Oxidative Stress in Malaria
Abstract
:1. Introduction
2. Oxidative Alterations in the Host Induced by Plasmodium
2.1. Oxidative Stress as Host Defense Mechanism against Plasmodium Infection
2.1.1. The Role of NO in the Physiopathology of Malaria
2.1.2. Hemolysis as an Oxidative Stress Induction Factor in Malaria
2.1.3. Oxidative Stress and the Membrane of Infected-Erythrocyte
2.1.4. Ischemia and Reperfusion Syndrome as Oxidative Stress Induction Factors in Malaria
3. Oxidative Changes in Plasmodium
3.1. Production of Reactive Species by the Parasite
3.2. Antioxidant Defense Mechanisms in the Parasite
4. Oxidative Changes in Vectors
5. Antimalarial Drugs and Oxidative Stress
6. Potential Benefit of Adjuvant Antioxidant Therapy for Malaria
7. Conclusions
Acknowledgements
References
- World Health Organization (WHO), World Malaria Report 2011; World Health Organization Press: Geneva, Switzerland, 2011.
- Center for Disease Control and Prevention (CDC). Malaria Parasites; Publisher: City, Country, 2010. Available online: http://www.cdc.gov/malaria/about/biology/parasites.html accessed on 18 October 2011.
- Brazil Ministério da Saúde. Portal da Saúde. Sistema Amplia Acesso aos Dados de Malária; Publisher: City, Country, 2012. Available online: http://portal.saude.gov.br/portal/aplicacoes/noticias/noticias_detalhe.cfm?co_seq_noticia=34099 accessed on 18 October 2011.
- Talisuna, A.O.; Bloland, P.; D’Alessandro, U. History, dynamics and public health importance of malaria parasite resistance. Clin. Microbiol. Rev 2004, 17, 235–254. [Google Scholar]
- Walker, D.J.; Pitsch, J.L.; Peng, M.M.; Robinson, B.L.; Peters, W.; Bhisutthibhan, J.; Meshnick, S.R. Mechanisms of artemisinin resistance in the rodent malaria pathogen Plasmodium yoelli. Antimicrob. Agents Chemother 2000, 44, 344–347. [Google Scholar]
- Afonso, A.; Hunt, P.; Cheesman, S.; Alves, A.C.; Cunha, C.V.; Rosário, V.; Cravo, P. Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob. Agents Chemother 2006, 50, 480–489. [Google Scholar]
- Pablón, A.; Carmona, J.; Burgos, L.C.; Blair, S. Oxidative stress in patients with non-complicated malaria. Clin. Biochem 2002, 368, 71–78. [Google Scholar]
- Huber, S.M.; Uhlemann, A.C.; Gamper, N.L.; Duranton, C.; Kremsner, P.G.; Lang, F. Plasmodium falciparum activates endogenous Cl− channels of human erythrocytes by membrane oxidation. EMBO J 2002, 21, 22–30. [Google Scholar]
- Dondorp, A.M.; Omodeo-Salè, F.; Chotivanich, K.; Taramelli, D.; White, N.J. Oxidative stress and rheology in severe malaria. Redox Rep 2003, 8, 292–294. [Google Scholar]
- Omodeo-Salè, F.; Motti, A.; Basilico, N.; Parapini, S.; Olliaro, P.; Taramelli, D. Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum. Blood 2003, 102, 705–711. [Google Scholar]
- Becker, K.; Tilley, L.; Vennerstrom, J.L.; Roberts, D.; Rogerson, S.; Ginsburg, H. Oxidative stress in malaria parasite-infected erythrocytes: Host-parasite interactions. Int. J. Parasitol 2004, 34, 163–189. [Google Scholar]
- Yazar, S.; Killic, E.; Saraymen, R.; Ozbilge, H. Serum malondialdehyde levels in patients infected with Plasmodium vivax. West Indian Med. J 2004, 53, 147–149. [Google Scholar]
- Wilmanski, J.; Siddiqi, M.; Deitch, E.A.; Spolarics, Z. Augmented IL-10 production and redox-dependent signaling pathways in glucose-6-phosphate dehydrogenase-deficient mouse peritoneal macrophages. J. Leukoc. Biol 2005, 78, 85–94. [Google Scholar]
- Kumar, S.; Bandyopadhyay, U. Free heme toxicity and its detoxification systems in human. Toxicol. Lett 2005, 157, 175–188. [Google Scholar]
- Jaramillo, M.; Godbout, M.; Olivier, M. Hemozoin induces macrophage chemokine expression through oxidative stress-dependent and independent mechanisms. J. Immunol 2005, 174, 475–484. [Google Scholar]
- Narsaria, N.; Mohanty, C.; Das, B.K.; Mishra, S.P.; Prasad, R. Oxidative stress in children with severe malaria. J. Trop. Pediatr 2012, 58, 147–150. [Google Scholar]
- Silva, L.D. Efeito da Suplementação com Antioxidantes Sobre as Alterações Oxidativas e Produção de Interferon Gamma e Fator de Necrose Tumoral Alfa em Tecido Pulmonar de Camundongos Infectados por Plasmodium Berghei. Master’s Thesis, Federal University of Para, Belem, PA, Brazil, November 2011. [Google Scholar]
- Gomes, B.A.Q. Efeitos da Suplementação com Antioxidantes Sobre as Alterações Oxidativas Cerebrais e Pulmonares em Malária Murina. Master’s Thesis, Federal University of Para, Belem, PA, Brazil, November 2011. [Google Scholar]
