Correlation Coefficients Between Different Methods of Expressing Bacterial Quantification Using Real Time PCR
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Chickens and Housing
3.2. DNA Extraction
3.3. Quantitative Real Time PCR
- Relative calculation using the delta delta Ct method, (2−ΔΔCt): This method was used to calculate the relative abundance (fold changes) of each bacterial group. The threshold cycle, Ct, is the point at which fluorescence above the background is detectable. ΔCt was calculated as the difference between the Ct value with the primers to a specific group of bacteria and the Ct value with the primers to total bacteria. ΔΔCt is defined as the difference between the ΔCt value of each treatment and the ΔCt value of control group. The values derived from the 2−ΔΔCt method show the fold changes of bacterial abundance in a treated sample relative to those of the control sample. The 2−ΔΔCt value of control samples is equal to 1.
- Pfaffl method: the following equation was developed by M.W. Pfaffl [36] for simple gene expression calculation:
Absolute quantification
Relative quantification
3.4. Statistical Analyses
4. Conclusions
References
- Abrams, G.D.; Bauer, H.; Sprinz, H. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germfree and conventional mice. Lab. Invest 1963, 12, 355–364. [Google Scholar]
- Mead, G.C. Prospects for competitive exclusion treatment to control salmonellas and other foodborne pathogens in poultry. Vet. J 2000, 159, 111–123. [Google Scholar]
- Gong, J.; Forster, R.J.; Yu, H.; Chambers, J.R.; Sabour, P.M.; Wheatcroft, R.; Chen, S. Diversity and phylogenetic analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiol. Ecol 2002, 41, 171–179. [Google Scholar]
- Zhu, Y.Y.; Zhong, T.; Pandya, Y.; Joerger, R.D. 16S rRNA-based analysis of microflora from the cecum of broiler chickens. Appl. Environ. Microbiol 2002, 68, 124–137. [Google Scholar]
- Guan, L.L.; Hagen, K.E.; Tannock, G.W.; Korver, D.R.; Fasenko, G.M.; Allison, G.E. Detection and identification of Lactobacillus species in crops of broilers of different ages by using PCR-denaturing gradient gel electrophoresis and amplified ribosomal DNA restriction analysis. Appl. Environ. Microbiol 2003, 69, 6750–6757. [Google Scholar]
- Lu, J.; Idris, U.; Harmon, B.; Hofacre, C.; Maurer, J.J.; Lee, M.D. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol 2003, 69, 6816–6824. [Google Scholar]
- Mackie, R.I.; Sghir, A.; Gaskins, H.R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr 1999, 69, 1035S–1045S. [Google Scholar]
- Knarreborg, A.; Simon, M.A.; Engberg, R.M.; Jensen, B.B.; Tannock, G.W. Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Appl. Environ. Microbiol 2002, 68, 5918–5924. [Google Scholar]
- Xu, Z.R.; Hu, C.H.; Xia, M.S.; Zhan, X.A.; Wang, M.Q. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci 2003, 82, 1030–1036. [Google Scholar]
- Collier, C.T.; Smiricky-Tjardes, M.R.; Albin, D.M.; Wubben, J.E.; Gabert, V.M.; Deplancke, B.; Bane, D.; Anderson, D.B.; Gaskins, H.R. Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters. J. Anim. Sci 2003, 81, 3035–3045. [Google Scholar]
- Apajalahti, J.H.; Kettunen, A.; Graham, H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World’s Poult. Sci. J 2004, 60, 223–232. [Google Scholar]
- Rastall, R.A.; Gibson, G.R.; Gill, H.S.; Guarner, F.; Klaenhammer, T.R.; Pot, B.; Reid, G.; Rowland, I.R.; Sanders, M.E. Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: An overview of enabling science and potential applications. FEMS Microbiol. Ecol 2005, 52, 145–152. [Google Scholar]
- Dumonceaux, T.J.; Hill, J.E.; Hemmingsen, S.M.; Van Kessel, A.G. Characterization of intestinal microbiota and response to dietary virginiamycin supplementation in the broiler chicken. Appl. Environ. Microbiol 2006, 72, 2815–2823. [Google Scholar]
- Salanitro, J.P.; Blake, I.G.; Muirhead, P.A.; Maglio, M.; Goodman, J.R. Bacteria isolated from the duodenum, ileum, and cecum of young chicks. Appl. Environ. Microbiol 1978, 35, 782–790. [Google Scholar]
