Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith.) Against Drug Resistance Bacterial Isolates
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials and Methods
3.2. Preparation of Bacterial Inoculums
3.3. Antibiotics Used in this Study
3.4. Sensitivity Testing of the Crude Plant Extract
3.5. Determination of the Minimum Inhibitory Concentrations (MICs)
3.6. Antibiotic-Extract Combination Experiment (The Time-Kill Method)
3.7. Statistical Analysis
4. Conclusions
References
- Betoni, JEC; Mantovani, RP; Barbosa, LN; Di Stasi, LC; Fernandes, A, Jr. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Mem. Inst. Oswaldo Cruz 2006, 101, 387–390. [Google Scholar]
- Aiyegoro, OA; Afolayan, AJ; Okoh, AI. Synergistic interaction of Helichrysum pedunculatum leaf extracts with antibiotics against wound infection associated bacteria. Biol. Res 2009, 42, 327–338. [Google Scholar]
- Aiyegoro, OA; Afolayan, AJ; Okoh, AI. Interactions of antibiotics and extracts of Helichrysum pedunculatum against bacteria implicated in wound infections. Folia Microbiol 2010, 55, 176–180. [Google Scholar]
- Keay, RWJ. Trees of Nigerian; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Akah, PA; Okpi, O; Okoli, CO. Evaluation of the anti-inflammatory, analgesic and antimicrobial activities of Afzelia africana. Nig. J. Nat. Prod. Med 2007, 11, 48–52. [Google Scholar]
- Atawodi, SA. Comparative in vitro trypanocidal activities of petroleum ether, chloroform, methanol and aqueous extracts of some Nigeria savannah plants. Afr. J. Biotech 2005, 4, 177–182. [Google Scholar]
- Dalziel, JM. The Useful Plants of West Tropical Africa; Crown Agents for the Colonies: London, UK, 1937; p. 612. [Google Scholar]
- Akinpelu, DA; Aiyegoro, OA; Okoh, AI. In vitro antibacterial and phytochemical properties of crude extract of stem bark of Afzelia africana (Smith). Afr. J. Biotech 2008, 7, 3662–3667. [Google Scholar]
- Akinpelu, DA; Aiyegoro, OA; Okoh, AI. Studies on the biocidal and cell membrane disruption potentials of stem bark extracts of Afzelia africana (Smith). Biol. Res 2009, 42, 339–349. [Google Scholar]
- European Committee for Antimicrobial Susceptibity Testing (EUCAST). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Micro. Inf 2000, 6, 509–515.
- Russell, AD; Furr, JR. The antibacterial activity of a new chloroxylenol preparation containing ethylenediamine tetraacetic acid. J. Appl. Bacteriol 1977, 43, 253. [Google Scholar]
- Irobi, ON; Moo-Young, M; Anderson, WA; Daramola, SO. Antimicrobial activity of the bark of Bridelia ferruginea (Euphorbiaceae). Int. J. Pharmacog 1994, 34, 87–90. [Google Scholar]