- Potter, S.M.; Mitchell, A.J.; Cowden, W.B.; Sanni, L.A.; Dinauer, M.; Haan, J.B.; Hunt, N.H. Phagocyte-derived reactive oxygen species do not influence the progression of murine blood-stage malaria infections. Infect. Immun 2005, 73, 4941–4947. [Google Scholar]
- Keller, C.C.; Kremsner, P.G.; Hittner, J.B.; Misukonis, M.A.; Weinberg, J.B.; Perkins, D.J. Elevated nitric oxide production in children with malarial anemia: Hemozoin-induced nitric oxide synthase type 2 transcripts and nitric oxide in blood mononuclear cells. Infect. Immun 2004, 72, 4868–4873. [Google Scholar]
- Sohail, M.; Kaul, A.; Raziuddin, M.; Adak, T. Decreased glutathione-S-transferase activity: Diagnostic and protective role in vivax malaria. Clin. Biochem 2007, 40, 377–382. [Google Scholar]
- Guha, M.; Kumar, S.; Choubey, V.; Maity, P.; Bandyopadhyay, U. Apoptosis in liver during malaria: Role of oxidative stress and implication of mitochondrial pathway. FASEB J 2006, 20, E439–E449. [Google Scholar]
- Atamna, H.; Ginsburg, H. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol. Biochem. Parasitol 1993, 61, 231–234. [Google Scholar]
- Cabrales, P.; Zanini, G.M.; Meays, D.; Frangos, J.A.; Carvalho, L.J.M. Nitric Oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J. Infect. Dis 2011, 203, 1454–1463. [Google Scholar]
- Pino, P.; Taoufiq, Z.; Nitcheu, J.; Vouldoukis, I.; Mazier, D. Blood-brain barrier breakdown during cerebral malaria: Suicide or murder? Thromb. Haemost 2005, 94, 336–340. [Google Scholar]
- Favre, N.; Ryffel, B.; Bordmann, G.; Rudin, W. The course of Plasmodium chabaudi infections in interferon-gamma receptor deficient mice. Parasite. Immunol 1997, 19, 375–383. [Google Scholar]
- Maneerat, Y.; Viriyavejakul, P.; Punpoowong, B.; Jones, M.; Wilairatana, P.; Pongponratn, E.; Turner, G.D.; Udomsangpetch, R. Inducible nitric oxide synthase expression is increased in the brain in fatal cerebral malaria. Histopathology 2000, 37, 269–277. [Google Scholar]
- Gramaglia, I.; Sobolewski, P.; Meays, D.; Contreras, R.; Nolan, J.P.; Frangos, J.A. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat. Med 2006, 12, 1417–1422. [Google Scholar]
- Pandey, A.V.; Bisht, H.; Babbarwal, V.K.; Srivastava, J.; Pandey, K.C.; Chauhan, V.S. Mechanism of malarial haem detoxification inhibition by chloroquine. Biochem. J 2001, 355, 333–338. [Google Scholar]
- Bolchoz, L.J.; Gelasco, A.K.; Jollow, D.J.; McMillan, D.C. Primaquine-induced hemolytic anemia: Formation of free radicals in rat erythrocytes exposed to 6-methoxy-8-hydroxylaminoquinoline. J. Pharmacol. Exp. Ther 2002, 303, 1121–1129. [Google Scholar]
- Haynes, R.K.; Krishna, S. Artemisinins: Activities and actions. Microbes. Infect 2004, 6, 1339–1346. [Google Scholar]
- Dockrell, H.M.; Playfair, J.H. Killing of Plasmodium yoelli by enzyme-induced products of the oxidative burst. Infect. Immun 1984, 43, 451–456. [Google Scholar]
- Clark, I.A.; Hunt, N.H. Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infect. Immun 1983, 39, 1–6. [Google Scholar]
- Stocker, R.; Hunt, N.H.; Buffinton, G.D.; Weidemann, M.J.; Lewis-Hughes, P.H.; Clark, I.A. Oxidative stress and protective mechanisms in relation to Plasmodium vinckei load. Proc. Natl. Acad. Sci. USA 1985, 82, 548–551. [Google Scholar]
- Sobolewski, P.; Gramaglia, I.; Frangos, J.A.; Intaglietta, M.; Heyde, H.V.D. Plasmodium berghei resists killing by reactive oxygen species. Infect. Immun 2005, 73, 6704–6710. [Google Scholar]
- Erel, O.; Vural, H.; Aksoy, N.; Aslan, G.; Ulukanligil, M. Oxidative stress of platelets and thrombocytopenia in patients with vivax malaria. Clin. Biochem 2001, 34, 341–344. [Google Scholar]
- Griffiths, M.J.; Ndungu, F.; Baird, K.L.; Muller, D.P.; Marsh, K.; Newton, C.R. Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br. J. Haematol 2001, 113, 486–491. [Google Scholar]
- Sales, R.P.; Percário, S. Devemos Avaliar o Estresse Oxidativo e a defesa Antioxidante em Nossos Pacientes? Laes Haes 2001, 22, 122–142. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Dumaswala, U.J.; Zhuo, L.; Mahajan, S.; Nair, P.N.; Shertzer, H.G.; Dibello, P.; Jacobsen, D.W. Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs. Am. J. Physiol 2001, 208, C867–C873. [Google Scholar]
