Genetic Variability in DNA Repair Proteins in Age-Related Macular Degeneration
Abstract
:1. Introduction
2. XRCC1
2.1. The Protein and the Gene
2.2. XRCC1 in AMD
3. XPD (ERCC2)
3.1. The Protein and the Gene
3.2. XPD in AMD
4. ERCC6 (CSB)
4.1. The Gene and the Protein
4.2. ERCC6 in AMD
5. hOGG1
5.1. The Gene and the Protein
5.2. hOGG1 in AMD
6. MUTYH
6.1. The Gene and the Protein
6.2. MUTYH in AMD
7. SMUG1
7.1. The Gene and the Protein
7.2. SMUG1 in AMD
8. UNG
8.1. The Gene and the Protein
8.2. UNG in AMD
9. Discussion
10. Conclusions
Acknowledgments
References
- Khandhadia, S.; Cherry, J.; Lotery, A.J. Age-related macular degeneration. Adv. Exp. Med. Biol 2012, 724, 15–36. [Google Scholar]
- Hardy, J. Genetic analysis of pathways to Parkinson disease. Neuron 2010, 68, 201–206. [Google Scholar]
- Ding, X.; Patel, M.; Chan, C.C. Molecular pathology of age-related macular degeneration. Prog. Retin. Eye Res 2009, 28, 1–18. [Google Scholar]
- Tong, Y.; Liao, J.; Zhang, Y.; Zhou, J.; Zhang, H.; Mao, M. LOC387715/HTRA1 gene polymorphisms and susceptibility to age-related macular degeneration: A HuGE review and meta-analysis. Mol. Vis 2010, 16, 1958–1981. [Google Scholar]
- Shields, P.G.; Harris, C.C. Cancer risk and low-penetrance susceptibility genes in gene-environment interactions. J. Clin. Oncol 2000, 18, 2309–2315. [Google Scholar]
- Naccarati, A.; Pardini, B.; Hemminki, K.; Vodicka, P. Sporadic colorectal cancer and individual susceptibility: A review of the association studies investigating the role of DNA repair genetic polymorphisms. Mutat. Res 2007, 635, 118–145. [Google Scholar]
- Ricceri, F.; Matullo, G.; Vineis, P. Is there evidence of involvement of DNA repair polymorphisms in human cancer. Mutat. Res 2011. [Google Scholar] [CrossRef]
- Vineis, P.; Manuguerra, M.; Kavvoura, F.K.; Guarrera, S.; Allione, A.; Rosa, F.; di Gregorio, A.; Polidoro, S.; Saletta, F.; Ioannidis, J.P.; et al. A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. J. Natl. Cancer Inst 2009, 101, 24–36. [Google Scholar]
- Han, L.; Mao, W.; Yu, K. X-ray repair cross-complementing protein 1 (XRCC1) deficiency enhances class switch recombination and is permissive for alternative end joining. Proc. Natl. Acad. Sci. USA 2012, 109, 4604–4608. [Google Scholar]
- Campalans, A.; Marsin, S.; Nakabeppu, Y.; O’connor, T.R.; Boiteux, S.; Radicella, J.P. XRCC1 interactions with multiple DNA glycosylases: A model for its recruitment to base excision repair. DNA Repair 2005, 4, 826–835. [Google Scholar]
- Lehmann, A.R. The xeroderma pigmentosum group D (XPD) gene: One gene, two functions, three diseases. Genes Dev 2001, 15, 15–23. [Google Scholar]
- Licht, C.L.; Stevnsner, T.; Bohr, V.A. Cockayne syndrome group B cellular and biochemical functions. Am. J. Hum. Genet 2003, 73, 1217–1239. [Google Scholar]
- Troelstra, C.; Hesen, W.; Bootsma, D.; Hoeijmakers, J.H. Structure and expression of the excision repair gene ERCC6, involved in the human disorder Cockayne’s syndrome group B. Nucleic Acids Res 1993, 21, 419–426. [Google Scholar]
- Ishida, T.; Hippo, Y.; Nakahori, Y.; Matsushita, I.; Kodama, T.; Nishimura, S.; Aburatani, H. Structure and chromosome location of human OGG1. Cytogenet. Cell Genet 1999, 85, 232–236. [Google Scholar]
