Phytochemicals Analysis and Medicinal Potentials of Hydroalcoholic Extract from Curtisia dentata (Burm.f) C.A. Sm Stem Bark
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Components
2.2. Ferric Reducing Power Activity
2.3. DPPH Radical Scavenging Activity
2.4. ABTS Radical Scavenging Activity
2.5. Nitric Oxide Scavenging Activity
2.6. Hydrogen Peroxide Scavenging Capacity
2.7. Lipid Peroxidation
2.8. Antibacterial Activity
2.9. Brine Shrimp Lethality Test
3. Material and Methods
3.1. Plant Collection and Extract Preparation
3.2. Bacterial Strains
3.3. Minimum Inhibitory Concentration (MIC) Determination of Bacteria
3.4. Determination of Total Phenols
3.5. Determination of Flavonoids
3.6. Determination of Tannin Contents
3.7. Determination of Alkaloids Contents
3.8. Determination of Saponins Content
3.9. Ferric Reducing Power
3.10. DPPH Radical Scavenging Activity
3.11. ABTS Radical Scavenging Activity
3.12. Nitric Oxide Scavenging Activity
3.13. Assessment of Lipid Peroxidation
3.14. Brine Shrimp Lethality
3.15. Statistical Analysis
4. Conclusions
Acknowledgement
References
- General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine; World Health Organization: Geneva, Switzerland, 2001.
- Lesley, M.; Hui, W.; Avril, W.; Robin, H.; Minchun, C.; Keith, P. Prevalence of serotypes and molecular epidemiology of streptococcus pneumoniae strains isolated from children in Beijing, China: Identification of two novel multiply-resistant clones. Microb. Drug Resist 2001, 7, 55–63. [Google Scholar]
- Halliwell, B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med 1992, 91, 14–22. [Google Scholar]
- Walter, H.L.; Memory, P.E. Medicinal plants as sources of New Therapeutics. Ann. Mo. Bot. Gard 1995, 82, 16–24. [Google Scholar]
- Oyedemi, S.O.; Bradley, G.; Afolayan, A.J. In vivo and in vitro antioxidant activities of aqueous stem bark extract of Strychnos henningsii (Gilg). Afr. J. Pharm. Pharmacol 2010, 4, 70–78. [Google Scholar]
- Shai, L.J.; McGwa, L.J.; Aderogba, M.A.; Mdee, L.K.; Eloff, J.N. Four pentacyclic triterpenoids with antifungal and antibacterial activity from Curtisia dentata (Burm.f.) C.A. Sm. Leaves. J. Ethnopharmacol 2008, 119, 238–244. [Google Scholar]
- Pujol, J. Nature Africa: The herbalist Handbook: African Flora, Medicinal Plants; Natural Healers Foundation: Durban, South African, 2000. [Google Scholar]
- Dold, A.P.; Cocks, M.L. Traditional veterinary medicine in the Alice district of the Eastern Cape Province South Africa. S. Afr. J. Sci 2001, 97, 375–379. [Google Scholar]
- Afolayan, A.J.; Mbaebie, B.O. Ethnobotanical study of medicinal plants used as anti-obesity remedies in Nkonkobe Municipality of South Africa. Pharmacog. J 2010, 2, 368–373. [Google Scholar]
- McGaw, L.J.; Jager, A.K.; van Staden, J. Antibacterial, anthelmintic and anti-amoebic activity in South African medicinal plants. J. Ethnopharmacol 2000, 72, 247–263. [Google Scholar]
- Shai, L.J.; McGaw, L.J.; Eloff, J.N. Extracts of the leaves and twigs of the threatened tree Curtisia dentata (Cornaceae) are more active against Candida albicans and other microorganisms than the stem bark extract. S. Afr. J. Bot 2009, 75, 363–366. [Google Scholar]
- Doughari, J.H.; Ndakidemi, P.A.; Human, I.S.; Benade, S. Antimicrobial Susceptibility Profile and Effect of Stem Bark Extracts of Curtisia dentata on Multi-drug Resistant Verotoxic Escherichia coli and Acinetobacter spp. Isolates Obtained from Water and Waste Water Samples. Proceedings of International Conference in Antimicrobial Research (ICAR), Valladolid, Spain, 3–5 November 2010.
- Yokozawa, T.; Oura, H.; Hattori, M.; Iwano, M.; Dohi, K.; Sakanaka, S.; Kim, M. Inhibitory effect of tannin in green tea on the proliferation of mesangial cells. Nephron 1993, 65, 596–600. [Google Scholar]
- Dharmananda, S. Golinuts and the Uses of Tannins in Chinese Medicine. Proceedings of Institute for Traditional Medicine, Portland, OR, USA, 25 September 2003.