- White, RL; Burgess, DS; Manduru, M; Bosso, JA. Comparison of three different In Vitro methods of detecting synergy: Time-Kill, Checkerboard, and E test. Antimicrob. Agents Chemother 1996, 40, 1914–1918. [Google Scholar]
- Adwan, GM; Abu-Shanab, BA; Adwan, K. In vitro activity of certain drugs in combination with plant extracts against Staphylococcus aureus infections. Pak. J. Med. Sci 2008, 24, 541–544. [Google Scholar]
- Lorenzi, V; Muselli, A; Bernardini, AF; Berti, L; Pages, JM; Amaral, L; Bolla, JM. Geraniol restores antibiotic activities against multidrug-resistant isolates from Gram-negative species. Antimicrob. Agents Chemother 2009, 53, 2209–2211. [Google Scholar]
- Lee, JY; Oh, WS; Ko, KS; Heo, ST; Moon, CS; Ki, HK; Kiem, S; Peck, KR; Song, JH. Synergy of arbekacin-based combinations against vancomycin hetero-intermediate Staphylococcus aureus. J. Korean Med. Sci 2006, 21, 188–192. [Google Scholar]
- Sato, M; Tanaka, H; Yamaguchi, R; Kato, K; Etoh, H. Synergistic effects of mupirocin and an isoflavanone isolated from Erythrina variegata on growth and recovery of methicillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 2004, 24, 43–48. [Google Scholar]
- Sader, HS; Streit, JM; Fritsche, TR; Jones, RN. Antimicrobial activity of Daptomycin against multidrug-resistant Gram-positive strains collected worldwide. Diagn. Microbiol. Infect. Dis 2004, 50, 201–204. [Google Scholar]
- Agbelusi, GA; Odukoya, OA; Otegbeye, AF. In vitro screening of chewing stick Extracts and sap on oral pathogens: Immune compromised infection. Biotechnology 2007, 6, 97–100. [Google Scholar]
- Cushnie, TPT; Lamb, AJ. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar]
- Esimone, CO; Iroha, IR; Ibezim, EC; Okeh, CO; Okpana, EM. In vitro evaluation of the interaction between tea extracts and penicillin G against Staphylococcus aureus. Afr. J. Biotechnol 2006, 5, 1082–1086. [Google Scholar]
- Zhao, WH; Hu, ZQ; Okubo, S; Hara, Y; Shimamura, T. Mechanism of synergy between Epigallochatechin gallate and β-Lactams against methicillin resistant Staphylococcus aureus. Antimicrob. Agents Chemother 2001, 45, 1737–1742. [Google Scholar]
- Kumar, A; Schweizer, HP. Bacterial resistance to antibiotics: Active efflux and reduced uptake. Adv. Drug Deliv. Rev 2005, 57, 1486–1513. [Google Scholar]
- Tegos, G; Stermitz, FR; Lomovskaya, O; Lewis, K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother 2002, 46, 3133–3141. [Google Scholar]
- Stermitz, FR; Lorenz, P; Tawara, JN; Zenewicz, LA; Lewis, K. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5-methoxyhydnocarpin, a multidrug pump inhibitor. Appl. Biol. Sci 2000, 97, 1433–1437. [Google Scholar]
- Smith, ECJ; Williamson, EM; Wareham, N; Kaatz, GW; Gibbons, S. Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry 2007, 68, 210–217. [Google Scholar]