- Hashiguchi, K.; Stuart, J.A.; de Souza-Pinto, N.C.; Bohr, V.A. The C-terminal alpha-O-helix of human Ogg1 is essential for 8-oxoguanine DNA glycosylase activity: The mitochondrial beta-Ogg1 lacks this domain and does not have glycosylase activity. Nucleic Acids Res 2004, 32, 5596–5608. [Google Scholar]
- Takao, M.; Zhang, Q.M.; Yonei, S.; Yasui, A. Differential subcellular localization of human MutY homolog (hMYH) and the functional activity of adenine: 8-Oxoguanine DNA glycosylase. Nucleic Acids Res 1999, 27, 3638–3644. [Google Scholar]
- Masaoka, A.; Matsubara, M.; Hasegawa, R.; Tanaka, T.; Kurisu, S.; Terato, H.; Ohyama, Y.; Karino, N.; Matsuda, A.; Ide, H. Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions. Biochemistry 2003, 42, 5003–5012. [Google Scholar]
- Krokan, H.E.; Otterlei, M.; Nilsen, H.; Kavli, B.; Skorpen, F.; Andersen, S.; Skjelbred, C.; Akbari, M.; Aas, P.A.; Slupphaug, G. Properties and functions of human uracil-DNA glycosylase from the UNG gene. Prog. Nucleic Acid Res. Mol. Biol 2001, 68, 365–386. [Google Scholar]
- Xue, H.; Ni, P.; Lin, B.; Xu, H.; Huang, G. X-ray repair cross-complementing group 1 (XRCC1) genetic polymorphisms and gastric cancer risk: A HuGE review and meta-analysis. Am. J. Epidemiol 2011, 173, 363–375. [Google Scholar]
- Yin, G.; Morita, M.; Ohnaka, K.; Toyomura, K.; Hamajima, N.; Mizoue, T.; Ueki, T.; Tanaka, M.; Kakeji, Y.; Maehara, Y.; et al. Genetic polymorphisms of XRCC1, alcohol consumption, and the risk of colorectal cancer in Japan. J. Epidemiol 2012, 22, 64–71. [Google Scholar]
- Zhang, H.; Li, W.; Franklin, M.J.; Dudek, A.Z. Polymorphisms in DNA repair gene XRCC1 and skin cancer risk: A meta-analysis. Anticancer Res 2011, 31, 3945–3952. [Google Scholar]
- Goode, E.L.; Ulrich, C.M.; Potter, J.D. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol. Biomark. Prev 2002, 11, 1513–1530. [Google Scholar]
- Lee, J.M.; Lee, Y.C.; Yang, S.Y.; Yang, P.W.; Luh, S.P.; Lee, C.J.; Chen, C.J.; Wu, M.T. Genetic polymorphisms of XRCC1 and risk of the esophageal cancer. Int. J. Cancer 2001, 95, 240–246. [Google Scholar]
- Ratnasinghe, D.; Yao, S.X.; Tangrea, J.A.; Qiao, Y.L.; Andersen, M.R.; Barrett, M.J.; Giffen, C.A.; Erozan, Y.; Tockman, M.S.; Taylor, P.R. Polymorphisms of the DNA repair gene XRCC1 and lung cancer risk. Cancer Epidemiol. Biomark. Prev 2001, 10, 119–123. [Google Scholar]
- Stern, M.C.; Umbach, D.M.; van Gils, C.H.; Lunn, R.M.; Taylor, J.A. DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk. Cancer Epidemiol. Biomark. Prev 2001, 10, 125–131. [Google Scholar]
- Duell, E.J.; Millikan, R.C.; Pittman, G.S.; Winkel, S.; Lunn, R.M.; Tse, C.K.; Eaton, A.; Mohrenweiser, H.W.; Newman, B.; Bell, D.A. Polymorphisms in the DNA repair gene XRCC1 and breast cancer. Cancer Epidemiol. Biomark. Prev 2001, 10, 217–222. [Google Scholar]
- Johnson, A.B.; Barton, M.C. Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat. Res 2007, 618, 149–162. [Google Scholar]
- Görgün, E.; Güven, M.; Unal, M.; Batar, B.; Güven, G.S.; Yenerel, M.; Tatlipinar, S.; Seven, M.; Yüksel, A. Polymorphisms of the DNA repair genes XPD and XRCC1 and the risk of age-related macular degeneration. Invest. Ophthalmol. Vis. Sci 2010, 51, 4732–4737. [Google Scholar]
