A Novel Preparation Method for Camptothecin (CPT) Loaded Folic Acid Conjugated Dextran Tumor-Targeted Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fa-DEX-CPT Nanoparticles
2.2.1. Preparation of Fa-DEX Powder
2.2.2. SAS Process
2.2.3. Factorial Design
2.3. Powder Characterization
2.3.1. Scanning Electron Microscopy (SEM) Analysis
2.3.2. Mean Particle Size Analysis
2.3.3. Loading Efficiency (LE) and Drug Encapsulation Efficiency (EE)
2.3.4. Determination of Folate Content Associated with the Dextran NPs
2.3.5. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
2.3.6. X-ray Diffraction (XRD) Analysis
2.3.7. Differential Scanning Calorimeters (DSC) Analysis
3. Results and Discussion
3.1. Effect of Operating Parameters on the Mean Particles Size of Fa-DEX-CPT
3.2. Main Effect Analysis
3.3. Morphology of Fa-DEX-CPT Nanoparticles
3.4. Surface Chemistry of Fa-DEX-CPT Nanoparticles
4. Conclusions
Acknowledgements
References
- Wall, ME; Wani, MC; Cook, CE; Palmer, KH; McPhail, AT; Sim, GA. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca accuminata. J. Am. Chem. Soc 1966, 88, 3888–3890. [Google Scholar]
- Clements, MK; Wasi, S; Daoud, SS. Camptothecin exhibits selective cytotoxicity towards human breast carcinoma as compared to normal bovine endothelial cells in vitro. Anticancer Drugs 1996, 7, 851–857. [Google Scholar]
- Natelson, EA; Beppino, C; Verschragen, CF; Fehir, KM; de Ipolyi, PD; Harris, N. Phase I clinical and pharmacological studies of 20-(S)-camptothecin and 20-(S)-9-nitrocamptothecin as anticancer agents. Ann. N. Y. Acad. Sci 1996, 803, 224–230. [Google Scholar]
- Gupta, M; Fan, S; Zhan, Q; Kohn, KW; O’Connor, PM; Pommier, Y. Inactivation of p53 increases the cytotoxicity of camptothecin in human colon HCT116 and breast MCF-7 cancer cells. Clin. Cancer Res 1997, 3, 1653–1660. [Google Scholar]
- Oberlies, NH; Krool, DJ. Camptothecin and taxol: Historic achievements in natural products research. J. Nat. Products 2004, 67, 129–135. [Google Scholar]
- Litvak, DA; Papaconstantinou, HT; Hwang, KO; Kim, M; Evers, BM; Townsend, CM, Jr. Inhibition of gastric cancer by camptothecin involves apoptosis and multiple cellular pathways. Surgery 1999, 126, 223–230. [Google Scholar]
- Nagai, S; Yamauchi, M; Satta, T; Kodera, Y; Kondou, K; Akiyaya, S; Ito, K; Takagi, H. Growth inhibition of human gastrointestinal cancer xenograft lines by treatment with CPT-11 and VP-16. J. Surg. Oncol 1993, 54, 211–215. [Google Scholar]
- Slichenmyer, WJ; Rowinsky, EK; Donchower, RC; Kauffman, SH. The current status of camptothecin analogues as antitumor agents. J. Natl. Cancer Inst 1993, 85, 271–291. [Google Scholar]
- Wang, X; Zhou, X; Hecht, SM. Role of the 20-hydroxyl group in camptothecin binding by the topoisomerase I-DNA binary complex. Biochemistry 1999, 38, 4374–4381. [Google Scholar]
- Muggia, FM; Creaven, PJ; Hansen, HH; Cohen, MH; Selawry, OS. Phase I clinical trial weekly and daily treatment with camptothecin (NSC-100880): Correlation with preclinical studies. Cancer Chemother. Pharmacol 1972, 56, 515–552. [Google Scholar]
