OP; Huttunen, JK; Albanes, D. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med 1994, 330, 1029–1035. [Google Scholar]
- Elmastas, M; Isildak, O; Turkekul, I; Temur, N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J. Food Comp. Anal 2007, 20, 337–345. [Google Scholar]
- Gülçin, İ; Büyükokuroğlu, ME; Oktay, M; Küfrevioğlu, Öİ. Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe. J. Ethnopharmacol 2003, 86, 51–58. [Google Scholar]
- Lingnert, H; Vallentin, K; Eriksson, CE. Measurement of antioxidative effect in model system. J. Food Process. Preserv 1979, 3, 87–104. [Google Scholar]
- Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr 1986, 44, 307–315. [Google Scholar]
- Shimada, K; Fujikawa, K; Yahara, K; Nakamura, T. Antioxidative properties of xanthane on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem 1992, 40, 945–948. [Google Scholar]
- Dinis, TCP; Madeira, VMC; Almeida, LM. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys 1994, 315, 161–169. [Google Scholar]
- Robak, J; Gryglewski, IR. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol 1988, 37, 837–841. [Google Scholar]
- Klein, BP; Perry, AK. Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. J. Food Sci 1982, 47, 941–945. [Google Scholar]
- Rundhang, JE; Pung, A; Read, CM; Bertram, JS. Uptake and metabolism of β-carotene and retinal by C3H/10T1/2 cell. Carcinogenesis 1988, 9, 1541–1545. [Google Scholar]
- Bao, JS; Cai, Y; Sun, M; Wang, GY; Corke, H. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem 2005, 53, 2327–2332. [Google Scholar]
- Taga, MS; Miller, EF; Pratt, DE. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc 1984, 61, 928–631. [Google Scholar]
Yield (g/10 g dry weight) | Extraction % (w/w) | |
---|---|---|
MEM | 2.45 ± 0.025 C | 24.52 ± 0.25 C |
MEB | 4.16 ± 0.032 A | 41.68 ± 0.32 A |
HWEM | 3.89 ± 0.024 B | 38.91 ± 0.24 B |
EC50 (mg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|
Samples | Standards | |||||||
MEM | MEB | HWEM | BHA | Ascorbic acid | α-tocopherol | EDTA | Citric acid | |
Antioxidant activity | 7.42±0.11B | 7.83±0.15A | 5.51±0.19C | 0.061±0.003E | 1.621±0.082D | 0.067±0.002E | - | - |
Reducing power | 0.73±0.03C | 1.34±0.04A | 0.91±0.04B | 0.045±0.003D | 0.094±0.005D | 0.103±0.022D | - | - |
Scavenging effect on | DPPH radicals | 2.96±0.15C | 8.62±0.21A | 7.88±0.17B | 0.033±0.004D | - | 0.099±0.012D | - |
Chelating effect on ferrous ions | 5.98±0.21B | 4.35±0.07BC | 1.81±0.09CD | - | - | - | 0.059±0.005D | 42.64±2.58A |
Scavenging effect on superoxide anion | 0.55±0.02B | 1.11±0.03A | 0.51±0.01BC | - | 0.454±0.03C | - | - | - |
Compound | MEM (mg/g extract ) | MEB (mg/g extract) | HWEM (mg/g extract) |
---|---|---|---|
Ascorbic acid | 3.78 ± 0.04 A | 3.60 ± 0.12 A | 3.72 ± 0.04 A |
β-carotene | nd | nd | 0.05 ± 0.01 |
Total flavonoid | 6.80 ± 0.12 C | 7.39 ± 0.15 B | 19.2 ± 0.21 A |
Total phenols | 27.1 ± 0.21 B | 11.9 ± 0.11 C | 30.9 ± 0.17 A |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lung, M.-Y.; Chang, Y.-C. Antioxidant Properties of the Edible Basidiomycete Armillaria mellea in Submerged Cultures. Int. J. Mol. Sci. 2011, 12, 6367-6384. https://doi.org/10.3390/ijms12106367
Lung M-Y, Chang Y-C. Antioxidant Properties of the Edible Basidiomycete Armillaria mellea in Submerged Cultures. International Journal of Molecular Sciences. 2011; 12(10):6367-6384. https://doi.org/10.3390/ijms12106367
Chicago/Turabian StyleLung, Ming-Yeou, and Yu-Cheng Chang. 2011. "Antioxidant Properties of the Edible Basidiomycete Armillaria mellea in Submerged Cultures" International Journal of Molecular Sciences 12, no. 10: 6367-6384. https://doi.org/10.3390/ijms12106367
APA StyleLung, M. -Y., & Chang, Y. -C. (2011). Antioxidant Properties of the Edible Basidiomycete Armillaria mellea in Submerged Cultures. International Journal of Molecular Sciences, 12(10), 6367-6384. https://doi.org/10.3390/ijms12106367