Polyphenolic Contents and Antioxidant Potential of Stem Bark Extracts from Jatropha curcas (Linn)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polyphenol Content and Antioxidant Activity
2.2. DPPH Radical Scavenging Assay
2.3. ABTS Radical Scavenging Activity
2.4. The Reducing Power of the Extract
2.5. Superoxide Anion Scavenging Activity
2.6. Nitric Oxide Scavenging Activity
2.7. Hydrogen Peroxide Scavenging Capacity
3. Material and Methods
3.1. Plant Materials
3.2. Chemicals
3.3. Preparation of Extract
3.4. Determination of Total Phenolics Content
3.5. Determination of Total Flavonoids Content
3.6. Determination of Total Flavonols Content
3.7. Determination of Proanthocyanidins Content
3.8. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Assay
3.9. 2,2′-Azino-bis-(3-ethylbenzothiazoline-6-sulphonic Acid) (ABTS) Radical Scavenging Assay
3.10. Determination of Ferric Reducing Power
3.11. Superoxide Anion Scavenging Capacity
3.12. Nitric Oxide Scavenging Activity
3.13. Hydrogen Peroxide Scavenging Capacity
3.14. Statistical Analysis
4. Conclusions
Acknowledgments
References
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev 2002, 82, 47–95. [Google Scholar]
- Bahman, N; Mohammed, K; Hamidreza, I. In vitro free radical scavenging activity of five salvia species. Pak. J. Pharm. Sci 2007, 20, 291–294. [Google Scholar]
- Osawa, T. Protective role of dietary polyphenols in oxidative stress. Mech. Ageing Dev 1999, 111, 133–139. [Google Scholar]
- Parejo, I; Valadomat, F; Bastida, J; Rossa-Remero, A; Ferlage, N; Burillo, J; Codina, C. Comparison between the radical scavenging activities and antioxidant activity of six distilled and non-distilled Mediterranean herbs and aromatic plants. J. Agric. Food Chem 2002, 50, 6882–6890. [Google Scholar]
- Milliauskas, G; Venskutonis, PR; Van-Beek, TA. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 2004, 85, 231–237. [Google Scholar]
- Atoui, AK; Mansouri, A; Boskou, G; Kefalas, P. Tea and herbal infusions: Their antioxidant activity and phenolic profile. Food Chem 2005, 89, 37–36. [Google Scholar]
- Galvez, M; Martin-Cordero, C; Hourghton, PH; Ayuso, MJ. Antioxdant activity of methanol extracts obtained from Plantago species. J. Agric. Food Chem 2005, 53, 1927–1933. [Google Scholar]
- Gülcin, I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006, 217, 213–220. [Google Scholar]
- Gülcin, I. Comparison of in vitro antioxidant and antiradical activities of l-tyrosine and l-dopa. Amino Acids 2007, 32, 431–438. [Google Scholar]
- Vollesen, KE. Flora of Ethiopia and Eritrea; Edwards, S, Mesfin, T, Hedberg, I, Eds.; Addis Ababa, Ethiopia; Uppsala Sweden, 1995; Volume 2, p. 324. [Google Scholar]
- Irvine, FR. Woody Plants of Ghana (with Special Reference to Their Uses), 2nd ed; Oxford University Press: London, UK, 1961; pp. 233–237. [Google Scholar]
- Oliver-Bever, B. Medicinal Plants in Tropical West Africa; Cambridge University Press: London, UK, 1986; 164. [Google Scholar]
- Fagbenro-Beyioku, AF; Oyibo, WA; Anuforom, BC. Disinfectant/antiparaistic activities of Jatropha curcas. East Afr. Med. J 1998, 75, 508–511. [Google Scholar]
- Mujumdar, AM; Misar, AV; Salaskar, MV; Upadhye, AS. Antidiarrhoeal effect of an isolated fraction (JC) of Jatropha curcas roots in mice. J. Nat. Rem 2001, 1, 89–93. [Google Scholar]
- Aiyelaagbe, OO; Adeniyi, BA; Fatunsin, OF; Arimah, BD. In vitro antimicrobial activity and phytochemical analysis of Jatropha curcas roots. Int. J. Pharmacol 2007, 3, 106–110. [Google Scholar]
- Igbinosa, OO; Igbinosa, EO; Aiyegoro, OA. Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas (Linn). Afr. J. Phar. Pharmacol 2009, 3, 58–62. [Google Scholar]
- Shahidi, F; Wanasundar, UN; Amarowicz, R. Natural antioxidant from low pungency mustard flour. Food Res. Int 1994, 27, 489–493. [Google Scholar]
- Duh, PD; Tu, YY; Yen, GC. Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). Lebensm. Wiss. Technol 1999, 32, 269–277. [Google Scholar]
- Li, H; Wang, Z; Liu, Y. Review in the studies on tannins activity of cancer prevention and anticancer. Zhong Yao Cai 2003, 26, 444–448. (in Chinese). [Google Scholar]
- Hausteen, B. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharm 1983, 32, 1141–1148. [Google Scholar]
- Shukla, A; Rasik, AM; Patnaik, GK. Depletion of reduced glutathione, ascorbic acid, viatmin E and antioxidant defence enzymes in a healing cutaneous wound. Free Rad. Res 1997, 26, 93–101. [Google Scholar]