- Clarkson, S.G.; Wood, R.D. Polymorphisms in the human XPD (ERCC2) gene, DNA repair capacity and cancer susceptibility: An appraisal. DNA Repair 2005, 4, 1068–1074. [Google Scholar]
- Liao, S.G.; Liu, L.; Wang, Y.; Zhang, Y.Y.; Wang, Y.J. XPD Asp312Asn polymorphism is a risk factor for prostate cancer. J. Cancer Res. Clin. Oncol 2012. [Google Scholar] [CrossRef]
- Yuan, H.; Niu, Y.M.; Wang, R.X.; Li, H.Z.; Chen, N. Association between XPD Lys751Gln polymorphism and risk of head and neck cancer: A meta-analysis. Genet. Mol. Res 2011, 10, 3356–3364. [Google Scholar]
- Wang, Y.H.; Yeh, S.D.; Shen, K.H.; Shen, C.H.; Tung, M.C.; Liu, C.T.; Chiou, H.Y. Association of hOGG1 and XPD polymorphisms with urothelial carcinoma in Taiwan. Anticancer Res 2011, 31, 3939–3944. [Google Scholar]
- Zhan, P.; Wang, Q.; Wei, S.Z.; Wang, J.; Qian, Q.; Yu, L.K.; Song, Y. ERCC2/XPD Lys751Gln and Asp312Asn gene polymorphism and lung cancer risk: A meta-analysis involving 22 case-control studies. J. Thorac. Oncol 2010, 5, 1337–1345. [Google Scholar]
- Dybdahl, M.; Vogel, U.; Frentz, G.; Wallin, H.; Nexo, B.A. Polymorphisms in the DNA repair gene XPD: Correlations with risk and age at onset of basal cell carcinoma. Cancer Epidemiol. Biomark. Prev 1999, 8, 77–81. [Google Scholar]
- Vogel, U.; Hedayati, M.; Dybdahl, M.; Grossman, L.; Nexo, B.A. Polymorphisms of the DNA repair gene XPD: Correlations with risk of basal cell carcinoma revisited. Carcinogenesis 2001, 22, 899–904. [Google Scholar]
- Vogel, U.; Olsen, A.; Wallin, H.; Overvad, K.; Tjønneland, A.; Nexø, B.A. Effect of polymorphisms in XPD, RAI, ASE-1 and ERCC1 on the risk of basal cell carcinoma among Caucasians after age 50. Cancer Detect. Prev 2005, 29, 209–214. [Google Scholar]
- Jiang, Z.; Li, C.; Xu, Y.; Cai, S.; Wang, X. Associations between XPD polymorphisms and risk of breast cancer: A meta-analysis. Breast Cancer Res. Treat 2010, 123, 203–212. [Google Scholar]
- Pabalan, N.; Francisco-Pabalan, O.; Sung, L.; Jarjanazi, H.; Ozcelik, H. Meta–analysis of two ERCC2 (XPD) polymorphisms, Asp312Asn and Lys751Gln, in breast cancer. Breast Cancer Res. Treat 2010, 124, 531–541. [Google Scholar]
- Hu, Y.Y.; Yuan, H.; Jiang, G.B.; Chen, N.; Wen, L.; Leng, W.D.; Zeng, X.T.; Niu, Y.M. Associations between XPD Asp312Asn polymorphism and risk of head and neck cancer: A meta-analysis based on 7,122 subjects. PLoS One 2012, 7, e35220. [Google Scholar]
- Zhang, Y.; Ding, D.; Wang, X.; Zhu, Z.; Huang, M.; He, X. Lack of association between XPD Lys751Gln and Asp312Asn polymorphisms and colorectal cancer risk: A meta-analysis of case-control studies. Int. J. Colorectal Dis 2011, 26, 1257–1264. [Google Scholar]
- Christiansen, M.; Stevnsner, T.; Modin, C.; Martensen, P.M.; Brosh, R.M.; Bohr, V.A. Functional consequences of mutations in the conserved SF2 motifs and post-translational phosphorylation of the CSB protein. Nucleic Acids Res 2003, 31, 963–973. [Google Scholar]
- Stevnsner, T; Muftuoglu, M; Aamann, M.D.; Bohr, V.A. The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech. Ageing Dev 2008, 129, 441–448. [Google Scholar]
- Laine, J.P.; Egly, J.M. Initiation of DNA repair mediated by a stalled RNA polymerase IIo. EMBO J 2006, 2, 387–397. [Google Scholar]