- Glosli, H.; Tronstad, K.J.; Wergedal, H.; Müller, F.; Svardal, A.; Aukrust, P.; Berge, R.K.; Prydz, H. Human TNF-alpha in transgenic mice induces differential changes in redox status and glutathione-regulating enzymes. FASEB J 2002, 16, 1450–1452. [Google Scholar]
- Balla, G.; Jacob, H.S.; Balla, J.; Rosenberg, M.; Nath, K.; Apple, F.; Eaton, J.W.; Vercelloti, G.M. Ferritin: A cytoprotective antioxidant stratagem of endothelium. J. Biol. Chem 1992, 267, 18148–18153. [Google Scholar]
- Kavishe, R.A.; Koenderink, J.B.; McCall, M.B.; Peter, W.H.; Mulder, B.; Hermsen, C.C.; Sauerwein, R.W.; Russel, F.G.; Aj, V.D.V. Short report: Severe Plasmodium falciparum malaria in Cameroon associated with the glutathione-S-transferase M1 null genotype. Am. J. Trop. Med. Hyg 2006, 75, 827–829. [Google Scholar]
- Golensen, J.; Domb, A.; Teomim, D.; Tsafack, A.; Nisim, O.; Ponka, P.; Eling, W.; Cabantchik, K.I. The treatment of animal models of malaria with iron chelators by use of a novel polymeric device for slow drug release. J. Pharmacol. Exp. Ther 1997, 281, 1127–1135. [Google Scholar]
- Metzger, A.; Mukasa, G.; Shankar, A.H.; Ndeezi, G.; Melikian, G.; Semba, R.D. Antioxidant status and acute malaria in children in Kampala, Uganda. Am. J. Trop. Med. Hyg 2001, 65, 115–119. [Google Scholar]
- Caufield, L.E.; Richard, S.A.; Black, R.E. Undernutrition as an underlying cause of malaria morbidity and mortality in children less than five years old. Am. J. Trop. Med. Hyg 2004, 71, 55–63. [Google Scholar]
- Hassan, G.I.; Gregory, U.; Maryam, H. Serum ascorbic acid concentration in patients with acute falciparum malaria infection: Possible significance. Braz. J. Infect. Dis 2004, 8, 378–381. [Google Scholar]
- Das, B.S.; Patnaik, J.K.; Mohanty, S.; Mishra, S.K.; Mohanty, D.; Satpathy, S.K.; Bose, T.K. Plasma antioxidants and lipid peroxidation products in falciparum malaria. Am. J. Trop. Med. Hyg 1993, 49, 720–725. [Google Scholar]
- Percario, S.; Odorizzi, V.F.; Souza, D.R.S.; Pinhel, M.A.; Gennari, J.L.; Gennari, M.S.; Godoy, M.F. Edible mushroom Agaricus sylvaticus can prevent the onset of atheroma plaques in hipercholesterolemic rabbits. Cell. Mol. Biol. 2008, 54, OL1055–1061. [Google Scholar]
- Rosales, F.J.; Topping, J.D.; Smith, J.E.; Shankar, A.H.; Ross, A.C. Relation of serum retinol to acute phase proteins and malarial morbidity in Papua New Guinea children. Am. J. Clin. Nutr 2000, 71, 1582–1588. [Google Scholar]
- Blair, S.; Carmona, J.; Correa, A. Malaria em Niños: Relaciones entre Nutrición e Inmunidad. Rev. Panam. Salud. Publica 2002, 11, 5–14. [Google Scholar]
- Sanni, L.A.; Rae, C.; Maitland, A.; Stocker, R.; Hunt, N.H. Is ischemia involved in the pathogenesis of murine cerebral malaria? Am. J. Pathol 2001, 159, 1105–1112. [Google Scholar]
- Yoshimoto, T.; Takahama, Y.; Wang, C.R.; Yoneto, T.; Waki, S.; Nariuchi, H. A pathogenic role of IL-12 in blod-stage murine malaria lethal strain Plasmodium berguei NK65 infection. J. Immunol 1998, 160, 5500–5505. [Google Scholar]
- Akompong, T.; Ghori, N.; Haldar, K. In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother 2000, 44, 88–96. [Google Scholar]
- Coppi, A.; Cabinian, M.; Mirelman, D.; Sinnis, P. Antimalarial activity of Allicin, a biologically active compound from garlic cloves. Antimicrob. Agents Chemother 2006, 50, 1731–1737. [Google Scholar]
- Das, B.S.; Nanda, N.K. Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans. R. Soc. Trop. Med. Hyg 1999, 93, 8–62. [Google Scholar]
- Hemmer, C.J.; Lehr, H.A.; Westphal, K.; Unverricht, M.; Kratzius, M.; Reisinger, E.C. Plasmodium falciparum malaria: Reduction of endothelial cell apoptosis in vitro. Infect. Immun 2005, 73, 1764–1770. [Google Scholar]
- Stevenson, M.M.; Tam, M.F.; Wolf, S.F.; Sher, A. IL-12-induced protection against blood-stage Plasmodium chabaudi requires IFN-gamma and TNF-alpha and occurs via a nitric oxide-dependent mechanism. J. Immunol 1995, 155, 2545–2556. [Google Scholar]
- Arruda, M.A.; Rossi, A.G.; Freitas, M.S.; Barja-Fidalgo, C.; Graça-Souza, A.V. Heme inhibits human neutrophil apoptosis: Involvement of phosphoinositide 3-Kinase, MAPK, and NF-κB. J. Immunol 2004, 173, 2023–2030. [Google Scholar]
- Fariss, M.W.; Chan, C.B.; Patel, M.; Houten, B.V.; Orrenius, S. Role of mitochondria in toxic oxidative stress. Mol. Intervent 2005, 5, 94–111. [Google Scholar]
