Major Phenolic Compounds, Antioxidant Capacity and Antidiabetic Potential of Rice Bean (Vigna umbellata L.) in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction
2.3. Determination of Total Phenolic Content (TPC)
2.4. Determination of Total Flavonoid Content (TFC)
2.5. UPLC-MS Analysis of Individual Phenolic Acids
2.6. Evaluation of Total Antioxidant Activity Using the DPPH (1,1-Diphenyl-2-picryl hydrazyl) Method
2.7. Measurement of Alpha-Glucosidase Inhibition Activity
2.8. Evaluation of Glycation End Product (AGE) Inhibition Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Content
3.2. Antioxidant Activity
3.3. Alpha-Glucosidase Inhibition Activities
3.4. Advanced Glycation End products Formation Inhibition Activities
4. Conclusion
Acknowledgements
References
- Rice-Evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plantderived polyphenolic flavonoids. Free Radic. Res 1995, 22, 375–283. [Google Scholar]
- Luiz, M.; Biasutti, A.; Garcia, N.A. Micellar effect on the scavenging of singlet molecular oxygen by hydroxybenzenes. Redox Rep 2002, 7, 23–28. [Google Scholar]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Effect of α-lipoic lipoic acid on biomarkers of oxidative stress in streptozotoc in-induced diabetic rats. J. Nutr. Biochem 2003, 14, 288–294. [Google Scholar]
- Jin, L.; Xue, H.Y.; Jin, L.J.; Li, S.Y.; Xu, Y.P. Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J. Clin. Pharmacol 2008, 582, 162–167. [Google Scholar]
- Krentz, A.J.; Bailey, C.J. Oral antidiabetic agents current role in type 2 diabetes mellitus. Drugs 2005, 65, 385–411. [Google Scholar]
- Lebovitz, H.E. Postprandial hyperglycemic state: Importance and consequences. Dlabetes Res. Clin. Pract 1998, 40, S27–S28. [Google Scholar]
- Puls, W.; Keup, U.; Krause, H.P.; Thomas, G.; Hofmeister, F. Glucosidase inhibition: A new approach to the treatment of diabetes, obesity, and hyperlipoproteinaemia. Naturwissenschaften 1977, 64, 536–537. [Google Scholar]
- Lin, C.Y.; Tsai, S.; Huang, C.; Yin, M. Antiglycative effects of protocatechuic acid in the kidneys of diabetic mice. J. Agric. Food Chem 2011, 59, 5117–5124. [Google Scholar]
- Maekawa, K.; Tanimoto, T.; Okada, S.; Suzuki, T.; Suzuki, T.; Yabe-Nishimura, C. Expression of aldose reductase and sorbitol dehydrogenase genes in Schwann cells isolated from rat: Effects of high glucose and osmotic stress. Mol. Brain Res 2001, 87, 251–256. [Google Scholar]
- Bolivar, A.; Luis, C.Z. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem 2010, 119, 1485–1490. [Google Scholar]
- Saikia, P.; Sarkar, C.R.; Borua, I. Chemical composition, antinutritional factors and effect of cooking on nutritional quality of rice bean [Vigna umbellate (Thunb; Ohwi and Ohashi)]. Food Chem 1999, 67, 347–352. [Google Scholar]
- Yao, Y.; Cheng, X.Z.; Wang, L.X.; Wang, S.H.; Ren, G.X. Biological potential of sixteen legumes in China. Int. J. Mol. Sci 2011, 12, 7048–7058. [Google Scholar]