- Neumann, U.P.; Berg, T.; Baha, M.; Puhl, G.; Guckelbeger, O.; Langreh, J.M.; Neuhaus, P. Long-term outcome of liver transplant for hepatitis C: A 10 year follow-up. Transplantation 2004, 77, 226–231. [Google Scholar]
- Hodek, P.; Trefil, P.; Stiborova, M. Flavonoids—Potent and versatile biologically active compounds interacting with cytochrome P450. Chem. Biol. Int 2000, 139, 1–21. [Google Scholar]
- Cos, P.; de Bruyne, T.; Hermans, N.; Apers, S.; Berghe, D.V.; Vlietinck, A.J. Proanthocyanidins in health care: Current and new trends. Curr. Med. Chem 2004, 11, 1345–1359. [Google Scholar]
- Fergusion, L.R. Role of plant polyphenols in genomic stability. Mutat. Res 2001, 475, 89–111. [Google Scholar]
- Oyedemi, S.O.; Afolayan, A.J. Antibacterial and antioxidant activities of hydroalcoholic stem bark extract of Schotia latifolia Jacq. Asian Pac. J. Trop. Med 2011, 4, 952–958. [Google Scholar]
- Tural, S.; Koca, I. Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Sci. Hortic 2008, 116, 362–366. [Google Scholar]
- Wang, M.; Li, J.; Rangarajan, M.; Shao, Y.; La Voie, E.J.; Huang, T.; Ho, C. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem 1998, 46, 4869–4873. [Google Scholar]
- Shami, P.J.; Moore, J.O.; Gockerman, J.P.; Hathorn, J.W.; Misukonis, M.A.; Weinberg, J.B. Nitric oxide modulation of the growth and differentiation of freshly isolated acute non-lymphocytic leukemia cells. Leuk. Res 1995, 19, 527–533. [Google Scholar]
- Dharmananda, R. Traces of chloramphenicol in Chinese bee products: Origin, development and resolution. Available online: http://www.itmonline.org/arts/bees.htm accessed on 7 May 2012.
- Rios, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol 2005, 100, 80–84. [Google Scholar]
- Richardson, J.F.; Reith, S. Characterization of a strain of methicillin-resistant Staphylococcus aureus (EMRSA-15) by conventional and molecular methods. J. Hosp. Infect 1993, 25, 45–52. [Google Scholar]
- Cox, R.A.; Conquest, C.; Mallaghan, C.; Marples, R.R. A major outbreak of methicillin-resistant Staphylococcus aureus caused by a new phage-type (EMRSA-16). J. Hosp. Infect 1995, 29, 87–106. [Google Scholar]
- Dulger, B.; Gonuz, A. Antimicrobial activity of some Turkish medicinal plants. J. Biol. Sci 2004, 7, 1559–1562. [Google Scholar]
- Highfield, E.S.; Kemper, K.J. Longwood Herbal Task Force. 1999. Available online: http://www.longwoodherbal.org/willowbark/willow.pdf accessed on 13 July 1999.
- Moshi, M.J.; Mbwambo, Z.H.; Nondo, R.S.O.; Masimba, P.J.; Kamuhabwa, A.; Kapingu, M.C.; Thomas, P.; Richard, M. Evaluation of ethnomedical claims and brine shrimp toxicity of some plants used in Tanzania as traditional medicines. Afr. J. Tradit. Complement. Altern. Med 2006, 3, 48–58. [Google Scholar]
- Kumar, S.; Kumar, V.; Chandrashekhar, M.S. Cytotoxic activity of isolated fractions from methanolic extract of Asystasia dalzelliana leaves by brine shrimp lethality bioassay. Int. J. Pharm. Pharm. Sci 2011, 3, 133–134. [Google Scholar]
- Kaatz, G.W.; Seo, S.M.; Ruble, C.A. Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother 1993, 37, 1086–1094. [Google Scholar]
- Clinical Laboratory Standards Institute (CLSI), Performance for Antimicrobial Susceptibility Testing; Standard M100-S5; National Committee for Clinical Laboratory Standards: Villanova, PA, USA, 1994.
- Zovko, C.; Koncic, M.; Kremwer, D.; Gruz, J.; Strnad, M.; Bisevac, G.; Kosalec, I.; Šamec, D.; Piljac-Žegarac, J.; Karlović, K. Antioxidant and antimicrobial properties of Moltkia petrea (Tratt.) Griseb. Flower, leaf and stem infusions. Food Chem. Toxicol 2010, 48, 1537–1542. [Google Scholar]
- Association of Official Analytical Chemists (AOAC), Official Methods of Analysis, 15th ed; AOAC: Arlington, VA, USA, 1990.