- Darzynkiewicz, Z; Bruno, S; Del Bino, G; Traganos, F. The cell cycle effects of camptothecin. Ann. N. Y. Acad. Sci 1996, 803, 93–100. [Google Scholar]
- Gallo, RC; Whang-Peng, J; Adamson, RH. Studies on the antitumor activity, mechanism of action, and cell cycle effects of camptothecin. J. Natl. Cancer Inst 1971, 46, 789–795. [Google Scholar]
- Zihou, M; Thomas, GB. Differential interactions of camptothecin lactone and carboxylate forms with human blood components. Biochemistry 1994, 33, 10325–10336. [Google Scholar]
- Garcia-Carbonero, R; Supko, JG. Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin. Cancer Res 2002, 8, 641–661. [Google Scholar]
- Schaeppi, U; Fleischman, RW; Cooney, DA. Toxicity of camptothecin(NSC-100880). Cancer Chemother 1974, 5, 25–36. [Google Scholar]
- Erickson-Miller, CL. Differential toxicity of camptothecin, topotecan and 9-aminocamptothecin to human, canine, and murine myeloid progenitors (CFU-GM) in vitro. Cancer Chemother. Pharmacol 1997, 39, 467–472. [Google Scholar]
- Burke, TG; Staubus, AE; Mishra, AK. Liposomal stabilization of campothecin’s lactone ring. J. Am. Chem. Soc 1992, 114, 8318–8319. [Google Scholar]
- Cortesi, R; Esposito, E; Maietti, A; Menegatti, E; Nastruzzi, C. Formulation study for the antitumor drug camptothecin: Liposomes, micellar solution, and a microemulusionInt. J. Pharm 1997, 159, 95–103. [Google Scholar]
- Liu, X; Lynn, BC; Zhang, J; Song, L; Bom, D; Du, W; Curran, DP; Burke, TG. A versatile prodrug approach for liposomal core-loading of water-insoluble camptothecin anticancer drugs. J. Am. Chem. Soc 2002, 124, 7650–7661. [Google Scholar]
- Miura, H; Onishi, H; Sasatsu, M; Machida, Y. Antitumor characteristics of methoxypolyethylene glycol-poly(dl-lactic acid) nanoparticles containing camptothecin. J. Control. Release 2004, 97, 101–113. [Google Scholar]
- Zamai, M; VandeVen, M; Farao, M; Gratton, E; Ghiglieri, A; Castelli, MG; Fontana, E; D’Argy, R; Fiorino, A; Pesenti, E; et al. Camptothecin poly[n-(2-hydroxypropyl) methacrylamide] copolymers in antitopoisomerase-I tumor therapy: Intratumor release and antitumor efficacy. Mol. Cancer Ther 2003, 2, 29–40. [Google Scholar]
- Singer, JW; Vries, PD; Bhatt, R; Tulinsky, J; Klein, P; Li, C; Milas, L; Lewis, RA; Wallace, S. Conjugation of camptothecins to poly-(l-glutamic acid). Ann. N. Y. Acad. Sci 2000, 922, 136–150. [Google Scholar]
- Tomalia, R; Tomalia, DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 2001, 6, 427–436. [Google Scholar]
- Zhu, A; Yuan, L; Jin, W; Dai, S. Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release. Acta Biomater 2009, 5, 1489–1498. [Google Scholar]
- Tanizawa, A; Fujimori, A; Fujimori, Y; Pommier, Y. Comparison of topoisomerase I inhibition, DNA damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J. Natl. Cancer Inst 1994, 86, 836–842. [Google Scholar]
- Mehvar, R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control. Release 2000, 69, 1–25. [Google Scholar]