- Sadana, B.; Hira, C.K.; Singla, N.; Grewal, H. Nutritional evaluation of rice bean (Vigna umbellata) strains. J. Food. Sci. Tech. Mysore 2006, 43, 516–518. [Google Scholar]
- Zhou, S.; Fang, Z.; Lü, Y.; Chen, J.; Liu, D.; Ye, X. Phenolics and antioxidant properties of bayberry (Myrica rubra Sieb. et Zucc.) pomace. Food Chem 2009, 112, 394–399. [Google Scholar]
- Yao, Y.; Ren, G.X. Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT-Food Sci. Technol 2011, 44, 181–185. [Google Scholar]
- Zou, Y.P.; Lu, Y.H.; Wei, D.Z. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J. Agric. Food Chem 2004, 52, 5032–5039. [Google Scholar]
- Yao, Y.; Sang, W.; Zhou, M.J.; Ren, G.X. Phenolic composition and antioxidant activities of 11 celery cultivars. J. Food Sci. 2010, 75, C9–C13. [Google Scholar]
- Yao, Y.; Sang, W.; Zhou, M.J.; Ren, G.X. Antioxidant and α-glucosidase inhibitory activity of colored grains in China. J. Agric. Food Chem 2010, 58, 770–774. [Google Scholar]
- Peng, X.F.; Zheng, Z.P.; Cheng, K.W.; Shan, F.; Ren, G.X.; Chen, F.; Wang, M.F. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem 2008, 106, 475–481. [Google Scholar]
- Lin, P.Y.; Lai, H.M. Bioactive compounds in legumes and their germinated products. J. Agric. Food Chem 2006, 54, 3807–3814. [Google Scholar]
- Isemura, T.; Tomooka, N.; Kaga, A.; Vaughan, D.A. Comparison of the pattern of crop domestication between two asian beans, adzuki bean (Vigna angularis) and rice bean (V. umbellata). Jpn. Agric. Res. Q 2011, 45, 23–30. [Google Scholar]
- Kaga, A.; Ishii, T.; Tsukimoto, K.; Tokoro, E.; Kamijima, O. Comparative molecular mapping in Ceratotropis species using an interspecific cross between adzuki bean (Vigna angularis) and rice bean (V. umbellata). Theor. Appl. Genet 2000, 100, 207–213. [Google Scholar]
- Kim, D.O.; Lee, C.Y. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci 2004, 44, 253–273. [Google Scholar]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem 2005, 53, 7749–7759. [Google Scholar]
- Lois, R. Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Ambidopsis thaliana L. Planta 1994, 194, 498–503. [Google Scholar]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 2006, 94, 550–557. [Google Scholar]
- Chou, S.; Chao, W.; Chung, Y. Antioxidative activity and safety of 50% ethanolic red bean extract (Phaseolus radiatus L. var. Aurea). J. Food Sci 2003, 68, 21–25. [Google Scholar]
- Mccue, P.; Kwon, Y.I.; Shetty, K. Anti-amylase, antiglucosidase and anti-angiotensin I-converting enzyme potential of selected foods. J. Food Biochem 2005, 29, 278–294. [Google Scholar]
- Itoh, T.; Kita, N.; Kurokawa, Y.; Kobayashi, M.; Horio, F.; Furuichi, Y. Suppressive effect of a hot water extract of rice beans (Vigna angularis) on hyperglycemia after sucrose loading in mice and diabetic rats. Biosci. Biotech. Biochem 2004, 68, 2421–2416. [Google Scholar]
- Gordon, J.M.; Derek, S. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 2005, 23, 189–195. [Google Scholar]