- Matsumura, N; Minami, S; Watanabe, Y; Iyobe, S; Mitsuhashi, S. Roles of permeability in the activites of beta-lactams against Gram-negative bacteria which produce a group 3 beta-lactamase. Antimicrob. Agents Chemother 1999, 43, 2084–2086. [Google Scholar]
- Song, W; Woo, HJ; Kim, JS; Lee, KM. In vitro activity of β-lactams in combination with other antimicrobial agents against resistant strains of Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2003, 21, 8–12. [Google Scholar]
- Rochon-Edouard, S; Pestel-Caron, M; Lemeland, JF; Caron, F. In vitro synergistic effect of double and triple combinations of β-lactams, vancomycin and netilmycin against methicillin resistant Staphylococcus aureus strains. Antimicrob. Agent Chemother 2000, 44, 3055–3060. [Google Scholar]
Bacterial isolates | A. africana extract (5 mg/mL) | Tetracycline (0.1 mg/mL) | Ampicilin (0.01 mg/mL) |
---|---|---|---|
Enterococcus faecalis (ATCC 29212) | 21 ± 0.0 a | 19 ± 0.4 a | 17 ± 0.4 a |
Staphylococcus aureus (ATCC 6538) | 13 ± 2.1 a | 20 ± 1.0 b | 24 ± 0.3 b |
Bacillus pumilus (ATCC 14884) | 19 ± 0.1 a | 28 ± 0.0 b | 23 ± 1.6 a |
Klebsiella pneumoniae (ATCC 10031) | 16 ± 0.6 a | 23 ± 1.3 b | 14 ± 0.0 a |
Proteus vulgaris (CSIR 0030) | 20 ± 0.7 c | 14 ± 1.7 a | 15 ± 1.9 b |
Micrococcus kristinae § | 25 ± 0.9 a | 18 ± 0.6 b | 18 ± 2.0 b |
Micrococcus luteus § | 23 ± 0.3 c | 17 ± 1.2 b | 13 ± 1.6 a |
Proteus vulgaris § | 21 ± 1.3 a | 22 ± 0.0 a | 19 ± 0.0 a |
Klebsiella pneumoniae § | 18 ± 1.6 a | 15 ± 0.9 a | 13 ± 1.0 a |
Bacillus subtilis § | 20 ± 0.9 b | 22 ± 0.6 b | 30 ± 0.9 a |
Staphylococcus epidermidis § | 14 ± 1.7 b | 10 ± 0.6 a | 17 ± 0.2 c |
Minimum Inhibitory Concentration (mg/mL)
| |||||||||
---|---|---|---|---|---|---|---|---|---|
Bacterial isolates | Extract | TET | PEN G | ERY | AMX | CIP | CHL | OXT | AMP |
E. faecalis (ATCC 29212) | 0.5 | 0.016 | 0.400 | 0.256 | 0.412 | 0.004 | 0.128 | 0.008 | 0.004 |
S. aureus (ATCC 6538) | 2.5 | 0.004 | 0.001 | 0.008 | 0.002 | 0.004 | 0.002 | 0.004 | 0.001 |
B. pumilus (ATCC 14884) | 2.5 | 0.001 | 0.001 | 0.002 | 0.001 | 0.002 | 0.004 | 0.002 | 0.001 |
K. pneumoniae (ATCC 10031) | 0.1 | 0.016 | 0.412 | 0.256 | 0.412 | 0.004 | 0.256 | 0.016 | 0.004 |
P. vulgaris (CSIR 0030) | 5.0 | 0.016 | 0.032 | 0.412 | 0.002 | 0.004 | 0.008 | 0.032 | 0.001 |
M. kristinae § | 0.5 | 0.004 | 0.001 | 0.032 | 0.001 | 0.002 | 0.004 | 0.004 | 0.001 |
M. luteus § | 0.5 | 0.004 | 0.001 | 0.004 | 0.008 | 0.002 | 0.004 | 0.004 | 0.002 |
P. vulgaris § | 0.1 | 0.032 | 0.004 | 0.412 | 0.001 | 0.001 | 0.008 | 0.064 | 0.004 |
K. pneumoniae § | 5.0 | 0.016 | 0.412 | 0.412 | 0.412 | 0.001 | 0.064 | 0.016 | 0.004 |