- Tuo, J.; Jaruga, P.; Rodriguez, H.; Bohr, V.A.; Dizdaroglu, M. Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress. FASEB J 2003, 17, 668–674. [Google Scholar]
- Stevnsner, T.; Nyaga, S.; de Souza–Pinto, N.C.; van der Horst, G.T.; Gorgels, T.G.; Hogue, B.A.; Thorslund, T.; Bohr, V.A. Mitochondrial repair of 8-oxoguanine is deficient in Cockayne syndrome group B. Oncogene 2002, 21, 8675–8682. [Google Scholar]
- Lin, Z.; Zhang, X.; Tuo, J.; Guo, Y.; Green, B.; Chan, C.C.; Tan, W.; Huang, Y.; Ling, W.; Kadlubar, F.F.; Lin, D.; Ning, B. A Variant of the Cockayne Syndrome B Gene ERCC6 Confers Risk of Lung Cancer. Hum. Mutat 2008, 29, 113–122. [Google Scholar]
- Berntsson, S.G.; Wibom, C.; Sjöström, S.; Henriksson, R.; Brännström, T.; Broholm, H.; Johansson, C.; Fleming, S.J.; McKinney, P.A.; Bethke, L.; et al. Analysis of DNA repair gene polymorphisms and survival in low-grade and anaplastic gliomas. J. Neurooncol 2011, 105, 531–538. [Google Scholar]
- Chang, C.H.; Chiu, C.F.; Wang, H.C.; Wu, H.C.; Tsai, R.Y.; Tsai, C.W.; Wang, R.F.; Wang, C.H.; Tsou, Y.A.; Bau, D.T. Significant association of ERCC6 single nucleotide polymorphisms with bladder cancer susceptibility in Taiwan. Anticancer Res 2009, 29, 5121–5124. [Google Scholar]
- Ma, H.; Hu, Z.; Wang, H.; Jin, G.; Wang, Y.; Sun, W.; Chen, D.; Tian, T.; Jin, L.; Wei, Q.; et al. ERCC6/CSB gene polymorphisms and lung cancer risk. Cancer Lett 2009, 273, 172–176. [Google Scholar]
- Chiu, C.F.; Tsai, M.H.; Tseng, H.C.; Wang, C.L.; Tsai, F.J.; Lin, C.C.; Bau, D.T. A novel single nucleotide polymorphism in ERCC6 gene is associated with oral cancer susceptibility in Taiwanese patients. Oral Oncol 2008, 44, 582–586. [Google Scholar]
- Tuo, J.; Ning, B.; Bojanowski, C.M.; Lin, Z.N.; Ross, R.J.; Reed, G.F.; Shen, D.; Jiao, X.; Zhou, M.; Chew, E.Y.; et al. Synergic effect of polymorphisms in ERCC6 5′ flanking region and complement factor H on age-related macular degeneration predisposition. Proc. Natl. Acad. Sci. USA 2006, 103, 9256–9261. [Google Scholar]
- Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; Sangiovanni, J.P.; Mane, S.M.; Mayne, S.T. Complement Factor H Polymorphism in Age-Related Macular Degeneration. Science 2005, 308, 385–389. [Google Scholar]
- Baas, D.C.; Despriet, D.D.; Gorgels, T.G.; Bergeron-Sawitzke, J.; Uitterlinden, A.G.; Hofman, A.; van Duijn, C.M.; Merriam, J.E.; Smith, R.T.; Barile, G.R.; et al. The ERCC6 gene and age-related macular degeneration. PLoS One 2010, 5, e13786. [Google Scholar]
- Chen, W.; Stambolian, D.; Edwards, A.O.; Branham, K.E.; Othman, M. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc. Natl. Acad. Sci. USA 2010, 107, 7401–7406. [Google Scholar]
- Conrad, D.F.; Pinto, D.; Redon, R. Origins and functional impact of copy number variation in the human genome. Nature 2009, 464, 704–712. [Google Scholar]
- Fanciulli, M.; Petretto, E.; Aitman, T.J. Gene copy number variation and common human disease. Clin. Genet 2010, 77, 201–213. [Google Scholar]
- Liu, M.M.; Agrón, E.; Chew, E.; Meyerle, C.; Ferris, F.L.; Chan, C.C.; Tuo, J. Copy number variations in candidate genes in neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci 2011, 52, 3129–3135. [Google Scholar]