- Barnes, E.M. The intestinal microflora of poultry and game birds during life and after storage. J. Appl. Bacteriol 1979, 46, 407–419. [Google Scholar]
- Mead, G.C. Microbes of the avian cecum: Types present and substrates utilized. J. Exp. Zool. Suppl 1989, 3, 48–54. [Google Scholar]
- Engberg, R.M.; Hedemann, M.S.; Leser, T.D.; Jensen, B.B. Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poult. Sci 2000, 79, 1311–1319. [Google Scholar]
- Aarts, H.J.M.; Joosten, R.G.; Henkens, M.H.C.; Stegeman, H.; Van Hoek, A.H.A.M. Rapid duplex PCR assay for the detection of pathogenic Yersinia entercolitica strains. J. Microbiol. Methods 2001, 47, 209–217. [Google Scholar]
- Kaiser, K.; Rabodonirina, M.; Picot, S. Real time quantitative PCR and RT-PCR for analysis of Pneumocystis carinii hominis. J. Microbiol. Methods 2001, 45, 113–118. [Google Scholar]
- Hesselman, K.; Aman, P. The effect of b-glucanase on the utilisation of starch and nitrogen by broiler chickens fed on barley of low- or high-viscosity. Anim. Feed Sci. Technol 1986, 15, 83–93. [Google Scholar]
- Razdan, A.; Pettersson, D. Effects of feeding restriction and meal pattern of a sugar beet-containing diet and control diet on nutrient digestibility, plasma lipid concentrations and postprandial triacylglycerol response in broiler chickens. Br. J. Nutr 1994, 3, 389–400. [Google Scholar]
- Bergh, M.O.; Razdan, A.; Aman, P. Nutritional influence of broiler chicken diets based on covered normal, waxy and high amylose barleys with or without enzyme supplementation. Anim. Feed Sci. Technol 1999, 78, 215–226. [Google Scholar]
- Daveby, Y.D.; Razdan, A.; Aman, P. Effect of particle size and enzyme supplementation of diets based on dehulled peas on the nutritive value for broiler chickens. Anim. Feed Sci. Technol 1998, 74, 229–239. [Google Scholar]
- Castro, E.E.C.; Júnior, A.M.P.; Ribeiro, A.M.L.; Sbrissia, A.F. Effect of water restriction and sodium levels in the drinking water on broiler performance during the first week of life. R. Bras. Zootec 2009, 38, 2167–2173. [Google Scholar]
- Navidshad, B.; Liang, J.B.; Jahromi, M.F. A study on the Palm kernel expeller effects on broilers small intestinal bacteria; Institute of tropical Agriculture, University Putra Malaysia: Malaysia, Unpublished data; 2011. [Google Scholar]
- Ott, S.; Musfeldt, M.; Ullmann, U.; Hampe, J.; Schreiber, S. Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: A global approach to the enteric flora. J. Clin. Microbiol 2004, 42, 2566–2572. [Google Scholar]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol 2007, 75, 165–174. [Google Scholar]
- Feng, Y.; Gong, J.; Yu, H.; Jin, Y.; Zhu, J.; Han, Y. Identification of changes in the composition of ileal bacterial microbiota of broiler chickens infected with Clostridium perfringens. Vet. Microbiol 2010, 140, 116–121. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCt) method. Methods 2001, 25, 402–408. [Google Scholar]
- Staroscik, A. Calculator for determining the number of copies of a template. Available online: http://www.uri.edu/research/gsc/resources/cndna.html accessed on 3 February 2012.
- Denman, S.E.; McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol 2006, 58, 572–582. [Google Scholar]
- Wang, R.F.; Cao, W.W.; Cerniglia, C.E. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl. Environ. Microbiol 1996, 62, 1242–1247. [Google Scholar]
- Frahm, E.; Obst, U. Application of the fluorogenic probe technique (TaqMan PCR) to the detection of Enterococcus spp. and Escherichia coli in water samples. J. Microbiol. Methods 2003, 52, 123–131. [Google Scholar]
- Rinttila, T.; Kassinen, A.; Malinen, E.; Krogius, L.; Palva, A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol 2004, 97, 1166–1177. [Google Scholar]
- Bartosch, S.; Fite, A.; Macfarlane, G.T.; McMurdo, M.E. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol 2004, 70, 3575–3581. [Google Scholar]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29, e45. [Google Scholar]
- SAS Institute, The SAS System for Windows, NT Version 9.1; SAS Inst. Inc.; Cary, NC, USA, 2001.
