On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness
Abstract
:1. Introduction
2. Electrophilicity Equalization Principle
3. Method of Computation
4. Results and Discussion
5. Conclusion
References
- Chattaraj, P.K.; Maiti, B.; Sarkar, U. Philicity: A unified treatment of chemical reactivity and selectivity. J. Phys. Chem. A 2003, 107, 4973–4975. [Google Scholar]
- Pérez, P. Relationship between super electrophilicity and the electrophilicity index of isolated species. J. Org. Chem 2004, 69, 5048–5053. [Google Scholar]
- Chattaraj, P.K.; Sarkar, U.; Roy, D.R. Electrophilicity index. Chem. Rev 2006, 106, 2065–2091. [Google Scholar]
- Campodónico, P.R.; Aizman, A.; Contreras, R. Empirical scale of nucleophilicity for substituted pyridines. Chem. Phys. Lett 2006, 422, 204–209. [Google Scholar]
- de Vleeschouwer, F.; van Speybroeck, V.; Waroquier, M.; Geerlings, P.; de Proft, F. Electrophilicity and nucleophilicity index for radicals. Org. Lett 2007, 9, 2721–2724. [Google Scholar]
- Padmanabhan, J.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P.K. Electrophilicity-based charge transfer descriptor. J. Phys. Chem. A 2007, 111, 1358–1361. [Google Scholar]
- Noorizadeh, S.; Shakerzadeh, E. A new scale of electronegativity based on electrophilicity index. J. Phys. Chem. A 2008, 112, 3486–3491. [Google Scholar]
- Chattaraj, P.K.; Giri, S.; Duley, S. Electrophilicity equalization principle. J. Phys. Chem. Lett 2010, 1, 1064–1067. [Google Scholar]
- Chattaraj, P.K.; Duley, S. Electron affinity, electronegativity, and electrophilicity of atoms and ions. J. Chem. Eng. Data 2010, 55, 1882–1886. [Google Scholar]
- Parr, R.G.; von Szentpaly, L.; Liu, S. Electrophilicity index. J. Am. Chem. Soc 1999, 121, 1922–1924. [Google Scholar]
- Maynard, A.T.; Huang, M.; Rice, W.G.; Covell, D.G. Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc. Natl. Acad. Sci. USA 1998, 95, 11578–11583. [Google Scholar]
- Liu, S.B. Electrophilicity. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P.K., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2009; p. 179. [Google Scholar]
- Ingold, C.K. Principles of an electronic theory of organic reactions. Chem. Rev 1934, 15, 225–274. [Google Scholar]
- Geerlings, P.; de Proft, F.; Langenaeker, W. Conceptual density functional theory. Chem. Rev 2003, 103, 1793–1873. [Google Scholar]
- Gazquez, J.L. Perspectives on the density functional theory of chemical reactivity. J. Mex. Chem. Soc 2008, 52, 3–10. [Google Scholar]
- Chermette, H. Chemical reactivity indexes in density functional theory. J. Comput. Chem 1999, 20, 129–154. [Google Scholar]
- Ayers, P.W.; Anderson, J.S.M.; Bartolotti, L.J. Perturbative perspectives on the chemical reaction prediction problem. Int. J. Quantum Chem 2005, 101, 520–534. [Google Scholar]
- Liu, S.B. Conceptual density functional theory and some recent developments. Acta Phys. Chim. Sin 2009, 25, 590–600. [Google Scholar]
- Mayr, H.; Patz, M. Scales of nucleophilicity and electrophilicity: A system for ordering polar organic and organometallic reactions. Angew. Chem. Int. Ed. Engl 1994, 33, 938–957. [Google Scholar]
- Legon, A.C.; Millen, D.J. Hydrogen bonding as a probe of electron densities: Limiting gas-phase nucleophilicities and electrophilicities of B and HX. J. Am. Chem. Soc 1987, 109, 356–358. [Google Scholar]
- Chaquin, P. Absolute electronegativity and hardness: An analogy with classical electrostatics suggests an interpretation of the Parr ‘electrophilicity index’ as a ‘global energy index’ leading to the ‘minimum electrophilicity principle’. Chem. Phys. Lett 2008, 458, 231–234. [Google Scholar]
- Gazquez, J.L. Perspectives on the density functional theory of chemical reactivity. J. Mex. Chem. Soc 2008, 52, 3–10. [Google Scholar]
- Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys 1978, 68, 3801–3806. [Google Scholar]
- Parr, R.G.; Pearson, R.G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc 1983, 105, 7512–7516. [Google Scholar]
- Ayers, P.W.; Parr, R.G. Beyond electronegativity and local hardness: Higher-order equalization criteria for determination of a ground-state electron density. J. Chem. Phys 2008, 129, 054111–054117. [Google Scholar]
- Ayers, P.W.; Parr, R.G. Local hardness equalization: Exploiting the ambiguity. J. Chem. Phys 2008, 128, 184108–184115. [Google Scholar]
- Atkins, P.W. QUANTA: A Handbook of Concepts, 2nd ed.; Oxford University Press: Cary, NC, USA, 1991. [Google Scholar]
- Pillar, F.L. Elementary Quantum Chemistry; McGraw Hill: New York, NY, USA, 1968. [Google Scholar]
- Plakhutin, B.N.; Gorelik, E.V.; Breslavskaya, N.N. Koopmans’ theorem in the ROHF method: Canonical form for the Hartree-Fock hamiltonian. J. Chem. Phys 2006, 125, 204110–204119. [Google Scholar]
- Plakhutin, B.N.; Davidson, E.R. Koopmans’ theorem in the restricted open-shell Hartree-Fock method. 1. A variational approach. J. Phys. Chem. A 2009, 113, 12386–12395. [Google Scholar]
- Ghosh, D.C.; Islam, N. Whether electronegativity and hardness are manifest two different descriptors of the one and the same property of atoms—A quest. Int. J. Quantum Chem 2011, 111, 40–51. [Google Scholar]
- Ghosh, D.C.; Islam, N. Determination of some descriptors of the real world working on the identity of the basic concept and the origin of the electronegativity and the global hardness of atoms, part 1: Evaluation of internuclear bond distance of some heteronuclear diatomics. Int. J. Quantum Chem 2011, 111, 1942–1949. [Google Scholar]
- Ghosh, D.C.; Islam, N. Determination of some descriptors of the real world working on the identity of the basic concept and the origin of the electronegativity and the global hardness of atoms. Part 2: Computation of the dipole moments of some heteronuclear diatomics. Int. J. Quantum Chem 2011, 111, 2802–2810. [Google Scholar]
- Ghosh, D.C.; Islam, N. Whether there is a hardness equalization principle analogous to the electronegativity equalization principle—A quest. Int. J. Quantum Chem 2011, 111, 1961–1969. [Google Scholar]
- Ghosh, D.C.; Islam, N. A quest for the algorithm for evaluating the molecular hardness. Int. J. Quantum Chem 2011, 111, 1931–1941. [Google Scholar]
- Ghosh, D.C.; Islam, N. Charge transfer associated with the physical process of hardness equalization and the chemical event of the molecule formation and the dipole moments. Int. J. Quantum Chem 2011, 111, 2811–2819. [Google Scholar]
- Islam, N.; Ghosh, D.C. A new algorithm for the evaluation of equilibrium internuclear bond distance of heteronuclear diatomic molecule based on the hardness equalization principle. Eur. Phys. J. D 2011, 61, 341–348. [Google Scholar]
- Islam, N.; Ghosh, D.C. A new radial dependent electrostatic algorithm for the evaluation of the electrophilicity indices of the atoms. Int. J. Quantum Chem 2011, 111, 3556–3564. [Google Scholar]
- Putz, M.V. Electronegativity, quantum observable. Int. J. Quantum Chem 2009, 109, 733–738. [Google Scholar]
- Putz, M.V.; Russo, N.; Sicilia, E. About the mulliken electronegativity in DFT. Theor. Chem. Acc 2005, 114, 38–45. [Google Scholar]
- Putz, M.V. Systematic formulations for electronegativity and hardness and their atomic scales within density functional softness theory. Int. J. Quantum Chem 2006, 106, 361–389. [Google Scholar]
- Putz, M.V.; Russo, N.; Sicilia, E. Atomic radii scale and related size properties from density functional electronegativity formulation. J. Phys. Chem. A 2003, 107, 5461–5465. [Google Scholar]