- Chevillard, S.; Radicella, J.P.; Levalois, C.; Lebeau, J.; Poupon, M.F.; Oudard, S.; Dutrillaux, B.; Boiteux, S. Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene 1998, 16, 3083–3086. [Google Scholar]
- Huang, X.X.; Scolyer, R.A.; Abubakar, A.; Halliday, G.M. Human 8-oxoguanine-DNA glycosylase-1 is downregulated in human basal cell carcinoma. Mol. Genet. Metab 2012, 106, 127–130. [Google Scholar]
- Choi, J.Y.; Hamajima, N.; Tajima, K.; Yoo, K.Y.; Yoon, K.S.; Park, S.K.; Kim, S.U.; Lee, K.M.; Noh, D.Y.; Ahn, S.H.; et al. hOGG1 Ser326Cys polymorphism and breast cancer risk among Asian women. Breast Cancer Res. Treat 2003, 79, 59–62. [Google Scholar]
- Hamajima, N.; Takezaki, T.; Tajima, K. Allele Frequencies of 25 Polymorphisms Pertaining to Cancer Risk for Japanese, Koreans and Chinese. Asian Pac. J. Cancer Prev 2002, 3, 197–206. [Google Scholar]
- Takezaki, T.; Gao, C.M.; Wu, J.Z.; Li, Z.Y.; Wang, J.D.; Ding, J.H.; Liu, Y.T.; Hu, X.; Xu, T.L.; Tajima, K.; et al. hOGG1 Ser(326)Cys polymorphism and modification by environmental factors of stomach cancer risk in Chinese. Int. J. Cancer 2002, 99, 624–627. [Google Scholar]
- Hung, R.J.; Hall, J.; Brennan, P.; Boffetta, P. Genetic polymorphisms in the base excision repair pathway and cancer risk: A HuGE review. Am. J. Epidemiol 2005, 162, 925–942. [Google Scholar]
- Weiss, J.M.; Goode, E.L.; Ladiges, W.C.; Ulrich, C.M. Polymorphic variation in hOGG1 and risk of cancer: A review of the functional and epidemiologic literature. Mol. Carcinog 2005, 42, 127–141. [Google Scholar]
- Wang, A.L.; Lukas, T.J.; Yuan, M.; Neufeld, A.H. Increased mitochondrial DNA damage and down–regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol. Vis 2008, 14, 644–651. [Google Scholar]
- Bojanowski, C.M.; Tuo, J.; Vhew, E.Y.; Csaky, K.G.; Chan, C.C. Analysis of hemicentin-1, hOgg1, and E-selectin single nucleotide polymorphisms in age-related macular degeneration. Trans. Am. Ophthalmol. Soc 2005, 103, 37–44. [Google Scholar]
- Synowiec, E.; Blasiak, J.; Zaras, M.; Szaflik, J.; Szaflik, J.P. Association between polymorphisms of the DNA base excision repair genes MUTYH and hOGG1 and age-related macular degeneration. Exp. Eye Res 2012, 98, 58–66. [Google Scholar]
- Boldogh, I.; Milligan, D.; Lee, M.S.; Bassett, H.; Lloyd, R.S.; McCullough, A.K. hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: Evidence suggesting replication-coupled repair of adenine: 8-Oxoguanine mispairs. Nucleic Acids Res 2001, 29, 2802–2809. [Google Scholar]
- Gu, Y.; Parker, A.; Wilson, T.M.; Bai, H.; Chang, D.Y.; Lu, A.L. Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J. Biol. Chem 2002, 277, 11135–11142. [Google Scholar]
- Shinmura, K.; Yokota, J. The OGG1 gene encodes a repair enzyme for oxidatively damaged DNA and is involved in human carcinogenesis. Antioxid. Redox Signal 2001, 3, 597–609. [Google Scholar]
- Ali, M.; Kim, H.; Cleary, S.; Cupples, C.; Gallinger, S.; Bristow, R. Characterization of mutant MUTYH proteins associated with familial colorectal cancer. Gastroenterology 2008, 135, 499–507. [Google Scholar]
- Kasahara, M.; Osawa, K.; Yoshida, K.; Miyaishi, A.; Osawa, Y.; Inoue, N.; Tsutou, A.; Tabuchi, Y.; Tanaka, K.; Yamamoto, M.; et al. Association of MUTYH Gln324His and APEX1 Asp148Glu with colorectal cancer and smoking in a Japanese population. J. Exp. Clin. Cancer Res 2008, 27, 49. [Google Scholar]
