Impairment of Coronary Arteriolar Endothelium-Dependent Dilation after Multi-Walled Carbon Nanotube Inhalation: A Time-Course Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Characterization
2.1.1. MWCNT Aerosol Characteristics
2.1.2. Animal and Vessel Characteristics
2.2. Pulmonary Inflammation and Damage
2.3. Multi-Walled Carbon Nanotube Translocation
2.4. Coronary Isolated Microvessel Reactivity
2.4.1. Endothelium-Dependent Responses
2.4.2. Vascular Smooth Muscle Responsiveness
2.4.3. Active Pressure Response
2.5. Schematic Representation
3. Experimental Section
3.1. Experimental Animals
3.2. Engineered Nanomaterials
3.3. Inhalation Exposure
3.4. Pulmonary Inflammation
3.4.1. Bronchoalveolar Lavage
3.4.2. Cell Counts and Differentials
3.4.3. BAL Fluid Lactate Dehydrogenase Activity and Albumin Concentration
3.5. Enhanced-Darkfield Light Microscopy Imaging of Nanoparticles
3.6. Isolated and Perfused Sub-Epicardial Microvessel Preparation
3.7. Formulae and Statistical Analysis
4. Conclusions
Acknowledgements
- Authors’ InformationDisclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views on the National Institute for Occupational Safety and Health.
References
- Borm, P.J.; Muller-Schulte, D. Nanoparticles in drug delivery and environmental exposure: Same size, same risks? Nanomedicine (Lond) 2006, 1, 235–249. [Google Scholar]
- Mossman, B.T.; Borm, P.J.; Castranova, V.; Costa, D.L.; Donaldson, K.; Kleeberger, S.R. Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases. Part. Fibre Toxicol. 2007, 4. [Google Scholar] [CrossRef]
- Borm, P.J.; Robbins, D.; Haubold, S.; Kuhlbusch, T.; Fissan, H.; Donaldson, K.; Schins, R.; Stone, V.; Kreyling, W.; Lademann, J.; et al. The potential risks of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 2006, 3. [Google Scholar] [CrossRef]
- Castranova, V. Overview of current toxicological knowledge of engineered nanoparticles. J. Occup. Environ. Med 2011, 53, S14–S17. [Google Scholar]
- Kateb, B.; Chiu, K.; Black, K.L.; Yamamoto, V.; Khalsa, B.; Ljubimova, J.Y.; Ding, H.; Patil, R.; Portilla-Arias, J.A.; Modo, M.; et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy? Neuroimage 2011, 54, S106–S124. [Google Scholar]
- Schulte, P.; Geraci, C.; Zumwalde, R.; Hoover, M.; Castranova, V.; Kuempel, E.; Murashov, V.; Vainio, H.; Savolainen, K. Sharpening the focus on occupational safety and health in nanotechnology. Scand. J. Work Environ. Health 2008, 34, 471–478. [Google Scholar]
- Akbar, S.; Taimoor, A.A. Functionalization of carbon nanotubes: Manufacturing techniques and properties of customized nanocomponents for molecular-level technology. Recent Pat. Nanotechnol 2009, 3, 154–161. [Google Scholar]
- Mercer, R.R.; Hubbs, A.F.; Scabilloni, J.F.; Wang, L.; Battelli, L.A.; Schwegler-Berry, D.; Castranova, V.; Porter, D.W. Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part. Fibre Toxicol. 2010, 7. [Google Scholar] [CrossRef]
- Mercer, R.R.; Hubbs, A.F.; Scabilloni, J.F.; Wang, L.; Battelli, L.A.; Friend, S.; Castranova, V.; Porter, D.W. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part. Fibre Toxicol. 2011, 8. [Google Scholar] [CrossRef]
- Pacurari, M.; Castranova, V.; Vallyathan, V. Single- and multi-wall carbon nanotubes versus asbestos: Are the carbon nanotubes a new health risk to humans? J. Toxicol. Environ. Health A 2010, 73, 378–395. [Google Scholar]