- Dey, S.; Guha, M.; Alam, A.; Goyal, M.; Bindu, S.; Pal, C.; Maity, P.; Mitra, K.; Bandyopadhyay, U. Malarial infection develops mitochondrial pathology and mitochondrial oxidative stress to promote hepatocyte apoptosis. Free Radic. Biol. Med 2009, 46, 271–281. [Google Scholar]
- Jaramillo, M.; Gowda, D.C.; Radzioch, D.; Oliver, M. Hemozoin increase IFN-gamma-inducible macrophage nitric oxide generation through extracellular signal-regulated kinase- and NF-Kappa B-dependent pathways. J. Immunol 2003, 171, 4243–4253. [Google Scholar]
- Saeftel, M.; Krueger, A.; Arriens, S.; Heussler, V.; Racz, P.; Fleischer, B.; Brombacher, F.; Hoerauf, A. Mice deficient interleukin-4 (IL-4) or IL-4 receptor α have higher resistance to sporozoite infection with Plasmodium berghei (ANKA) than do naive wild-type mice. Infect. Immun 2004, 72, 322–331. [Google Scholar]
- Brinkmann, V.; Kaufmann, S.H.; Simon, M.M.; Fisher, H. Role of macrophages in malaria: O2 metabolite production and phagocytosis by splenic macrophages during lethal Plasmodium berghei and self-limiting Plasmodium yoelii infection in mice. Infect. Immun 1984, 44, 743–746. [Google Scholar]
- Chiwakata, C.B.; Hemmer, C.J.; Dietrich, M. High levels of inducible nitric oxide synthase mRNA are associated with increased monocyte counts in blood and have a beneficial role in Plasmodium falciparum malaria. Infect. Immun 2000, 68, 394–399. [Google Scholar]
- Syarifah, H.P.; Masashi, H.; Somei, K. Cytokine and chemokine reponses in a cerebral malaria-susceptible or -resistent strain of mice to Plasmodium berghei ANKA infection: Early chemokine expression in the brain. Int. Immun 2002, 15, 633–640. [Google Scholar]
- Kumaratilake, L.M.; Ferrante, A.; Rzepczyk, C.M. Tumor necrosis factor enhances neutrophil-mediated killing of Plasmodium falciparum. Infect. Immun 1990, 58, 788–793. [Google Scholar]
- Porto, B.N.; Alves, L.S.; Fernández, P.L.; Dutra, T.P.; Figueiredo, R.T.; Graça-Souza, A.V.; Bozza, M.T. Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J. Biol. Chem 2007, 282, 24430–24436. [Google Scholar]
- Taramelli, D.; Recalcati, S.; Basilico, N.; Olliaro, P.; Cairo, G. Macrophage preconditioning with synthetic malaria pigment reduces cytokine production via heme iron-dependent oxidative stress. Lab. Invest 2000, 80, 1781–1788. [Google Scholar]
- Singh, P.P.; Singh, S. Protection of mice from malaria after co-administration of recombinant mouse granulocyte-macrophages colony- stimulating factor and methionine-enkephalin. Eur. Cytokine. Netw 2001, 12, 528–536. [Google Scholar]
- Kaur, A.; Kinhikar, A.G.; Singh, P.P. Bioimmunotherapy of rodent malaria: Co-treatment with recombinant mouse granulocyte-macrophage colony-stimulating factor and an enkephalin fragment peptide Tyr-Gly-Gly. Acta Trop 2004, 91, 27–41. [Google Scholar]
- Riopel, J.; Tam, M.; Mohan, K.; Marino, M.W.; Stevenson, M.M. Granulocyte-macrophage colony-stimulating factor-deficient mice have impaired resistance to blood-stage malaria. Infect. Immun 2001, 69, 129–136. [Google Scholar]
- Skorokhod, O.A.; Schwarzer, E.; Grune, T.; Arese, P. Role of 4-hydroxynonenal in the hemozoin-mediated inhibition of differentiation of human monocytes to dendritic cells induced by GM-CSF/IL-4. Biofactors 2005, 24, 283–289. [Google Scholar]
- Skorokhod, O.A.; Alessio, M.; Mordmuller, B.; Arese, P.; Schwarzer, E. Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: A peroxisome proliferator-activated receptor-gamma-mediated effect. J. Immunol 2004, 173, 4066–4074. [Google Scholar]
- Morris, S.M., Jr; Billiar, T.R. New insights into the regulation of inducible nitric oxide synthesis. Am. J. Physiol. 1994, 266, E829–E889. [Google Scholar]
- Beckman, J.S.; Koppenol, W.H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am. J. Physiol 1996, 271, C1424–C1437. [Google Scholar]
- Dusse, L.M.S.; Vieira, L.M.; Carvalho, M.G. Revisão sobre óxido nítrico. J. Bras. Patol. Med. Lab 2003, 39, 343–350. [Google Scholar]
- Knobel, E. Óxido Nítrico e Sepse. Arq. Bras. Cardiol 1996, 67, 263–266. [Google Scholar]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J 2012, 33, 829–837. [Google Scholar]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar]
- Agbenyega, T.; Angus, B.; Bedu-Addo, G.; Baffoe-Bonnie, B.; Griffin, G.; Vallance, P.; Krishna, S. Plasma nitrogen oxides and blood lactate concentrations in Ghanaian children with malaria. Trans. R. Soc. Trop. Med. Hyg 1997, 91, 298–302. [Google Scholar]