- Tao, H.; Shinmura, K.; Suzuki, M.; Kono, S.; Mibu, R.; Tanaka, M.; Kakeji, Y.; Maehara, Y.; Okamura, T.; Ikejiri, K.; et al. Association between genetic polymorphisms of the base excision repair gene MUTYH and increased colorectal cancer risk in a Japanese population. Cancer Sci 2008, 99, 355–360. [Google Scholar]
- Miyaishi, A.; Osawa, K.; Osawa, Y.; Inoue, N.; Yoshida, K.; Kasahara, M.; Tsutou, A.; Tabuchi, Y.; Sakamoto, K.; Tsubota, N.; et al. MUTYH Gln324His gene polymorphism and genetic susceptibility for lung cancer in a Japanese population. J. Exp. Clin. Cancer Res 2009, 28, 10. [Google Scholar]
- Krokan, H.E.; Drabløs, F.; Slupphaug, G. Uracil in DNA—Occurrence, consequences and repair. Oncogene 2002, 21, 8935–8948. [Google Scholar]
- Faure, H.; Mousseau, M.; Cadet, J.; Guimier, C.; Tripier, M.; Hida, H.; Favier, A. Urine 8-oxo-7,8-dihydro-2-deoxyguanosine vs. 5-(hydroxymethyl) uracil as DNA oxidation marker in adriamycin-treated patients. Free Radic. Res 1998, 28, 377–382. [Google Scholar]
- Boorstein, R.J.; Cummings, A., Jr; Marenstein, D.R.; Chan, M.K.; Ma, Y.; Neubert, T.A.; Brown, S.M.; Teebor, G.W. Definitive identification of mammalian 5-hydroxymethyluracil DNA N-glycosylase activity as SMUG1. J. Biol. Chem 2001, 276, 41991–41997. [Google Scholar]
- Kavli, B.; Andersen, S.; Otterlei, M.; Liabakk, N.B.; Imai, K.; Fischer, A.; Durandy, A.; Krokan, H.E.; Slupphaug, G. B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. J. Exp. Med 2005, 201, 2011–2021. [Google Scholar]
- Synowiec, E.; Wysokinski, D.; Zaraś, M.; Kołodziejska, U.; Stoczynska, E.; Janik, K.; Szaflik, J.; Blasiak, J.; Szaflik, J.P. Association between polymorphism of the DNA repair SMUG1 and UNG genes and age-related macular degeneration. Retina 2012. submitted for publication. [Google Scholar]
- Haug, T.; Skorpen, F.; Aas, P.A.; Malm, V.; Skjelbred, C.; Krokan, H.E. Regulation of expression of nuclear and mitochondrial forms of human uracil-DNA glycosylase. Nucleic Acids Res 1998, 26, 1449–1457. [Google Scholar]
- Nilsen, H.; Otterlei, M.; Haug, T.; Solum, K.; Nagelhus, T.A.; Skorpen, F.; Krokan, H.E. Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res 1997, 25, 750–755. [Google Scholar]
- Kavli, B.; Sundheim, O.; Akbari, M.; Otterlei, M.; Nilsen, H.; Skorpen, F.; Aas, P.A.; Hagen, L.; Krokan, H.E.; Slupphaug, G. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem 2002, 277, 39926–39936. [Google Scholar]
- Sousa, M.M.; Krokan, H.E.; Slupphaug, G. DNA-uracil and human pathology. Mol. Aspects Med 2007, 28, 276–306. [Google Scholar]
- Ginsberg, G.; Angle, K.; Guyton, K.; Sonawane, B. Polymorphism in the DNA repair enzyme XRCC1: Utility of current database and implications for human health risk assessment. Mutat. Res 2011, 727, 1–15. [Google Scholar]
- Laczmanska, I.; Gil, J.; Karpinski, P.; Stembalska, A.; Kozlowska, J.; Busza, H.; Trusewicz, A.; Pesz, K.; Ramsey, D.; Schlade–Bartusiak, K.; et al. Influence of polymorphisms in xenobiotic-metabolizing genes and DNA-repair genes on diepoxybutane-induced SCE. Environ. Mol. Mutagen 2006, 47, 666–673. [Google Scholar]
- Tuimala, J.; Szekely, G.; Gundy, S.; Hirvonen, A.; Norppa, H. Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes: Role in mutagen sensitivity. Carcinogenesis 2002, 23, 1003–1008. [Google Scholar]