- Harborne, J.B. Phytochemical Methods—A Guide to Modern Techniques of Plant Analysis, 3rd ed; Springer Pvt. Ltd: New Delhi, India, 2005. [Google Scholar]
- Obadoni, B.O.; Ochuko, P.O. Phytochemical studies and comparative efficacy of the extracts of some haemostatic plants in Edo and Delta States of Nigeria. Glob. J. Pure Appl. Sci 2001, 8, 203–208. [Google Scholar]
- Yen, G.; Chen, H. Antioxidant activity of various tea extract in relation to their antimutagenicity. J. Agric. Food Chem 1995, 43, 7–32. [Google Scholar]
- Liyana-Pathiranan, C.M.; Shahidi, F. Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J. Agric. Food Chem 2005, 53, 2433–2440. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med 1999, 26, 1231–1237. [Google Scholar]
- Ebrahimzadeh, M.A.; Pourmorad, F.; Hafezi, S. Antioxidant activities of Iranian corn silk. Turk. J. Biol 2008, 32, 43–49. [Google Scholar]
Phytochemicals | Amount | R2 | Regression equation |
---|---|---|---|
1 Total Phenols (mg/g) | 14.86 ± 0.05 | 0.9365 | Y = 0.1216x |
2 Total Flavonoids (mg/g) | 13.64 ± 0.03 | 0.9812 | Y = 0.0255x |
Saponins (%) | 13.26 ± 0.01 | - | - |
Tannins (%) | 0.51 ± 0.02 | - | - |
Alkaloids (%) | 0.51 ± 0.11 | - | - |
Steroids (%) | 1.42 ± 0.12 | - | - |
Free radical scavenging activity of Curtisia dentata (IC50 mg·mL−1) | |||||
---|---|---|---|---|---|
Sample | DPPH | ABTS | NO | H2O2 | LPO |
Curtisia dentata | 0.017 | 0.018 | 0.052 | 0.159 | 0.06 |
Rutin | 0.019 | 0.016 | 0.018 | 0.047 | - |
BHT | 0.024 | 0.015 | 0.017 | 0.096 | 0.102 |
Gallic acid | - | - | - | - | 0.215 |
Antibacterial activities of C. dentata extract | ||||
---|---|---|---|---|
Bacteria | Gram +/− | CD extract (mg/L) | Streptomycin (mg/L) | Norfloxacin (mg/L) |
Bacillus cereus ATCC 10702 | + | 312.5 | 2 | - |
Bacillus pumilus ATCC 14880 | + | 5000 | 2 | - |
Pseudomonas aeruginosa ATCC 19582 | − | 312.5 | 8 | - |
Serratia mercescens ATCC 9986 | − | 19.5 | 4 | - |
Acinectobacter calcaocenticus UP | − | 1250 | 2 | - |
Klebsiella pneumoniae KZN | + | 156.2 | 2 | - |
Proteus vulgaris KZN | − | 19.5 | 4 | - |
Enterobacter faecalis KZN | + | 19.5 | 2 | - |
Staphylococcus aureus OK1 | + | 19.5 | 4 | - |
Staphylococcus aureus OK3 | + | 19.5 | 4 | - |
Escherichia coli ATCC 14884 | − | 5000 | 8 | - |
† Staphylococcus aureus 1199B | + | 512 | - | 32 |
† Staphylococcus aureus ATCC 25923 | + | 256 | - | 1 |
† EMRSA- 15 | + | 512 | - | 0.5 |
† EMRSA- 16 (mecA) | + | 512 | - | 128 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Oyedemi, S.O.; Oyedemi, B.O.; Arowosegbe, S.; Afolayan, A.J. Phytochemicals Analysis and Medicinal Potentials of Hydroalcoholic Extract from Curtisia dentata (Burm.f) C.A. Sm Stem Bark. Int. J. Mol. Sci. 2012, 13, 6189-6203. https://doi.org/10.3390/ijms13056189
Oyedemi SO, Oyedemi BO, Arowosegbe S, Afolayan AJ. Phytochemicals Analysis and Medicinal Potentials of Hydroalcoholic Extract from Curtisia dentata (Burm.f) C.A. Sm Stem Bark. International Journal of Molecular Sciences. 2012; 13(5):6189-6203. https://doi.org/10.3390/ijms13056189
Chicago/Turabian StyleOyedemi, Sunday Oyewole, Blessing Ogochukwuamaka Oyedemi, Sunday Arowosegbe, and Anthony Jide Afolayan. 2012. "Phytochemicals Analysis and Medicinal Potentials of Hydroalcoholic Extract from Curtisia dentata (Burm.f) C.A. Sm Stem Bark" International Journal of Molecular Sciences 13, no. 5: 6189-6203. https://doi.org/10.3390/ijms13056189
APA StyleOyedemi, S. O., Oyedemi, B. O., Arowosegbe, S., & Afolayan, A. J. (2012). Phytochemicals Analysis and Medicinal Potentials of Hydroalcoholic Extract from Curtisia dentata (Burm.f) C.A. Sm Stem Bark. International Journal of Molecular Sciences, 13(5), 6189-6203. https://doi.org/10.3390/ijms13056189