B. subtilis § | 1.0 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.004 | 0.001 |
S. epidermidis § | 2.5 | 0.016 | 0.412 | 0.412 | 0.412 | 0.001 | 0.064 | 0.016 | 0.004 |
Reduction in bacterial counts (log10 CFU/mL ± SD) ** compared with the two antimicrobial agents used alone
| ||||||||
---|---|---|---|---|---|---|---|---|
Bacterial isolates | TET + Extract | PEN G + Extract | ERY + Extract | AMX + Extract | CIP + Extract | CHL + Extract | OXT + Extract | AMP + Extract |
E. faecalis (ATCC 29212) | −2.0 ± 0.6 (S) | −2.7 ± 0.7 (S) | −2.7 ± 0.6 (S) | −2.8 ± 0.3 (S) | −4.22 ± 0.6 (S) | −2.0 ± 0.06 (S) | −2.04 ± 0.01 (S) | −2.04 ± 0.07 (S) |
S. aureus (ATCC 6538) | −2.0 ± 0.6 (S) | −2.1 ± 0.3 (S) | −2.04 ± 0.01 (S) | −2.9 ± 1.1 (S) | −2.4 ± 0.04 (S) | −2.0 ± 0.66 (S) | 0.52 ± 0.01 (I) | −2.9 ± 0.41 (S) |
B. pumilus (ATCC 14884) | −2.12 ± 0.6 (S) | −3.1 ± 0.8 (S) | −2.99 ± 1.06 (S) | 0.0 ± 0.0 (I) | −3.88 ± 0.5 (S) | −1.99 ± 0.04 (I) | −4.05 ± 1 (S) | −2.7 ± 0.3 (S) |
K. pneumoniae (ATCC 10031) | 0.0 ± 0.0 (I) | −1.99 ± 0.6 (I) | 0.0 ± 0.0 (I) | 0.5 ± 0.01 (I) | −2.6 ± 0.41 (S) | −3.0 ± 0.21 (S) | −1.92 ± 0.01 (I) | −1.91 ± 1.07 (I) |
P. vulgaris (CSIR 0030) | −2.04 ± 0.1 (S) | −2.7 ± 0.1 (S) | −4.02 ± 0.9 (S) | 0.0 ± 0.0 (I) | −2.0 ± 0.25 (S) | −2.0 ± 0.6 (S) | −2.84 ± 0.26 (S) | −2.85 ± 0.01 (S) |
M. kristinae § | 0.0 ± 0.0 (I) | −2.8 ± 0.9(S) | 0.0 ± 0.0 (I) | 0.0 ± 0.0 (I) | −3.1 ± 0.04 (S) | −4.22 ± 0.6 (S) | 0.0 ± 0.0 (I) | −3.18 ± 2.04 (S) |
M. luteus § | −2.0 ± 0.6 (S) | −3.8 ± 0.3 (S) | −3.04 ± 0.01 (S) | −2.9 ± 0.9 (S) | −2.1 ± 0.11 (S) | −4.52 ± 0.09 (S) | −3.0 ± 1.49 (S) | −2.89 ± 0.03 (S) |
P. vulgaris § | 0.0 ± 0.0 (I) | −2.4 ± 0.6 (S) | 0.0 ± 0.0 (I) | 0.2 ± 0.31 (I) | −2.87 ± 0.9 (S) | −4.29 ± 2.6 (S) | 0.2 ± 0.4 (I) | −3.87 ± 0.63 (S) |
K. pneumoniae § | 0.0 ± 0.0 (I) | −2.4 ± 0.2 (S) | −2.44 ± 0.11 (S) | 0.0 ± 0.0 (I) | −2.65 ± 0.4 (S) | −2.22 ± 1.8 (S) | 0.0 ± 0.0 (I) | −2.0 ± 0.11 (S) |
B. subtilis § | −1.99 ± 0.06 (I) | −1.9 ± 1.92 (I) | −4.22 ± 0.6 (S) | −1.2 ± 0.1 (I) | −2.99 ± 1.7 (S) | −3.22 ± 1.6 (S) | −1.99 ± 0.17 (I) | −2.7 ± 0.22 (S) |
S. epidermidis § | −1.91 ± 0.07 (I) | −2.8 ± 0.6 (S) | −2.4 ± 0.1 (S) | −1.9 ± 0.1 (I) | −4.01 ± 0.9 (S) | −4.22 ± 0.4 (S) | 0.55 ± 1.07 (I) | −1.69 ± 0.06 (I) |
Reduction in bacterial counts (log10 CFU/mL ± SD)** compared with the two antimicrobial agents used alone
| ||||||||
---|---|---|---|---|---|---|---|---|
Bacterial isolates | TET + Extract | PEN G + Extract | ERY + Extract | AMX + Extract | CIP + Extract | CHL + Extract | OXT + Extract | AMP + Extract |
E. faecalis (ATCC 29212) | −2.2 ± 1.9 (S) | −2.0 ± 0.1 (S) | −2.0 ± 1.2 (S) | 0.2 ± 0.31 (I) | −2.03 ± 1.1 (S) | −3.2 ± 1.7 (S) | −2.9 ± 1.12 (S) | −2.0 ± 0.61 (S) |