- Takagi, A.; Hirose, A.; Nishimura, T.; Fukumori, N.; Ogata, A.; Ohashi, N.; Kitajima, S.; Kanno, J. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci 2008, 33, 105–116. [Google Scholar]
- Reddy, A.R.; Krishna, D.R.; Reddy, Y.N.; Himabindu, V. Translocation and extra pulmonary toxicities of multi wall carbon nanotubes in rats. Toxicol. Mech. Methods 2010, 20, 267–272. [Google Scholar]
- Kim, J.E.; Lim, H.T.; Minai-Tehrani, A.; Kwon, J.T.; Shin, J.Y.; Woo, C.G.; Choi, M.; Baek, J.; Jeong, D.H.; Ha, Y.C.; et al. Toxicity and clearance of intratracheally administered multiwalled carbon nanotubes from murine lung. J. Toxicol. Environ. Health A 2010, 73, 1530–1543. [Google Scholar]
- Oberdorster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Lunts, A.; Kreyling, W.; Cox, C. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health A 2002, 65, 1531–1543. [Google Scholar]
- Kreyling, W.G.; Semmler-Behnke, M.; Seitz, J.; Scymczak, W.; Wenk, A.; Mayer, P.; Takenaka, S.; Oberdorster, G. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhalation Toxicol 2009, 21, 55–60. [Google Scholar]
- Reddy, A.R.; Rao, M.V.; Krishna, D.R.; Himabindu, V.; Reddy, Y.N. Evaluation of oxidative stress and anti-oxidant status in rat serum following exposure of carbon nanotubes. Regul. Toxicol. Pharmacol 2011, 59, 251–257. [Google Scholar]
- Khandoga, A.; Stoeger, T.; Khandoga, A.G.; Bihari, P.; Karg, E.; Ettehadieh, D.; Lakatos, S.; Fent, J.; Schulz, H.; Krombach, F. Platelet adhesion and fibrinogen deposition in murine microvessels upon inhalation of nanosized carbon particles. J. Thromb. Haemostasis 2010, 8, 1632–1640. [Google Scholar]
- Nurkiewicz, T.R.; Porter, D.W.; Hubbs, A.F.; Cumpston, J.L.; Chen, B.T.; Frazer, D.G.; Castranova, V. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part. Fibre Toxicol. 2008, 5. [Google Scholar] [CrossRef]
- LeBlanc, A.J.; Moseley, A.M.; Chen, B.T.; Frazer, D.; Castranova, V.; Nurkiewicz, T.R. Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovasc. Toxicol 2010, 10, 27–36. [Google Scholar]
- Nurkiewicz, T.R.; Porter, D.W.; Hubbs, A.F.; Stone, S.; Chen, B.T.; Frazer, D.G.; Boegehold, M.A.; Castranova, V. Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol. Sci 2009, 110, 191–203. [Google Scholar]
- Porter, D.W.; Hubbs, A.F.; Mercer, R.R.; Wu, N.; Wolfarth, M.G.; Sriram, K.; Leonard, S.; Battelli, L.; Schwegler-Berry, D.; Friend, S.; et al. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 2010, 269, 136–147. [Google Scholar]
- Sager, T.M.; Kommineni, C.; Castranova, V. Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: Role of particle surface area. Part. Fibre Toxicol. 2008, 5. [Google Scholar] [CrossRef]
- Warheit, D.B.; Webb, T.R.; Reed, K.L.; Frerichs, S.; Sayes, C.M. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 2007, 230, 90–104. [Google Scholar]
- Warheit, D.B.; Webb, T.R.; Sayes, C.M.; Colvin, V.L.; Reed, K.L. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol. Sci 2006, 91, 227–236. [Google Scholar]
- Sager, T.M.; Castranova, V. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: Comparison to ultrafine titanium dioxide. Part. Fibre Toxicol. 2009, 6. [Google Scholar] [CrossRef]
- Stone, K.C.; Mercer, R.R.; Gehr, P.; Stockstill, B.; Crapo, J.D. Allometric relationships of cell numbers and size in the mammalian lung. Am. J. Respir. Cell Mol. Biol 1992, 6, 235–243. [Google Scholar]