- Van der Heyde, H.C.; Gu, Y.; Zhang, Q.; Sun, G.; Grisham, M.B. Nitric oxide is neither necessary nor sufficient for resolution of Plasmodium chabaudi malaria in mice. J. Immunol 2000, 165, 3317–3323. [Google Scholar]
- Geller, D.A.; Nussler, A.K.; Di Silvio, M.; Lowenstein, C.J.; Shapiro, R.A.; Wang, S.C.; Simmons, R.L.; Billiar, T.R. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc. Natl. Acad. Sci. USA 1993, 90, 522. [Google Scholar]
- Rees, D.D.; Cunha, F.Q.; Assreuy, J.; Herman, A.G.; Moncada, S. Sequential induction of nitric oxide synthase by Corynebacterium parvum in different organs of the mouse. Br. J. Pharmacol 1995, 114, 689–693. [Google Scholar]
- Dondorp, A.M.; Planche, T.; de Bel, E.E.; Angus, B.J.; Chotivanich, K.T.; Silamut, K.; Romijn, J.A.; Ruangveerayuth, R.; Hoek, F.J.; Kager, P.A.; et al. Nitric oxides in plasma, urine, and cerebrospinal fluid in patients with severe falciparum malaria. Am. J. Trop. Med. Hyg 1998, 59, 497–502. [Google Scholar]
- Yoneto, T.; Yoshimoto, T.; Wang, C.R.; Takahama, Y.; Tsuji, M.; Waki, S.; Nariuchi, H. Gamma interferon production is critical for protective immunity to infection with blood-stage Plasmodium berghei XAT but neither NO production nor NK cell activation is critical. Infect. Immun 1999, 67, 2349–2356. [Google Scholar]
- Jacobs, P.; Radzioch, D.; Stevenson, M.M. Nitric oxide expression in the spleen, but not in the liver, correlates with resistance to blood-stage malaria in mice. J. Immunol 1995, 155, 5306–5313. [Google Scholar]
- Favre, N.; Ryffel, B.; Rudin, W. Parasite killing in murine malaria does not require nitric oxide production. Parasitology 1999, 118, 139–143. [Google Scholar]
- Böhlke, M. Imunossupressão induzida pela malária: Existe um papel para o óxido nítrico? Rev. Bras. Alerg. Imunopatol 1999, 22, 173–178. [Google Scholar]
- Peterson, T.M.; Gow, A.J.; Luckhart, S. Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. Free Radic. Biol. Med 2007, 42, 132–142. [Google Scholar]
- Percario, S.; Green, M.D. Inhibition of NO synthesis favors the development of severe forms of malaria in Plasmodium berghei infected mice. To be submitted for publication.
- Bredt, D.S.; Snyder, S.H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA 1990, 87, 682–685. [Google Scholar]
- Green, S.J.; Scheller, L.F.; Marletta, M.A.; Seguin, M.C.; Klotz, F.W.; Slayter, M.; Nelson, B.J.; Nacy, C.A. Nitric oxide: Cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol. Lett 1994, 43, 87–94. [Google Scholar]
- Taylor-Robinson, A.W.; Liew, F.Y.; Severn, A.; Xu, D.; McSorley, S.J.; Garside, P.; Padron, J.; Phillips, R.S. Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur. J. Immunol 1994, 24, 980–984. [Google Scholar]
- Pollock, J.S.; Forstermann, U.; Mitchell, J.A.; Warner, T.D.; Schmidt, H.H.H.W.; Nakane, M.; Murad, F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA 1991, 88, 10480–10484. [Google Scholar]
- Clark, I.A.; Rockett, K.A. Nitric oxide and parasitic disease. Adv. Parasitol 1996, 37, 1–56. [Google Scholar]
- Gillman, B.M.; Batchelder, J.; Flaherty, P.; Weidanz, W.P. Suppression of Plasmodium chabaudi parasitemia is independent of the action of reactive oxygen intermediates and/or nitric oxide. Infect. Immun 2004, 72, 6359–6366. [Google Scholar]
- Martins, Y.C.; Zanini, G.M.; Frangos, J.A.; Carvalho, L.J.M. Efficacy of different nitric oxide-based strategies in preventing experimental cerebral malaria by Plasmodium berghei ANKA. PLoS One 2012, 7, e32048. [Google Scholar]
- Serghides, L.; Kim, H.; Lu, Z.; Kain, D.C.; Miller, C.; Francis, R.C.; Liles, W.C.; Zapol, W.M.; Kain, K.C. Inhaled nitric oxide reduces endothelial activation and parasite accumulation in the brain, and enhances survival in experimental cerebral malaria. PLoS One 2011, 6, e27714. [Google Scholar]
- Hawkes, M.; Opoka, R.O.; Namasopo, S.; Miller, C.; Conroy, A.L.; Serghides, L.; Kim, H.; Thampi, N.; Liles, W.C.; John, C.C.; et al. Nitric oxide for the adjunctive treatment of severe malaria: Hypothesis and rationale. Med. Hypothesis 2011, 77, 437–444. [Google Scholar]
- Zanini, G.M.; Cabrales, P.; Barkho, W.; Frangos, J.A.; Carvalho, L.J.M. Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice. J. Neuroinflam 2011, 8, 66. [Google Scholar]