- Li, Y.; Marion, M.J.; Zipprich, J.; Freyer, G.; Santella, R.M.; Kanki, C.; Brandt-Rauf, P.W. The role of XRCC1 polymorphisms in base excision repair of etheno-DNA adducts in French vinyl chloride workers. Int. J. Occup. Med. Environ. Health 2006, 19, 45–52. [Google Scholar]
- Slyskova, J.; Dusinska, M.; Kuricova, M.; Soucek, P.; Vodickova, L.; Susova, S.; Naccarati, A.; Tulupova, E.; Vodicka, P. Relationship between the capacity to repair 8-oxoguanine biomarkers of genotoxicity and individual susceptibility in styreneexposed Wolkers. Mutat. Res 2007, 634, 101–111. [Google Scholar]
- Zhang, X.H.; Zhang, X.; Zhang, L.; Chen, Q.; Yang, Z.; Yu, J.; Fu, H.; Zhu, Y.M. XRCC1 Arg399Gln was associated with repair capacity for DNA damage induced by occupational chromium exposure. BMC Res. Notes 2012, 5, 263. [Google Scholar]
- Qiao, Y.; Spitz, M.R.; Guo, Z.; Hadeyati, M.; Grossman, L.; Kraemer, K.H.; Wei, Q. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes. Mutat. Res 2002, 509, 165–174. [Google Scholar]
- Qiao, Y.; Spitz, M.R.; Shen, H.; Guo, Z.; Shete, S.; Hedayati, M.; Grossman, L.; Mohrenweiser, H.; Wei, Q. Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis 2002, 23, 295–299. [Google Scholar]
- Seker, H.; Butkiewicz, D.; Bowman, E.D.; Rusin, M.; Hedayati, M.; Grossman, L.; Harris, C.C. Functional significance of XPD polymorphic variants: Attenuated apoptosis in human lymphoblastoid cells with the XPD 312 Asp/Asp genotype. Cancer Res 2001, 61, 7430–7434. [Google Scholar]
- Gu, J.; Zhao, H.; Dinney, C.P.; Zhu, Y.; Leibovici, D.; Bermejo, C.E.; Grossman, H.B.; Wu, X. Nucleotide excision repair gene polymorphisms and recurrence after treatment for superficial bladder cancer. Clin. Cancer Res 2005, 11, 1408–1415. [Google Scholar]
- Nohmi, T.; Kim, S.R.; Yamada, M. Modulation of oxidative mutagenesis and carcinogenesis by polymorphic forms of human DNA repair enzymes. Mutat. Res 2005, 591, 60–73. [Google Scholar]
- Hill, J.W.; Evans, M.K. A novel R229Q OGG1 polymorphism results in a thermolabile enzyme that sensitizes KG-1 leukemia cells to DNA damaging agents. Cancer Detect. Prev 2007, 31, 237–243. [Google Scholar]
- Endres, M.; Biniszkiewicz, D.; Sobol, R.W.; Harms, C.; Ahmadi, M.; Lipski, A.; Katchanov, J.; Mergenthaler, P.; Dirnagl, U.; Wilson, S.H.; et al. Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J. Clin. Invest 2004, 113, 1711–1721. [Google Scholar]
- An, Q.; Robins, P.; Lindahl, T.; Barnes, D.E. C→T mutagenesis and gamma-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases. EMBO J 2005, 24, 2205–2213. [Google Scholar]
- Akbari, M.; Otterlei, M.; Peña-Diaz, J.; Krokan, H.E. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress. Neuroscience 2007, 145, 1201–1212. [Google Scholar]
- Marian, C.; Tao, M.; Mason, J.B.; Goerlitz, D.S.; Nie, J.; Chanson, A.; Freudenheim, J.L.; Shields, P.G. Single nucleotide polymorphisms in uracil-processing genes, intake of one-carbon nutrients and breast cancer risk. Eur. J. Clin. Nutr 2011, 65, 683–689. [Google Scholar]