- Nurkiewicz, T.R.; Porter, D.W.; Barger, M.; Castranova, V.; Boegehold, M.A. Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environ. Health Perspect 2004, 112, 1299–1306. [Google Scholar]
- Chen, B.T.; Schwegler-Berry, D.; McKinney, W.; Stone, S.; Cumpston, J.L.; Friend, S.; Porter, D.W.; Castranova, V.; Frazer, D.G. Multi-walled carbon nanotubes: Sampling criteria and aerosol characterization. Inhalation Toxicol 2012, 24, 798–820. [Google Scholar]
- Elder, A.; Oberdorster, G. Translocation and effects of ultrafine particles outside of the lung. Clin. Occup. Environ. Med 2006, 5, 785–796. [Google Scholar]
- Nemmar, A.; Hoet, P.H.; Nemery, B. Translocation of ultrafine particles. Environ. Health Perspect 2006, 114, A211–A212. [Google Scholar]
- Oberdorster, G.; Elder, A.; Rinderknecht, A. Nanoparticles and the brain: Cause for concern? J. Nanosci. Nanotechnol 2009, 9, 4996–5007. [Google Scholar]
- Geiser, M.; Rothen-Rutishauser, B.; Kapp, N.; Schurch, S.; Kreyling, W.; Schulz, H.; Semmler, M.; Im Hof, V.; Heyder, J.; Gehr, P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect 2005, 113, 1555–1560. [Google Scholar]
- Chang, C. The immune effects of naturally occurring and synthetic nanoparticles. J. Autoimmun 2010, 34, J234–J246. [Google Scholar]
- Hirst, S.M.; Karakoti, A.S.; Tyler, R.D.; Sriranganathan, N.; Seal, S.; Reilly, C.M. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009, 5, 2848–2856. [Google Scholar]
- Vanwinkle, B.A.; de Mesy Bentley, K.L.; Malecki, J.M.; Gunter, K.K.; Evans, I.M.; Elder, A.; Finkelstein, J.N.; Oberdorster, G.; Gunter, T.E. Nanoparticle (NP) uptake by type I alveolar epithelial cells and their oxidant stress response. Nanotoxicology 2009, 3, 307–318. [Google Scholar]
- Hirano, S.; Fujitani, Y.; Furuyama, A.; Kanno, S. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol. Appl. Pharmacol 2010, 249, 8–15. [Google Scholar]
- Walker, V.G.; Li, Z.; Hulderman, T.; Schwegler-Berry, D.; Kashon, M.L.; Simeonova, P.P. Potential in vitro effects of carbon nanotubes on human aortic endothelial cells. Toxicol. Appl. Pharmacol 2009, 236, 319–328. [Google Scholar]
- Pacurari, M.; Qian, Y.; Fu, W.; Schwegler-Berry, D.; Ding, M.; Castranova, V.; Guo, N.L. Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J. Toxicol. Environ. Health A 2012, 75, 112–128. [Google Scholar]
- Yamashita, K.; Yoshioka, Y.; Higashisaka, K.; Morishita, Y.; Yoshida, T.; Fujimura, M.; Kayamuro, H.; Nabeshi, H.; Yamashita, T.; Nagano, K.; et al. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 2010, 33, 276–280. [Google Scholar]
- Stokes, K.Y.; Russell, J.M.; Jennings, M.H.; Alexander, J.S.; Granger, D.N. Platelet-associated NAD(P)H oxidase contributes to the thrombogenic phenotype induced by hypercholesterolemia. Free Radic. Biol. Med 2007, 43, 22–30. [Google Scholar]
- LeBlanc, A.J.; Cumpston, J.L.; Chen, B.T.; Frazer, D.; Castranova, V.; Nurkiewicz, T.R. Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J. Toxicol. Environ. Health A 2009, 72, 1576–1584. [Google Scholar]
- Goodwill, A.G.; Stapleton, P.A.; James, M.E.; d’Audiffret, A.C.; Frisbee, J.C. Increased arachidonic acid-induced thromboxane generation impairs skeletal muscle arteriolar dilation with genetic dyslipidemia. Microcirculation 2008, 15, 621–631. [Google Scholar]
- Stapleton, P.A.; Goodwill, A.G.; James, M.E.; Frisbee, J.C. Altered mechanisms of endothelium-dependent dilation in skeletal muscle arterioles with genetic hypercholesterolemia. Am. J. Physiol. Regul. Integr. Comp. Physiol 2007, 293, R1110–R1119. [Google Scholar]