- Speyer, C.L.; Neff, T.A.; Warner, R.I.; Guo, R.F.; Sarma, J.V.; Riedemann, N.C.; Murphy, M.E.; Murphy, H.S.; Ward, P.A. Regulatory effects of iNOS on acute lung inflammatory responses in mice. Am. J. Pathol 2003, 163, 2319–2328. [Google Scholar]
- Lim, J.; Gowda, D.C.; Krishnegowda, G.; Luckhart, S. Induction of nitric oxide synthase in Anopheles stephensi by Plasmodium falciparum: Mechanism of signaling and the role of parasite glycosylphosphatidylinositols. Infect. Immun 2005, 73, 2778–2789. [Google Scholar]
- Scheller, L.F.; Green, S.J.; Azad, A.F. Inhibition of nitric oxide interrupts the accumulation of CD8+ T cells surrounding Plasmodium berghei-infected hepatocytes. Infect. Immun 1997, 65, 3882–3888. [Google Scholar]
- Parikh, S.; Dorsey, G.; Rosenthal, P.J. Host polymorphisms and the incidence of malaria in Ugandan children. Am. J. Trop. Med. Hyg 2004, 71, 750–753. [Google Scholar]
- Moore, J.M.; Chaisavaneeyakorn, S.; Perkins, D.J.; Othoro, C.; Otieno, J.; Nahlen, B.L.; Shi, Y.P.; Udhayakumar, V. Hemozoin differentially regulates proinflammatory cytokine production in human immunodeficiency virus-seropositive and -seronegative women with placental malaria. Infect. Immun 2004, 72, 7022–7029. [Google Scholar]
- Keller, C.C.; Yamo, O.; Ouma, C.; Ong’echa, J.M.; Ounah, D.; Hittner, J.B.; Vulule, J.M.; Perkins, D.J. Acquisition of hemozoin by monocytes down-regulates interleukin-12 p40 (il-12p40) transcripts and circulating il-12p70 through an il-10-dependent mechanism: In vivo and in vitro findings in severe malarial anemia. Infect. Immun 2006, 74, 5249–5260. [Google Scholar]
- Kumar, S.; Das, S.K.; Dey, S.; Maity, P.; Guha, M.; Choubey, V.; Panda, G.; Bandyopadhyay, U. Antiplasmodial activity of [(aryl)arylsulfanylmetyl]pyridine. Antimicrob. Agents Chemother 2008, 52, 705–715. [Google Scholar]
- Luse, S.A.; Miller, L.H. Plasmodium falciparum malaria: Ultrastructure of parasitized erythrocytes in cardiac vessels. Am. J. Trop. Med. Hyg 1971, 20, 655–660. [Google Scholar]
- Braga, E.M. Plasmodium—Malária. In Parasitologia Humana, 11th ed; Neves, D.P., Ed.; Atheneu: São Paulo, SP, Brazil, 2005; p. 143. [Google Scholar]
- Phiri, H.; Montgomery, J.; Molyneux, M.; Craig, A. Competitive endothelial adhesion between plasmodium falciparum isolates under physiological flow conditions. Malar. J 2009, 8, 214. [Google Scholar]
- Schwarzer, E.; Kuhn, H.; Valente, E.; Arese, P. Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. Blood 2003, 101, 722–728. [Google Scholar]
- Ferreira, M.U.; Nunes, M.S.; Wunderlich, G. Antigenic diversity and immune evasion by malaria parasites. Clin. Diagn. Lab. Immunol. 2004, 11, 987–995. [Google Scholar]
- Pettersson, F.; Vogt, A.M.; Jonsson, C.; Mok, B.W.; Shamaei-Tousi, A.; Bergstro, S.; Wahlgreni, M. Whole-Body Imaging of Sequestration of Plasmodium falciparum in the Rat. Infect. Immun 2005, 73, 7736–7746. [Google Scholar]
- Glenister, F.K.; Coppel, R.L.; Cowman, A.F.; Mohandas, N.; Cooke, B.M. Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood 2002, 99, 1060–1060. [Google Scholar]
- Foth, B.J.; Zhang, N.; Chaal, B.K.; Sze, S.K.; Preiser, P.R.; Bozdech, Z. Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteomics 2011, 10, 1–16. [Google Scholar]
- Toler, S. The plasmodial apicoplast was retained under evolutionary selective pressure to assuage blood stage oxidative stress. Med. Hypotheses 2005, 65, 683–690. [Google Scholar]
- Kanzok, S.M.; Schirmer, R.H.; Turbachova, I.; Iozef, R.; Becker, K. The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J. Biol. Chem 2000, 275, 40180–40186. [Google Scholar]
- Müller, S.; Gilberger, T.W.; Krnajski, Z.; Lüersen, K.; Meierjohann, S.; Walter, R.D. Thioredoxin and glutathione system of malaria parasite Plasmodium falciparum. Protoplasma 2001, 217, 43–49. [Google Scholar]
- Richard, D.; Bartfai, R.; Volz, J.; Ralph, S.A.; Muller, S.; Stunnenberg, H.G.; Cowman, A.F. A genome-wide chromatin-associated nuclear peroxiredoxin from the malaria parasite Plasmodium falciparum. J. Biol. Chem 2011, 286, 11746–11755. [Google Scholar]
- Kehr, S.; Sturm, N.; Rahlfs, S.; Przyborski, J.M.; Becker, K. Compartmentation of redox metabolism in malaria parasites. PLoS Pathog 2010, 6, e1001242. [Google Scholar]
- Krnajski, Z.; Gilberger, T.W.; Walter, R.D.; Cowman, A.F.; Müller, S. Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J. Biol. Chem 2002, 277, 2590–2595. [Google Scholar]