- Mccue, P.; Kwon, Y.I.; Shetty, K. Anti-amylase, antiglucosidase and anti-angiotensin I-converting enzyme potential of selected foods. J. Food Biochem 2005, 29, 278–294. [Google Scholar]
p-Coumaric acid | Ferulic acid | Sinapic acid | Catechin | Epicatechin | Vitexin | Isovitexin | Quercetin | Total | |
---|---|---|---|---|---|---|---|---|---|
D0000318 | 5.67 ± 0.49 i | 11.57 ± 0.96 j | nd | 53.48 ± 3.29 f,g | nd | 26.46 ± 1.92 e,f | 7.45 ± 0.68 g | 18.46 ± 1.25 d | 123.09 ± 10.35 f |
D0000708 | 17.84 ± 1.28 e,f,g | 13.20 ± 1.32 j | 17.21 ± 1.24 d | 142.19 ± 8.96 b | 4.37 ± 0.48 d | 30.68 ± 1.84 e | nd | 27.15 ± 2.13 b,c | 252.64 ± 13.62 e |
D0000294 | 16.58 ± 1.48 f,g | 28.15 ± 1.45 f,g | 19.68 ± 1.53 c,d | 78.51 ± 5.47 d,e | 6.89 ± 0.96 c | nd | 0.43 ± 0.03 h | 10.77 ± 0.98 e | 150.24 ± 17.28 f |
D0000874 | 31.25 ± 2.41 b | 49.71 ± 2.48 c | 21.35 ± 1.64 c | 132.68 ± 11.20 b | 11.24 ± 1.04 a | 33.13 ± 1.64 e | 27.08 ± 1.59 e,f | 26.53 ± 1.63 b,c | 332.97 ± 14.54 d |
D0000955 | 21.74 ± 1.92 d,e | 25.30 ± 1.93 g,h | 17.33 ± 1.38 d | 69.33 ± 5.42 e,f | 1.35 ± 0.24 e | 30.64 ± 1.88 e | 118.04 ± 15.75 d | 35.46 ± 2.35 a | 219.19 ± 21.32 e |
D0000958 | 25.32 ± 1.47 c,d | 31.48 ± 2.10 e,f | 18.29 ± 2.53 c,d | 182.64 ± 12.03 a | 5.49 ± 0.79 d | 40.16 ± 1.29 e | nd | 29.31 ± 2.47 b | 332.69 ± 25.67 d |
D0000699 | 20.09 ± 2.21 e,f | 54.63 ± 1.48 b | 25.32 ± 1.29 b | 89.72 ± 4.12 c,d | 7.13 ± 0.65 c | 192.53 ± 16.68 c | 105.34 ± 8.74 d | 12.35 ± 1.08 e | 507.11 ± 19.44 c |
D0000090 | 39.72 ± 2.69 a | 78.32 ± 3.59 a | 27.35 ± 1.97 b | 68.53 ± 3.95 e,f | 2.29 ± 0.11 e | 401.84 ± 21.57 a | 190.29 ± 3.69 b | 35.41 ± 2.84 a | 843.75 ± 30.15 a |
D0001152 | 28.15 ± 2.45 b,c | 19.65 ± 1.29 i | 8.42 ± 0.86 e | 43.59 ± 6.87 g | nd | 250.71 ± 17.62 b | 271.97 ± 9.98 a | 24.63 ± 2.36 c | 647.12 ± 16.32 b |
D0000310 | 21.36 ± 1.40 d,e | 21.08 ± 1.46 h,i | 31.08 ± 1.98 a | 175.39 ± 14.2 a,1 | 9.77 ± 0.72 b | 186.39 ± 18.19 c | 33.27 ± 1.08 e | 17.1 ± 1.28 d | 495.44 ± 19.50 c |
D0000329 | 19.73 ± 2.10 e,f | 41.15 ± 2.21 d | 11.27 ± 1.27 e | 54.28 ± 8.60 f,g | 4.68 ± 0.38 d | nd | 23.99 ± 1.31 e,f | nd | 155.10 ± 14.29 f |
D0000809 | 15.40 ± 1.07 g,h | 48.07 ± 2.08 c | 8.16 ± 0.75 e | 24.76 ± 1.29 h | 7.10 ± 0.56 c | 73.81 ± 2.81 d | 18.85 ± 0.46 f,g | 30.54 ± 2.69 b | 226.69 ± 28.17 e |
D0000651 | 11.29 ± 1.14 h | 35.86 ± 2.74 e | 8.41 ± 0.86 e | 101.17 ± 8.39 c | nd | 232.92 ± 17.16 b | 143.11 ± 5.51 c | nd | 232.76 ± 15.46 e |
TPC | TFC | |
---|---|---|
D0000318 | 3.27 ± 0.04 h | 55.95 ± 11.16 h |
D0000708 | 5.02 ± 0.14 c,d | 211.76 ± 25.53 c,d |
D0000294 | 5.14 ± 0.09 c,d | 209.75 ± 22.79 c,d |
D0000874 | 6.02 ± 0.25 a,b | 294.52 ± 22.05 a,b |
D0000955 | 3.92 ± 0.13 g,f,h | 63.99 ± 37.44 g,h |
D0000958 | 5.52 ± 0.24 d,e,f | 167.69 ± 12.89 d,e |
D0000699 | 5.44 ± 0.15 b,c | 254.83 ± 23.96 b,c |
D0000090 | 6.43 ± 0.25 a | 320.39 ± 31.77 a |
D0001152 | 4.28 ± 0.10 e,f,g | 146.20 ± 23.76 e,f |