- Ishizuka, T.; Niwa, A.; Tabuchi, M.; Nagatani, Y.; Ooshima, K.; Higashino, H. Involvement of thromboxane A2 receptor in the cerebrovascular damage of salt-loaded, stroke-prone rats. J. Hypertens 2007, 25, 861–870. [Google Scholar]
- Chilian, W.M. Functional distribution of alpha 1- and alpha 2-adrenergic receptors in the coronary microcirculation. Circulation 1991, 84, 2108–2122. [Google Scholar]
- Chilian, W.M. Adrenergic vasomotion in the coronary microcirculation. Basic Res. Cardiol 1990, 85, 111–120. [Google Scholar]
- Nurkiewicz, T.R.; Boegehold, M.A. High dietary salt alters arteriolar myogenic responsiveness in normotensive and hypertensive rats. Am. J. Physiol 1998, 275, H2095–H2104. [Google Scholar]
- Nurkiewicz, T.R.; Porter, D.W.; Barger, M.; Millecchia, L.; Rao, K.M.; Marvar, P.J.; Hubbs, A.F.; Castranova, V.; Boegehold, M.A. Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ. Health Perspect 2006, 114, 412–419. [Google Scholar]
- Porter, D.W.; Hubbs, A.F.; Chen, B.T.; McKinney, W.; Mercer, R.R.; Wolfarth, M.G.; Battelli, L.; Wu, N.; Sriram, K.; Leonard, S.; et al. Acute pulmonary dose-response to inhaled multi-walled arbon nanotubes. Nanotoxicology 2012. [Google Scholar] [CrossRef]
- Stapleton, P.A.; Minarchick, V.C.; McCawley, M.; Knuckles, T.L.; Nurkiewicz, T.R. Xenobiotic particle exposure and microvascular endpoints: A call to arms. Microcirculation 2012, 19, 126–142. [Google Scholar]
- Borm, P.J.; Kelly, F.; Kunzli, N.; Schins, R.P.; Donaldson, K. Oxidant generation by particulate matter: From biologically effective dose to a promising, novel metric. Occup. Environ. Med 2007, 64, 73–74. [Google Scholar]
- Brook, R.D. You are what you breathe: Evidence linking air pollution and blood pressure. Curr. Hypertens. Rep 2005, 7, 427–434. [Google Scholar]
- Kan, H.; Wu, Z.; Young, S.H.; Chen, T.H.; Cumpston, J.L.; Chen, F.; Kashon, M.L.; Castranova, V. Pulmonary exposure of rats to ultrafine titanium dioxide enhances cardiac protein phosphorylation and substance P synthesis in nodose ganglia. Nanotoxicology 2011, 6, 736–745. [Google Scholar]
- Knuckles, T.L.; Yi, J.; Frazer, D.G.; Leonard, H.D.; Chen, B.T.; Castranova, V.; Nurkiewicz, T.R. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways. Nanotoxicology 2011, 6, 724–735. [Google Scholar]
- Goldberg, M.S.; Bailar, J.C., III; Burnett, R.T.; Brook, J.R.; Tamblyn, R.; Bonvalot, Y.; Ernst, P.; Flegel, K.M.; Singh, R.K.; Valois, M.F. Identifying subgroups of the general population that may be susceptible to short-term increases in particulate air pollution: A time-series study in Montreal, Quebec. Res. Rep. Health Eff. Inst 2000, 97, 7–113. [Google Scholar]
- Peters, A.; von Klot, S.; Heier, M.; Trentinaglia, I.; Cyrys, J.; Hormann, A.; Hauptmann, M.; Wichmann, H.E.; Lowel, H. Particulate air pollution and nonfatal cardiac events. Part I. Air pollution, personal activities, and onset of myocardial infarction in a case-crossover study. Res. Rep. Health Eff. Inst 2005, 124, 1–66. [Google Scholar]
- Peters, A.; Dockery, D.W.; Muller, J.E.; Mittleman, M.A. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001, 103, 2810–2815. [Google Scholar]
- Samet, J.M.; Dominici, F.; Curriero, F.C.; Coursac, I.; Zeger, S.L. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N. Engl. J. Med 2000, 343, 1742–1749. [Google Scholar]