- Kehr, S.; Jortzik, E.; Delahunty, C.; Yates, J.R., III; Rahlfs, S.; Becker, K. Protein S-glutathionylation in malaria parasites. Antioxid. Redox Signal. 2011, 15, 2855–2865. [Google Scholar]
- Campanale, N.; Nickel, C.; Daubenberg, C.A.; Wehlan, D.A.; Gorman, J.J.; Klonis, N.; Beker, K.; Tilley, L. Identification and characterization of heme-interacting proteins in the malaria parasite, Plasmodium falciparum. J. Biol. Chem 2003, 278, 27354–27361. [Google Scholar]
- Mashima, R.; Tilley, L.; Siomos, M.A.; Papalexis, V.; Raftery, M.J.; Stocker, R. Plasmodium falciparum histidine-rich protein-2 (PfIHRP2) modulates the redox activity of ferri-protoporphyrin IX (FePPIX): Peroxidase-like activity of the PfIHRP2-FePPIX complex. J. Biol. Chem 2002, 277, 14514–14520. [Google Scholar]
- Meierjohann, S.; Walter, R.D.; Müller, S. Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. Biochem. J 2002, 368, 761–768. [Google Scholar]
- Chandra, R.; Tripathi, L.M.; Saxena, J.K.; Puri, S.K. Implication of intracellular glutathione and its related enzymes on resistance of malaria parasites to the antimalarial drug arteether. Parasitol. Int 2011, 60, 97–100. [Google Scholar]
- Müller, S. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol. Microbiol 2004, 53, 1291–1305. [Google Scholar]
- Wrenger, C.; Eschbach, M.L.; Müller, I.B.; Warnecke, D.; Walter, R.D. Analysis of the vitamin B6 biosynthesis pathway in the human malaria parasite Plasmodium falciparum. J. Biol. Chem 2005, 280, 5242–5248. [Google Scholar]
- Kumar, S.; Christophides, G.K.; Cantera, R.; Charles, B.; Han, Y.S.; Meister, S.; Dimopoulos, G.; Kafatos, F.C.; Barillas-Mury, C. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2003, 100, 14139–14144. [Google Scholar]
- Akman-Anderson, L.; Olivier, M.; Luckhart, S. Induction of nitric oxide synthase and activation of signaling proteins in Anopheles mosquitoes by the malaria pigment, hemozoin. Infect. Immun 2007, 75, 4012–4019. [Google Scholar]
- Bauer, H.; Gromer, S.; Urbani, A.; Schnölzer, M.; Schirmer, R.H.; Müller, H.M. Thioredoxin reductase from the malaria mosquito Anopheles gambiae. Eur. J. Biochem 2003, 270, 4272–4281. [Google Scholar]
- Wongtrakul, J.; Pongjaroenkit, S.; Leelapat, P.; Nachaiwieng, W.; Prapanthadara, L.A.; Ketterman, A.J. Expression and characterization of three new glutathione transferases, an epsilon (AcGSTE2-2), omega (AcGSTO1-1), and theta (AcGSTT1-1) from Anopheles cracens (Diptera: Culicidae), a major Thai malaria vector. J. Med. Entomol 2010, 47, 162–171. [Google Scholar]
- Grahame-Smith, D.G.; Aronson, J.K. Tratado de Farmacologia Clínica e Farmacoterapia, 3rd ed; Guanabara Koogan: Rio de Janeiro, RJ, Brazil, 2004. [Google Scholar]
- Zhang, S.; Chen, H.; Gerhard, G.S. Heme synthesis increases artemisinin-induced radical formation and cytotoxicity that can be suppressed by superoxide scavengers. Chem. Biol. Interact 2010, 186, 30–35. [Google Scholar]
- Grellier, P.; Maroziene, A.; Nivinskas, H.; Sarlauskas, J.; Aliverti, A.; Cenas, N. Antiplasmodial activity of quinones: Roles of aziridinyl substituents and the inhibition of Plasmodium falciparum glutathione reductase. Arch. Biochem. Biophys 2010, 494, 32–39. [Google Scholar]
- Giao, P.T.; Binh, T.Q.; Kager, P.A.; Long, H.P.; van Thang, N.; van Nam, N.; de Vries, P.J. Artemisinin for treatment of uncomplicated falciparum malaria: Is there a place for monotherapy? Am. J. Trop. Med. Hyg 2001, 65, 690–695. [Google Scholar]
- Krungkrai, S.R.; Yuthavong, Y. The antimalarial action on Plasmodium falciparum of qinghaosu and artesunate in combination with agents which modulate oxidant stress. Trans. R. Soc. Trop. Med. Hyg 1987, 81, 710–714. [Google Scholar]
- Scott, M.D.; Meshnick, S.R.; Williams, R.A.; Chiu, D.T.; Pan, H.C.; Lubin, B.H.; Kuypers, F.A. Qinghaosu-mediated oxidation in normal and abnormal erythrocytes. J. Lab. Clin. Med 1989, 114, 401–406. [Google Scholar]
- Hartwig, C.L.; Rosenthal, A.S.; D’Angelo, J.; Griffin, C.E.; Posner, G.H.; Cooper, R.A. Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent. Biochem. Pharmacol 2009, 77, 322–336. [Google Scholar]
- Klonis, N.; Crespo-Ortiz, M.P.; Bottova, I.; Abu-Bakar, N.; Kenny, S.; Rosenthal, P.J.; Tilley, L. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc. Natl. Acad. Sci. USA 2011, 108, 11405–11410. [Google Scholar]
- Akabi, O.M.; Odaibo, A.B.; Ademowo, O.G. Effect of antimalarial drugs and malaria infection on oxidative stress in pregnant women. Afr. J. Reprod. Health 2010, 14, 209–212. [Google Scholar]