D0000310 | 4.95 ± 0.15 c,d,e | 218.80 ± 12.95 c,d |
D0000329 | 4.11 ± 0.14 e,f,g | 140.35 ± 13.78 e,f |
D0000809 | 3.75 ± 0.04 g,h | 115.84 ± 13.32 e,f,g |
D0000651 | 3.89 ± 0.14 g,f,h | 112.00 ± 29.97 f,g |
DPPH | α-Glucosidase inhibition(%) | BSA-GLUCOSE | BSA-MGO | |
---|---|---|---|---|
D0000318 | 39.87 ± 1.37 e | 52.49 ± 1.88 e,f | 36.15 ± 0.52 a | 34.11 ± 0.59 j |
D0000708 | 45.76 ± 1.42 a,b | 61.82 ± 2.68 b,c | 61.42 ± 0.04 f | 58.82 ± 1.48 c,d |
D0000294 | 41.08 ± 2.11 c,d,e | 66.06 ± 2.79 a,b | 60.86 ± 0.70 f | 48.28 ± 1.72 f |
D0000874 | 46.40 ± 2.18 a | 60.01 ± 3.51 c,d | 71.63 ± 0.73 b | 55.32 ± 1.27 e |
D0000955 | 40.87 ± 0.99 c,d,e | 55.45 ± 2.46 d,e | 57.27 ± 0.68 g | 45.96 ± 1.16 f,g |
D0000958 | 43.71 ± 1.40 a,b,c,d | 49.11 ± 2.65 f,g | 55.02 ± 0.34 h | 42.10 ± 1.67 I,h |
D0000699 | 44.55 ± 1.34 a,b,c | 47.16 ± 2.49 f,g | 69.20 ± 0.28 c | 59.70 ± 1.77 c |
D0000090 | 46.20 ± 1.68 a | 46.69 ± 3.71 f,g | 70.34 ± 0.51 c | 72.06 ± 0.85 a |
D0001152 | 45.24 ± 2.09 a,b | 60.06 ± 2.70 c,d | 75.75 ± 0.33 a | 66.23 ± 0.87 b |
D0000310 | 46.29 ± 2.03 a | 68.71 ± 2.19 a | 65.54 ± 0.47 d | 57.25 ± 0.45 c,d,e |
D0000329 | 42.87 ± 1.61 a,b,c,d,e | 48.68 ± 2.15 f,g | 61.91 ± 0.44 f | 43.65 ± 0.61 g,h |
D0000809 | 42.13 ± 1.45 b,c,d,e | 45.23 ± 2.28 g | 53.34 ± 0.19 i | 56.98 ± 0.69 d,e |
D0000651 | 40.14 ± 1.58 d,e | 44.32 ± 2.12 g | 63.51 ± 0.84 e | 40.47 ± 0.41 i |
TPC | TFC | DPPH | α-Glucosidase inhition | BSA-Glucose | BSA-MGO | |
---|---|---|---|---|---|---|
TP | 0.612 a | 0.617 a | 0.707 b | −0.024 | 0.663 a | 0.825 b |
TPC | 0.980 b | 0.750 b | 0.216 | 0.668 a | 0.670 a | |
TFC | 0.792 b | 0.200 | 0.667 a | 0.684 b | ||
DPPH | 0.323 | 0.697 | 0.778 b | |||
α-Glucosidase inhibition | 0.193 | 0.156 | ||||
BSA-Glucose | 0.728 b |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yao, Y.; Cheng, X.-Z.; Wang, L.-X.; Wang, S.-H.; Ren, G. Major Phenolic Compounds, Antioxidant Capacity and Antidiabetic Potential of Rice Bean (Vigna umbellata L.) in China. Int. J. Mol. Sci. 2012, 13, 2707-2716. https://doi.org/10.3390/ijms13032707
Yao Y, Cheng X-Z, Wang L-X, Wang S-H, Ren G. Major Phenolic Compounds, Antioxidant Capacity and Antidiabetic Potential of Rice Bean (Vigna umbellata L.) in China. International Journal of Molecular Sciences. 2012; 13(3):2707-2716. https://doi.org/10.3390/ijms13032707
Chicago/Turabian StyleYao, Yang, Xu-Zhen Cheng, Li-Xia Wang, Su-Hua Wang, and Guixing Ren. 2012. "Major Phenolic Compounds, Antioxidant Capacity and Antidiabetic Potential of Rice Bean (Vigna umbellata L.) in China" International Journal of Molecular Sciences 13, no. 3: 2707-2716. https://doi.org/10.3390/ijms13032707
APA StyleYao, Y., Cheng, X. -Z., Wang, L. -X., Wang, S. -H., & Ren, G. (2012). Major Phenolic Compounds, Antioxidant Capacity and Antidiabetic Potential of Rice Bean (Vigna umbellata L.) in China. International Journal of Molecular Sciences, 13(3), 2707-2716. https://doi.org/10.3390/ijms13032707