- McKinney, W.; Chen, B.; Frazer, D. Computer controlled multi-walled carbon nanotube inhalation exposure system. Inhalation Toxicol 2009, 21, 1053–1061. [Google Scholar]
- Porter, D.W.; Millecchia, L.; Robinson, V.A.; Hubbs, A.; Willard, P.; Pack, D.; Ramsey, D.; McLaurin, J.; Khan, A.; Landsittel, D.; et al. Enhanced nitric oxide and reactive oxygen species production and damage after inhalation of silica. Am. J. Physiol. Lung Cell Mol. Physiol 2002, 283, L485–L493. [Google Scholar]
- Chilian, W.M.; Eastham, C.L.; Marcus, M.L. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am. J. Physiol 1986, 251, H779–H788. [Google Scholar]
Time Post Inhalation | N | Aerosol Concentration × Time ((mg/m3) × h) | Lung Burden (μg/lung) |
---|---|---|---|
Control | 11 | 0 | 0 |
24 h | 16 | 23 ± 1 | 12.6 ± 1.4 |
72 h | 8 | 26 ± 1 | 14.3 ± 1.6 |
120 h | 9 | 23 ± 1 | 12.6 ± 1.4 |
168 h | 12 | 24 ± 1 | 13.1 ± 1.4 |
Time Post Inhalation | N | Age (weeks) | Weight (g) | MAP (mm Hg) | Heart Wet Weight (g) | Active Diameter (μm) | Passive Diameter (μm) | Active Tone (%) |
---|---|---|---|---|---|---|---|---|
Control | 11 | 8.4 ± 0.2 | 350 ± 4 | 111 ± 7 | 1.17 ± 0.03 | 96 ± 7 | 128 ± 7 | 25 ± 2 |
24 h | 16 | 8.7 ± 0.2 | 343 ± 4 | 105 ± 3 | 1.12 ± 0.02 | 100 ± 4 | 131 ± 5 | 23 ± 2 |
72 h | 9 | 8.7 ± 0.2 | 349 ± 4 | 105 ± 4 | 1.18 ± 0.03 | 109 ± 6 | 141 ± 4 | 23 ± 3 |
120 h | 10 | 9.1 ± 0.1 | 364 ± 3 | 108 ± 6 | 1.16 ± 0.03 | 97 ± 7 | 129 ± 7 | 25 ± 4 |
168 h | 12 | 9.2 ± 0.1 | 357 ± 12 | 112 ± 2 | 1.17 ± 0.02 | 105 ± 7 | 136 ± 5 | 24 ± 3 |
Systemic Distribution of Inhaled Multi-Walled Carbon Nanotubes 1 | ||
---|---|---|
Organ | # of MWCNT Fibers 2 | % Lung Burden |
Lung | 646.8 × 106 * | 99.99890 |
Kidney | 1533 ± 530 | 0.00024 |
Liver | 4535 ± 1100 | 0.00070 |
Heart | 525 ± 1260 † | 0.00008 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Stapleton, P.A.; Minarchick, V.C.; Cumpston, A.M.; McKinney, W.; Chen, B.T.; Sager, T.M.; Frazer, D.G.; Mercer, R.R.; Scabilloni, J.; Andrew, M.E.; et al. Impairment of Coronary Arteriolar Endothelium-Dependent Dilation after Multi-Walled Carbon Nanotube Inhalation: A Time-Course Study. Int. J. Mol. Sci. 2012, 13, 13781-13803. https://doi.org/10.3390/ijms131113781
Stapleton PA, Minarchick VC, Cumpston AM, McKinney W, Chen BT, Sager TM, Frazer DG, Mercer RR, Scabilloni J, Andrew ME, et al. Impairment of Coronary Arteriolar Endothelium-Dependent Dilation after Multi-Walled Carbon Nanotube Inhalation: A Time-Course Study. International Journal of Molecular Sciences. 2012; 13(11):13781-13803. https://doi.org/10.3390/ijms131113781
Chicago/Turabian StyleStapleton, Phoebe A., Valerie C. Minarchick, Amy M. Cumpston, Walter McKinney, Bean T. Chen, Tina M. Sager, David G. Frazer, Robert R. Mercer, James Scabilloni, Michael E. Andrew, and et al. 2012. "Impairment of Coronary Arteriolar Endothelium-Dependent Dilation after Multi-Walled Carbon Nanotube Inhalation: A Time-Course Study" International Journal of Molecular Sciences 13, no. 11: 13781-13803. https://doi.org/10.3390/ijms131113781
APA StyleStapleton, P. A., Minarchick, V. C., Cumpston, A. M., McKinney, W., Chen, B. T., Sager, T. M., Frazer, D. G., Mercer, R. R., Scabilloni, J., Andrew, M. E., Castranova, V., & Nurkiewicz, T. R. (2012). Impairment of Coronary Arteriolar Endothelium-Dependent Dilation after Multi-Walled Carbon Nanotube Inhalation: A Time-Course Study. International Journal of Molecular Sciences, 13(11), 13781-13803. https://doi.org/10.3390/ijms131113781