- Benoit-Vical, F.; Robert, A.; Meunier, B. Potentiation of artemisinin activity against chloroquine-resistant Plasmodium falciparum strains by using heme models. Antimicrob. Agents Chemother 1999, 43, 2555–2558. [Google Scholar]
- Malhotra, K.; Salmon, D.; Le Bras, J.; Vilde, J.L. Potentiation of chloroquine activity against Plasmodium falciparum by the peroxidase-hydrogen peroxide system. Antimicrob. Agents Chemother 1990, 34, 1981–1985. [Google Scholar]
- Legorreta-Herrera, M.; Retana-Ugalde, R.; Ventura-Gallegos, J.L.; Narvaez, V. Pyrimethamine induces oxidative stress in Plasmodium yoelli 17XL-infected mice: A novel immunomodulatory mechanism of action for an old antimalarial drug? Exp. Parasitol 2010, 126, 381–388. [Google Scholar]
- Nogueria, F.; Diez, A.; Radfar, A.; Perez-Benavente, S.; do Rosario, V.E.; Puyet, A.; Bautista, J.M. Early transcriptional response to chloroquine of the Plasmodium falciparum antioxidant defence in sensitive and resistant clones. Acta Trop 2010, 114, 109–115. [Google Scholar]
- Trivedi, V.; Chand, P.; Srivastava, K.; Puri, S.; Maulik, P.R.; Bandyopadhyay, U. Clotrimazole inhibits hemoperoxidase of Plasmodium falciparum and induces oxidative stress. J. Biol. Chem 2005, 280, 41129–41136. [Google Scholar]
- Al-Adhroey, A.H.; Nor, Z.M.; Al-Mekhlafi, H.M.; Amran, A.A.; Mahmud, R. Antimalarial activity of methanolic leaf extract of Piper betle L. Molecules 2011, 16, 107–118. [Google Scholar]
- Akanbi, O.M.; Omonkhua, A.A.; Cyril-Olutayo, C.M.; Fasimoye, R.Y. The antiplasmodial activity of Anogeissus leiocarpus and its effect on oxidative stress and lipid profile in mice infected with Plasmodium berghei. Parasitol. Res 2012, 110, 219–226. [Google Scholar]
- Okeola, V.O.; Adaramoye, O.A.; Nneji, C.M.; Falade, C.O.; Farombi, E.O.; Ademowo, O.G. Antimalarial and antioxidant activities of methanolic extract of Nigella sativa seeds (black cumin) in mice infected with Plasmodium yoelli nigeriensis. Parasitol. Res 2011, 108, 1507–1512. [Google Scholar]
- Ferreira, J.F.; Luthria, D.L.; Sasaki, T.; Heyerick, A. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 2010, 15, 3135–3170. [Google Scholar]
- Addai, F.K. Natural cocoa as diet-mediated antimalarial prophylaxis. Med. Hypotheses 2010, 74, 825–830. [Google Scholar]
- Percario, S.; Naufal, A.S.; Gennari, J.L.; Gennari, M.S. Antioxidant activity of edible blushing wood mushroom, Agaricus sylvaticus Schaeff. (Agaricomycetideae) in vitro. Int. J. Med. Mushrooms 2009, 11, 133–140. [Google Scholar]
- Dattani, J.J.; Rajput, D.K.; Moid, N.; Highland, H.N.; George, L.B.; Desai, K.R. Ameliorative effect of curcumin on hepatotoxicity induced by chloroquine phosphate. Environ. Toxicol. Pharmacol 2010, 30, 103–109. [Google Scholar]
- Ghashgaeinia, M.; Bobbala, D.; Wieder, T.; Koka, S.; Bruck, J.; Fehrenbacher, B.; Rocken, M.; Schaller, M.; Lang, F.; Ghoreschi, K. Targeting glutathione by dimethylfumarate protects against experimental malaria by enhancing erythrocyte cell membrane scrambling. Am. J. Physiol. Cell. Physiol 2010, 299, C791–C804. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Percário, S.; Moreira, D.R.; Gomes, B.A.Q.; Ferreira, M.E.S.; Gonçalves, A.C.M.; Laurindo, P.S.O.C.; Vilhena, T.C.; Dolabela, M.F.; Green, M.D. Oxidative Stress in Malaria. Int. J. Mol. Sci. 2012, 13, 16346-16372. https://doi.org/10.3390/ijms131216346
Percário S, Moreira DR, Gomes BAQ, Ferreira MES, Gonçalves ACM, Laurindo PSOC, Vilhena TC, Dolabela MF, Green MD. Oxidative Stress in Malaria. International Journal of Molecular Sciences. 2012; 13(12):16346-16372. https://doi.org/10.3390/ijms131216346
Chicago/Turabian StylePercário, Sandro, Danilo R. Moreira, Bruno A. Q. Gomes, Michelli E. S. Ferreira, Ana Carolina M. Gonçalves, Paula S. O. C. Laurindo, Thyago C. Vilhena, Maria F. Dolabela, and Michael D. Green. 2012. "Oxidative Stress in Malaria" International Journal of Molecular Sciences 13, no. 12: 16346-16372. https://doi.org/10.3390/ijms131216346
APA StylePercário, S., Moreira, D. R., Gomes, B. A. Q., Ferreira, M. E. S., Gonçalves, A. C. M., Laurindo, P. S. O. C., Vilhena, T. C., Dolabela, M. F., & Green, M. D. (2012). Oxidative Stress in Malaria. International Journal of Molecular Sciences, 13(12), 16346-16372. https://doi.org/10.3390/ijms131216346