- Putz, M.V. Semi classical electronegativity and chemical hardness. J. Theor. Comput. Chem 2007, 6, 33–47. [Google Scholar]
- Putz, M.V.; Russo, N.; Sicilia, E. On the application of the HSAB principle through the use of improved computational schemes for chemical hardness evaluation. J. Comput. Chem 2004, 25, 994–1003. [Google Scholar]
- Tarko, L.; Putz, M.V. On electronegativity and chemical hardness relationships with aromaticity. J. Math. Chem 2010, 47, 487–495. [Google Scholar]
- Putz, M.V. Chemical action and chemical bonding. J. Mol. Struct. (Theochem.) 2009, 900, 64–70. [Google Scholar]
- Putz, M.V. On absolute aromaticity within electronegativity and chemical hardness reactivity pictures. MATCH Commun. Math. Comput. Chem 2010, 64, 391–418. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lecture on Physics; Addison-Wesley: Boston, MA, USA, 1964; Volume 1. [Google Scholar]
- Ghosh, D.C.; Islam, N. Semi-empirical evaluation of the global hardness of the atoms of 103 elements of the periodic table using the most probable radii as their size descriptors. Int. J. Quantum Chem 2009, 110, 1206–1213. [Google Scholar]
- Chamorro, E.; Chattaraj, P.K.; Fuentealba, P. Variation of the electrophilicity index along the reaction path. J. Phys. Chem. A 2003, 107, 7068–7072. [Google Scholar]
- Parthasarathi, R.; Elango, M.; Subramanian, V.; Chattaraj, P.K. Variation of electrophilicity during molecular vibrations and internal rotations. Theor. Chem. Acc 2005, 113, 257–266. [Google Scholar]
- Noorizadeh, S. Is there a minimum electrophilicity principle in chemical reactions? Chin. J. Chem 2007, 27, 1439–1444. [Google Scholar]
- Noorizadeh, S.; Shakerzadeh, E. Minimum electrophilicity principle in Lewis acid-base complexes of boron trihalides. J. Mol. Struct. (Theochem.) 2008, 868, 22–26. [Google Scholar]
- Morell, C.; Labet, V.; Grand, A.; Chermette, H. Minimum electrophilicity principle: An analysis based upon the variation of both chemical potential and absolute hardness. Phys. Chem. Chem. Phys 2009, 11, 3417–3423. [Google Scholar]
- Sanderson, R.T. An interpretation of bond lengths and a classification of bonds. Science 1951, 114, 670–672. [Google Scholar]
- Berkowitz, M.; Ghosh, S.K.; Parr, R.G. On the concept of local hardness in chemistry. J. Am. Chem. Soc 1985, 107, 6811–6820. [Google Scholar]
- Ghosh, S.K.; Berkowitz, M.; Parr, R.G. Transcription of ground-state density-functional theory into a local thermodynamics. Proc. Natl. Acad. Sci. USA 1984, 81, 8028–8031. [Google Scholar]
- Datta, D. Geometric mean principle for hardness equalization, a corollary of Sanderson’s geometric mean principle of electronegativity equalization. J. Phys. Chem 1986, 90, 4216–4217. [Google Scholar]
- von Szentpaly, L. Ruling out any electrophilicity equalization principle. J. Phys.Chem. A 2011, 115, 8528–8531. [Google Scholar]
- Chattaraj, P.K.; Giri, S.; Duley, S. Comment on Ruling out any electrophilicity equalization Principle. J. Phys. Chem. Soc. A 2011, 115. doi.org/10.1021/jp208541x.. [Google Scholar]
- von Szentpaly, L. Reply to comment on ruling out any electrophilicity equalization principle. J. Phys. Chem. A 2012, 116. doi.org/10.1021/jp210486g.. [Google Scholar]
- Murphy, L.R.; Meek, T.L.; Allred, A.L.; Allen, L.C. evaluation and test of pauling’s electronegativity scale. J. Phys. Chem. A 2000, 104, 5867–5871. [Google Scholar]
- Nalewajski, R.F.; Parr, R.G. Information theory, atoms in molecules, and molecular similarity. Proc. Natl. Acad. Sci. USA 2000, 97, 8879–8882. [Google Scholar]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev 1991, 91, 893–928. [Google Scholar]
- Hyperchem, Version 8.0.6; Hypercube: Gainesville, FL, USA, 2008.