- Blount, B.C.; Mack, M.M.; Wehr, C.M.; MacGregor, J.T.; Hiatt, R.A.; Wang, G.; Wickramasinghe, S.N.; Everson, R.B.; Ames, B.N. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: Implications for cancer and neuronal damage. Proc. Natl. Acad. Sci. USA 1997, 94, 3290–3295. [Google Scholar]
- Duthie, S.J.; Narayanan, S.; Brand, G.M.; Pirie, L.; Grant, G. Impact of folate deficiency on DNA stability. J. Nutr 2002, 132, 2444S–2449S. [Google Scholar]
- Fenech, M. Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat. Res 2012, 733, 21–33. [Google Scholar]
- Ames, B.N. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat. Res 2001, 475, 7–20. [Google Scholar]
- Barnes, D.E.; Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet 2004, 38, 445–476. [Google Scholar]
- Gabriel, H.E.; Crott, J.W.; Ghandour, H.; Dallal, G.E.; Choi, S.W.; Keyes, M.K.; Jang, H.; Liu, Z.; Nadeau, M.; Johnston, A.; et al. Chronic cigarette smoking is associated with diminished folate status, altered folate form distribution, and increased genetic damage in the buccal mucosa of healthy adults. Am. J. Clin. Nutr 2006, 83, 835–841. [Google Scholar]
- Ho, L.; van Leeuwen, R.; Witteman, J.C.; van Duijn, C.M.; Uitterlinden, A.G.; Hofman, A.; de Jong, P.T.; Vingerling, J.R.; Klaver, C.C. Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and ω-3 fatty acids: The Rotterdam study. Arc. Ophthalmol 2011, 129, 758–766. [Google Scholar]
- Christen, W.G.; Glynn, R.J.; Chew, E.Y.; Albert, C.M.; Manson, J.E. Folic acid, pyridoxine, and cyanocobalamin combination treatment and age-related macular degeneration in women: The Women’s Antioxidant and Folic Acid Cardiovascular Study. Arch. Intern. Med 2009, 169, 335–341. [Google Scholar]
Gene | Chromosomal location | Protein | Reference |
---|---|---|---|
XRCC1 | 19q13.2 | Base excision repair Non-homologous end joining Scaffold protein Lack of enzymatic activity | [9,10] |
XPD | 19q13.3 | Nucleotide excision repair Transcription-coupled repair TFIIH subunit, DNA helicase | [11] |
ERCC6 | 10q11.23 | Transcription-coupled repair Base excision repair | [12,13] |
hOGG1 | 3p26.2 | Base excision repair | [14,15] |
MUTYH | 1p34.1 | Base excision repair Removes A opposite to 8-oxoG | [16] |
SMUG1 | 12q13.1–q13.3 | Removes uracil from DNA | [17] |
UNG | 12q23–24.1 | Removes uracil from DNA | [18] |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Blasiak, J.; Synowiec, E.; Salminen, A.; Kaarniranta, K. Genetic Variability in DNA Repair Proteins in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2012, 13, 13378-13397. https://doi.org/10.3390/ijms131013378
Blasiak J, Synowiec E, Salminen A, Kaarniranta K. Genetic Variability in DNA Repair Proteins in Age-Related Macular Degeneration. International Journal of Molecular Sciences. 2012; 13(10):13378-13397. https://doi.org/10.3390/ijms131013378
Chicago/Turabian StyleBlasiak, Janusz, Ewelina Synowiec, Antero Salminen, and Kai Kaarniranta. 2012. "Genetic Variability in DNA Repair Proteins in Age-Related Macular Degeneration" International Journal of Molecular Sciences 13, no. 10: 13378-13397. https://doi.org/10.3390/ijms131013378
APA StyleBlasiak, J., Synowiec, E., Salminen, A., & Kaarniranta, K. (2012). Genetic Variability in DNA Repair Proteins in Age-Related Macular Degeneration. International Journal of Molecular Sciences, 13(10), 13378-13397. https://doi.org/10.3390/ijms131013378