Absolute | Relative | ΔΔCt | Pfaffl equation | |
---|---|---|---|---|
Absolute | 1 | 0.90353 *** | 0.50829 *** | 0.58 |
Relative | 1 | 0.5541 *** | 0.68 | |
ΔΔCt | 1 | 0.83 | ||
Pfaffl equation | 1 |
Absolute | Relative | ΔΔCt | Pfaffl equation | |
---|---|---|---|---|
Lactobacilli | ||||
Absolute | 1 | 0.89234 *** | 0.73279 *** | 0.92 *** |
Relative | 1 | 0.74956 *** | 1.00 *** | |
ΔΔCt | 1 | 0.75 *** | ||
Pfaffl equation | 1 | |||
Escherichia Coli | ||||
Absolute | 1 | 0.9671 *** | 0.8779 *** | 0.97 *** |
Relative | 1 | 0.89296 *** | 1.00 *** | |
ΔΔCt | 1 | 0.88 *** | ||
Pfaffl equation | 1 | |||
Enterococcus genus | ||||
Absolute | 1 | 0.75135 *** | 0.786604 *** | 0.79 *** |
Relative | 1 | 0.813478 *** | 1.0 *** | |
Delta | 1 | 0.83 *** | ||
Pfaffl equation | 1 | |||
Enterobacteriaceae | ||||
Absolute | 1 | 0.91871 *** | 0.81444 *** | 0.92 *** |
Relative | 1 | 0.88137 *** | 1.00 *** | |
ΔΔCt | 1 | 0.88 *** | ||
Pfaffl equation | 1 |
Absolute | Relative | ΔΔCt | Pfaffl equation | |
---|---|---|---|---|
Control diet plus Biomos | ||||
Absolute | 1 | 0.94776 *** | 0.60564 *** | NS |
Relative | 1 | 0.57425 *** | NS | |
ΔΔCt | 1 | NS | ||
Pfaffl equation | 1 | |||
Enzyme treated PKE | ||||
Absolute | 1 | 0.87717 *** | 0.43018 * | 0.66 *** |
Relative | 1 | 0.49445 *** | 0.73 *** | |
ΔΔCt | 1 | 0.82 *** | ||
Pfaffl equation | 1 | |||
Low shell PKE | ||||
Absolute | 1 | 0.82177 *** | NS | NS |
Relative | 1 | NS | NS | |
ΔΔCt | 1 | 0.85 *** | ||
Pfaffl equation | 1 | |||
Enzyme treated low shell PKE | ||||
Absolute | 1 | 0.96891 *** | 0.69688 *** | 0.86 *** |
Relative | 1 | 0.70467 *** | 0.90 *** | |
ΔΔCt | 1 | 0.78 *** | ||
Pfaffl equation | 1 | |||
Normal PKE | ||||
Absolute | 1 | 0.74926 *** | 0.59179 *** | 0.56 *** |
Relative | 1 | 0.72884 *** | 0.89 *** | |
ΔΔCt | 1 | 0.71 *** | ||
Pfaffl equation | 1 |
Lactobacilli | Escherichia Coli | Enterococcus genus | Enterobacteriaceae family | |
---|---|---|---|---|
Absolute | ||||
Lactobacilli | 1 | NS | 0.50069 ** | NS |
Escherichia Coli | 1 | NS | 0.8389 ** | |
Enterococcus genus | 1 | NS | ||
Enterobacteriaceae family | 1 | |||
Relative | ||||
Lactobacilli | 1 | NS | 0.37394 * | NS |
Escherichia Coli | 1 | NS | 0.91656 ** | |
Enterococcus genus | 1 | NS | ||
Enterobacteriaceae family | 1 | |||
ΔΔCt | ||||
Lactobacilli | 1 | NS | NS | NS |
Escherichia Coli | 1 | NS | 0.94177 ** | |
Enterococcus genus | 1 | NS | ||
Enterobacteriaceae family | 1 | |||
Pfaffl equation | ||||
Lactobacilli | 1 | NS | 0.37 * | NS |
Escherichia Coli | 1 | NS | 0.91 *** | |
Enterococcus genus | 1 | NS | ||
Enterobacteriaceae family | 1 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Navidshad, B.; Liang, J.B.; Jahromi, M.F. Correlation Coefficients Between Different Methods of Expressing Bacterial Quantification Using Real Time PCR. Int. J. Mol. Sci. 2012, 13, 2119-2132. https://doi.org/10.3390/ijms13022119
Navidshad B, Liang JB, Jahromi MF. Correlation Coefficients Between Different Methods of Expressing Bacterial Quantification Using Real Time PCR. International Journal of Molecular Sciences. 2012; 13(2):2119-2132. https://doi.org/10.3390/ijms13022119
Chicago/Turabian StyleNavidshad, Bahman, Juan Boo Liang, and Mohammad Faseleh Jahromi. 2012. "Correlation Coefficients Between Different Methods of Expressing Bacterial Quantification Using Real Time PCR" International Journal of Molecular Sciences 13, no. 2: 2119-2132. https://doi.org/10.3390/ijms13022119
APA StyleNavidshad, B., Liang, J. B., & Jahromi, M. F. (2012). Correlation Coefficients Between Different Methods of Expressing Bacterial Quantification Using Real Time PCR. International Journal of Molecular Sciences, 13(2), 2119-2132. https://doi.org/10.3390/ijms13022119