- Van Dijk-Wolthuis, WNE; Hoogeboom, JAM; van Steenbergen, MJ; Tsang, SKY; Hennink, WE. Degradation and release behavior of dextran-based hydrogels. Macromolecules 1997, 30, 4639–4645. [Google Scholar]
- Hennink, WE; Talsma, H; Borchert, JCH; de Smedt, SC; Demeester, J. Controlled release of proteins from dextran hydrogels. J. Control. Release 1996, 39, 47–55. [Google Scholar]
- Franssen, O; Stenekes, RJH; Hennink, WE. Controlled release of a model protein from enzymatically degrading dextran microspheres. J. Control Release 1999, 59, 219–228. [Google Scholar]
- Cadee, JA; van Luyn, M; Brouwer, LA; Plantinga, JA; van Wachem, PB; de Groot, CJ; Willem, DO; Hennink, WE. In vivo biocompatibility of dextran-based hydrogels. J. Biomed. Mater. Res 2000, 50, 397–404. [Google Scholar]
- Mehvar, R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control. Release 2000, 69, 1–25. [Google Scholar]
- Kim, MS; Jin, SJ; Kim, JS; Park, HJ; Song, HS; Neubert, RH; Hwang, SJ. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm 2008, 69, 454–465. [Google Scholar]
- Chattopadhyay, P; Gupta, RB. Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer. Int. J. Pharm 2001, 228, 19–31. [Google Scholar]
- Costa, MS; Duarte, ARC; Cardoso, MM; Duarte, CMM. Supercritical antisolvent precipitation of PHBV microparticles. Int. J. Pharm 2007, 328, 72–77. [Google Scholar]
- Della Porta, G; Reverchon, E; Pallado, P. Supercritical antisolvent precipitation of salbutamol microparticles. Powder Technol 2001, 114, 17–22. [Google Scholar]
- Lee, LY; Wang, C; Smith, KA. Supercritical antisolvent production of biodegradable micro-and nanoparticles for controlled delivery of paclitaxel. J. Control. Release 2008, 125, 96–106. [Google Scholar]
- Tavares, CMA; Geraldes, V; Cabral, JMS; Palavra, AMF. Characterization of minocycline powder micronized by a supercritical antisolvent (SAS) process. J. Supercrit. Fluids 2008, 46, 71–76. [Google Scholar]
- Winters, MA; Knutson, BL; Debenedetti, PG; Sparks, HG; Przybycien, TM; Stevenson, CL. Precipitation of proteins in supercritical carbon dioxide. J. Pharm. Sci 1996, 85, 586–594. [Google Scholar]
- Zhao, XH; Zu, YG; Li, QY; Wang, MX; Zu, BS; Zhang, XN; Jiang, R; Zu, CL. Preparation and characterization of camptothecin powder micronized by a supercritical antisolvent (SAS) process. J. Supercrit. Fluids 2010, 51, 412–419. [Google Scholar]
- Costa, CBB; Maciel, M; Filho, RM. Factorial design technique applied to genetic algorithm parameters in a batch cooling crystallization optimisation. Comput. Chem. Eng 2005, 29, 2229–2241. [Google Scholar]
- Hashemi, P; Bagheri, S; Fathi, MR. Factorial design for optimization of experimental variables in preconcentration of copper by a chromotropic acid loaded Q-Sepharose adsorbent. Talanta 2005, 68, 72–78. [Google Scholar]
- Sousa, ACC; Mateus, M. Application of Factorial Design to Microfiltration Performance: Study of Electrostatic and Hydrodynamic Effects. Chem. Eng. Res. Des 2003, 81, 271–276. [Google Scholar]