- Yang, W.; Lee, C.; Ghosh, S.K. Molecular softness as the average of atomic softnesses: Companion principle to the geometric mean principle for electronegativity equalization. J. Phys. Chem 1985, 89, 5412–5414. [Google Scholar]
- Ghosh, D.C.; Biswas, R.; Chakraborty, T.; Islam, N.; Rajak, S.K. The wave mechanical evaluation of the absolute radii of atoms. J. Mol. Struct. (Theochem.) 2008, 865, 60–67. [Google Scholar]
Molecule | ω in eV (Present work) | ω in eV (Parr et al.’s work) | ω in eV (Chattaraj et al.’s work) | SD in % (Parr et al.’s work vs. Present work) | SD in % (Parr et al.’s work vs. Chattaraj et al.’s work) |
---|---|---|---|---|---|
LiF | 2.796056041 | 2.411008 | 1.66 | 15.97041739 | 31.14913 |
LiCl | 2.374237241 | 2.083325 | 1.551 | 13.96384342 | 25.5517 |
LiBr | 2.230052794 | 1.776961 | 1.497 | 25.49812821 | 15.75504 |
NaF | 2.515173699 | 2.263738 | 1.578 | 11.10710246 | 30.29229 |
NaCl | 2.168594646 | 2.782726 | 1.551 | 22.06941517 | 44.26329 |
NaBr | 2.047669294 | 1.95519 | 1.497 | 4.729938983 | 23.43455 |
KF | 2.118550154 | 2.063906 | 1.415 | 2.64760866 | 31.44068 |
KCl | 1.867196746 | 2.285827 | 1.388 | 18.31417049 | 39.27799 |
KBr | 1.776848516 | 2.002401 | 1.361 | 11.26410165 | 32.0316 |
Molecule | ω in eV (Present work) | ω in eV (Parr et al.’s work) | SD in % (Parr’s work vs. Present work) |
---|---|---|---|
CS2 | 1.5457 | 1.69 | 8.538461538 |
COS | 1.86309 | 1.58 | 17.91708861 |
SO2 | 2.05525 | 1.985 | 3.539042821 |
N2O | 2.39121 | 2.257 | 5.946389012 |
PCl3 | 1.48275 | 1.574 | 5.797331639 |
POCl3 | 1.62653 | 2.048 | 20.57958984 |
SO3 | 2.17862 | 2.168 | 0.489852399 |
CF3I | 2.06933 | 1.857 | 11.43403339 |
CF3Br | 2.18716 | 1.857 | 17.77921379 |
SF6 | 2.60898 | 2.219 | 17.57458315 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Islam, N.; Ghosh, D.C. On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness. Int. J. Mol. Sci. 2012, 13, 2160-2175. https://doi.org/10.3390/ijms13022160
Islam N, Ghosh DC. On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness. International Journal of Molecular Sciences. 2012; 13(2):2160-2175. https://doi.org/10.3390/ijms13022160
Chicago/Turabian StyleIslam, Nazmul, and Dulal C. Ghosh. 2012. "On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness" International Journal of Molecular Sciences 13, no. 2: 2160-2175. https://doi.org/10.3390/ijms13022160
APA StyleIslam, N., & Ghosh, D. C. (2012). On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness. International Journal of Molecular Sciences, 13(2), 2160-2175. https://doi.org/10.3390/ijms13022160