S. aureus (ATCC 6538) | 0.0 ± 0.0 (I) | −3.11 ± 1.6 (S) | −2.0 ± 0.8 (S) | −1.6 ± 0.4 (I) | −3.1 ± 1.9 (S) | −2.0 ± 1.01 (S) | 0.0 ± 0.0 (I) | −2.0 ± 1.71 (S) |
B. pumilus (ATCC 14884) | −3.0 ± 0.11 (S) | −2.6 ± 1.1 (S) | −1.9 ± 0.02 (I) | 0.0 ± 0.0 (I) | −2.14 ± 1.2 (S) | −1.0 ± 1.22 (I) | −2.39 ± 0.11 (S) | −2.0 ± 0.61 (S) |
K. pneumoniae (ATCC 10031) | 0.0 ± 0.0 (I) | 0.0 ± 0.0 (I) | 0.0 ± 0.0 (I) | −1.9 ± 0.6 (I) | −3.1 ± 0.11 (S) | −2.99 ± 0.6 (S) | −0.0 ± 0.0 (I) | 0.0 ± 0.0 (I) |
P. vulgaris (CSIR 0030) | −4.12 ± 1.3 (S) | −2.0 ± 0.9 (S) | −3.8 ± 1.2 (S) | 0.0 ± 0.0 (I) | −2.2 ± 1.13 (S) | −2.0 ± 1.6 (S) | −3.04 ± 1.7 (S) | −3.11 ± 1.09 (S) |
M. kristinae § | −1.20 ± 1.6 (I) | −2.0 ± 1.4(S) | 0.0 ± 0.0 (I) | 0.0 ± 0.0 (I) | −2.8 ± 1.3 (S) | −2.09 ± 0.1 (S) | 0.6 ± 1.1 (I) | −2.18 ± 0.06 (S) |
M. luteus § | −2.9 ± 1.12 (S) | −2.0 ± 0.61 (S) | −2.1 ± 1.2 (S) | −1.9 ± 1.2 (I) | −2.5 ± 0.15 (S) | −2.44 ± 0.1 (S) | −2.4 ± 0.2 (S) | 0.0 ± 0.0 (I) |
P. vulgaris § | 0.0 ± 0.0 (I) | −2.03 ± 1.1 (S) | 0.0 ± 0.0 (I) | −0.9 ± 1.2 (I) | −2.03 ± 1.1 (S) | −2.07 ± 1.3 (S) | 0.0 ± 0.0 (I) | −1.62 ± 1.5 (I) |
K. pneumoniae § | 0.0 ± 0.0 (I) | −2.0 ± 0.8 (S) | −2.3 ± 1.1 (S) | 0.0 ± 0.0 (I) | −2.03 ± 1.1 (S) | −2.0 ± 0.11 (S) | −1.9 ± 1.92 (I) | −2.6 ± 1.07 (S) |
B. subtilis § | 0.0 ± 0.0 (I) | 0.0 ± 0.0 (I) | −3.3 ± 0.9 (S) | 0.0 ± 0.0 (I) | −2.0 ± 1.1 (S) | −2.62 ± 1.2 (S) | −1.99 ± 0.6 (I) | −2.0 ± 1.9 (S) |
S. epidermidis § | −1.9 ± 0.02 (I) | −2.2 ± 1.9 (S) | −2.4 ± 0.1 (S) | −1.9 ± 0.7 (I) | −4.12 ± 0.1 (S) | −3.01 ± 1.0 (S) | 0.0 ± 0.0 (I) | 0.0 ± 0.0 (I) |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Aiyegoro, O.; Adewusi, A.; Oyedemi, S.; Akinpelu, D.; Okoh, A. Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith.) Against Drug Resistance Bacterial Isolates. Int. J. Mol. Sci. 2011, 12, 4477-4487. https://doi.org/10.3390/ijms12074477
Aiyegoro O, Adewusi A, Oyedemi S, Akinpelu D, Okoh A. Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith.) Against Drug Resistance Bacterial Isolates. International Journal of Molecular Sciences. 2011; 12(7):4477-4487. https://doi.org/10.3390/ijms12074477
Chicago/Turabian StyleAiyegoro, Olayinka, Adekanmi Adewusi, Sunday Oyedemi, David Akinpelu, and Anthony Okoh. 2011. "Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith.) Against Drug Resistance Bacterial Isolates" International Journal of Molecular Sciences 12, no. 7: 4477-4487. https://doi.org/10.3390/ijms12074477
APA StyleAiyegoro, O., Adewusi, A., Oyedemi, S., Akinpelu, D., & Okoh, A. (2011). Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith.) Against Drug Resistance Bacterial Isolates. International Journal of Molecular Sciences, 12(7), 4477-4487. https://doi.org/10.3390/ijms12074477