- McDaniel, DH; Ash, K; Lord, J; Newman, J; Zukowski, M. Accelerated laser resurfacing wound healing using atriad of topical antioxidants. Dermatol. Surg 1998, 24, 661–664. [Google Scholar]
- Ligangli, YH; Scott, M; Jonathan, M; John, W; Minq, Q. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem 2002, 50, 1619–1624. [Google Scholar]
- Wang, M; Li, J; Rangarajan, M; Shao, Y; LaVoie, EJ; Huang, T; Ho, C. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem 1998, 46, 4869–4873. [Google Scholar]
- Meir, S; Kanner, B; Akiri, B; Lord, J; Newman, J; Hadas, SP. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various compounds in oxidative defense systems of various senescing leaves. J. Agric. Food. Chem 1995, 43, 1813–1819. [Google Scholar]
- Yen, GC; Chen, HY. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem 1995, 43, 27–32. [Google Scholar]
- Ordonez, AAL; Gomez, JD; Vattuone, MA; Isla, MI. Antioxidant activities of Sechium edule (Jacq). Food Chem 2006, 97, 452–458. [Google Scholar]
- Liu, F; Ooi, VEC; Chang, ST. Free radical scavenging activity of mushroom polysaccharide extracts. Life Sci 1997, 60, 763–771. [Google Scholar]
- Marcocci, L; Marguire, JJ; Droy-Lefaix, MT; Parker, L. The nitric oxide-scavenging propertises of Ginkgo biloba extract EGB 761. Biochem. Biophys. Res. Comm 1994, 201, 748–752. [Google Scholar]
- Moncada, S; Palmer, RMJ; Higgs, EA. Nitric oxide: Physiology, pathophysiology and pharmacology. Pharmacol. Rev 1991, 43, 109–142. [Google Scholar]
- Halliwell, B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med 1991, 91, 14–22. [Google Scholar]
- Wolfe, K; Wu, X; Liu, RH. Antioxidant activity of apple peels. J. Agric. Food Chem 2003, 51, 609–614. [Google Scholar]
- Kumaran, A; Karunakaran, RJ. In vitro antioxidant activities of methanol extracts of Phyllantus species from India. Lebensm. Wiss. Technol 2007, 40, 344–352. [Google Scholar]
- Sun, JS; Tsuang, YW; Chen, JJ; Huang, WC; Hang, YS; Lu, FJ. An ultra-weak chemiluminescence study on oxidative stress in rabbits following acute thermal injury. Burns 1998, 24, 225–231. [Google Scholar]
- Liyana-Pathiranan, CM; Shahidi, F. Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L) as affected by gastric pH conditions. J. Agric. Food Chem 2005, 53, 2433–2440. [Google Scholar]
- Re, R; Pellegrini, N; Proteggente, A; Pannala, A; Yang, M; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med 1999, 26, 1231–1237. [Google Scholar]
- Garrat, DC. The Quantitative Analysis of Drugs, 3rd ed; Chapman and Hall: Tokyo, Japan, 1964; pp. 456–458. [Google Scholar]
- Ruch, RJ; Cheng, SJ; Klaunig, JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar]
Extracts | Total phenol (mg tannic acid/g) | Total flavonoids (mg quercetin/g) | Total flavonols (mg quercetin/g) | Total proanthocyanidins (mg catechin/g) |
---|---|---|---|---|
Ethanol | 14.47 ± 1.29 | 9.33 ± 0.41 | 10.16 ± 0.29 | 12.33 ± 0.42 |
Methanol | 28.87 ± 1.04 | 11.18 ± 0.53 | 12.55 ± 0.13 | 15.69 ± 1.86 |
Aqueous | 10.92 ± 2.25 | 6.28 ± 0.74 | 8.25 ± 0.17 | 7.74 ± 0.85 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Igbinosa, O.O.; Igbinosa, I.H.; Chigor, V.N.; Uzunuigbe, O.E.; Oyedemi, S.O.; Odjadjare, E.E.; Okoh, A.I.; Igbinosa, E.O. Polyphenolic Contents and Antioxidant Potential of Stem Bark Extracts from Jatropha curcas (Linn). Int. J. Mol. Sci. 2011, 12, 2958-2971. https://doi.org/10.3390/ijms12052958
Igbinosa OO, Igbinosa IH, Chigor VN, Uzunuigbe OE, Oyedemi SO, Odjadjare EE, Okoh AI, Igbinosa EO. Polyphenolic Contents and Antioxidant Potential of Stem Bark Extracts from Jatropha curcas (Linn). International Journal of Molecular Sciences. 2011; 12(5):2958-2971. https://doi.org/10.3390/ijms12052958
Chicago/Turabian StyleIgbinosa, Osamuyimen O., Isoken H. Igbinosa, Vincent N. Chigor, Olohirere E. Uzunuigbe, Sunday O. Oyedemi, Emmanuel E. Odjadjare, Anthony I. Okoh, and Etinosa O. Igbinosa. 2011. "Polyphenolic Contents and Antioxidant Potential of Stem Bark Extracts from Jatropha curcas (Linn)" International Journal of Molecular Sciences 12, no. 5: 2958-2971. https://doi.org/10.3390/ijms12052958
APA StyleIgbinosa, O. O., Igbinosa, I. H., Chigor, V. N., Uzunuigbe, O. E., Oyedemi, S. O., Odjadjare, E. E., Okoh, A. I., & Igbinosa, E. O. (2011). Polyphenolic Contents and Antioxidant Potential of Stem Bark Extracts from Jatropha curcas (Linn). International Journal of Molecular Sciences, 12(5), 2958-2971. https://doi.org/10.3390/ijms12052958