- Plesua, N; Grozav, I; Iliescu, S; Ilia, G. Acrylic blends based on polyaniline. Factorial design. Synth. Met 2009, 159, 501–507. [Google Scholar]
- Liu, J; Jiang, ZZ; Zhang, SM; Saltzman, M. Poly(u-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery. Biomaterials 2009, 30, 5707–5719. [Google Scholar]
Run | Sample No. | Dependent Variables | Result | ||||||
---|---|---|---|---|---|---|---|---|---|
A (°C) | B (MPa) | C (μm) | D (mL/min) | E (mg/mL) | F (mg/mL) | Mean Particle Size (nm) | Picture | ||
1 | 12 | 40.00 | 10.00 | 200.00 | 6.7 | 5.00 | 1.00 | 160.26 | |
2 | 15 | 60.00 | 10.00 | 200.00 | 6.7 | 20.00 | 1.00 | 231.74 | |
3 | 13 | 40.00 | 20.00 | 200.00 | 6.7 | 20.00 | 5.00 | 451.62 | |
4 | 14 | 60.00 | 20.00 | 200.00 | 6.7 | 5.00 | 5.00 | 126.14 | |
5 | 2 | 40.00 | 10.00 | 300.00 | 6.7 | 20.00 | 5.00 | 676.3 | |
6 | 3 | 60.00 | 10.00 | 300.00 | 6.7 | 5.00 | 5.00 | 251.94 | |
7 | 4 | 40.00 | 20.00 | 300.00 | 6.7 | 5.00 | 1.00 | 78.99 | |
8 | 5 | 60.00 | 20.00 | 300.00 | 6.7 | 20.00 | 1.00 | 251.94 | Figure 4a |
9 | 9 | 40.00 | 10.00 | 200.00 | 13.3 | 5.00 | 5.00 | 402.19 | |
10 | 16 | 60.00 | 10.00 | 200.00 | 13.3 | 20.00 | 5.00 | 263.87 | |
11 | 11 | 40.00 | 20.00 | 200.00 | 13.3 | 20.00 | 1.00 | 755.69 | |
12 | 10 | 60.00 | 20.00 | 200.00 | 13.3 | 5.00 | 1.00 | 434.18 | Figure 4c |
13 | 6 | 40.00 | 10.00 | 300.00 | 13.3 | 20.00 | 1.00 | 307.79 | |
14 | 17 | 60.00 | 10.00 | 300.00 | 13.3 | 5.00 | 1.00 | 262.54 | |
15 | 8 | 40.00 | 20.00 | 300.00 | 13.3 | 5.00 | 5.00 | 126.23 | Figure 4d |
16 | 7 | 60.00 | 20.00 | 300.00 | 13.3 | 20.00 | 5.00 | 736.74 | Figure 4b |
17 | 1 | 50.00 | 15.00 | 300.00 | 10 | 12.50 | 3.00 | 482.6 | Figure 4e |
18 | 18 | 50.00 | 15.00 | 300.00 | 10 | 12.50 | 3.00 | 465.37 | |
19 | 19 | 50.00 | 15.00 | 300.00 | 10 | 12.50 | 3.00 | 479.58 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zu, Y.; Wang, D.; Zhao, X.; Jiang, R.; Zhang, Q.; Zhao, D.; Li, Y.; Zu, B.; Sun, Z. A Novel Preparation Method for Camptothecin (CPT) Loaded Folic Acid Conjugated Dextran Tumor-Targeted Nanoparticles. Int. J. Mol. Sci. 2011, 12, 4237-4249. https://doi.org/10.3390/ijms12074237
Zu Y, Wang D, Zhao X, Jiang R, Zhang Q, Zhao D, Li Y, Zu B, Sun Z. A Novel Preparation Method for Camptothecin (CPT) Loaded Folic Acid Conjugated Dextran Tumor-Targeted Nanoparticles. International Journal of Molecular Sciences. 2011; 12(7):4237-4249. https://doi.org/10.3390/ijms12074237
Chicago/Turabian StyleZu, Yuangang, Dan Wang, Xiuhua Zhao, Ru Jiang, Qi Zhang, Dongmei Zhao, Yong Li, Baishi Zu, and Zhiqiang Sun. 2011. "A Novel Preparation Method for Camptothecin (CPT) Loaded Folic Acid Conjugated Dextran Tumor-Targeted Nanoparticles" International Journal of Molecular Sciences 12, no. 7: 4237-4249. https://doi.org/10.3390/ijms12074237
APA StyleZu, Y., Wang, D., Zhao, X., Jiang, R., Zhang, Q., Zhao, D., Li, Y., Zu, B., & Sun, Z. (2011). A Novel Preparation Method for Camptothecin (CPT) Loaded Folic Acid Conjugated Dextran Tumor-Targeted Nanoparticles. International Journal of Molecular Sciences, 12(7), 4237-4249. https://doi.org/10.3390/ijms12074237