Nanostructured Surfaces of Dental Implants
Abstract
:1. Introduction
2. Cell and Surface
3. Stem Cells and Bone Commitment
4. Osseointegration of Dental Implants
5. Surface Modifications
5.1. Chemical Modifications
5.1.1. Anodic Oxidation
5.1.2. Combinations of Acids (Bases) and Oxidants
5.2. Physical Modifications
5.2.1. Plasma Spray
5.2.2. Blasting
6. Conclusions
Acknowledgments
- Conflict of InterestThe authors declare no conflict of interest.
References
- Brånemark, P.I.; Hansson, B.O.; Adell, R.; Breine, U.; Lindström, J.; Hallén, O.; Öhman, A. Osseointegrated titanium implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg 1977, 16, 1–132. [Google Scholar]
- Albrektsson, T.; Brånemark, P.I.; Hansson, H.A.; Lindström, J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone anchorage in man. Acta Orthop. Scand 1981, 52, 155–170. [Google Scholar]
- Abuhussein, H.; Pagni, G.; Rebaudi, A.; Wang, H.L. The effect of thread pattern upon implant osseointegration. Clin. Oral Implants Res 2010, 21, 129–136. [Google Scholar]
- Trisi, P.; Lazzara, R.; Rebaudi, A.; Rao, W.; Testori, T.; Porter, S.S. Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. J. Periodontol 2003, 74, 945–956. [Google Scholar]
- Buser, D.; Schenk, R.K.; Steinemann, S.; Fiorellini, J.P.; Fox, C.H.; Stich, H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J. Biomed. Mater. Res 1991, 25, 889–902. [Google Scholar]
- Garcìa, A.J.; Reyes, C.D. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J. Dent. Res 2005, 84, 407–413. [Google Scholar]
- Variola, F.; Yi, J.H.; Richert, L.; Wuest, J.D.; Rosei, F.; Nanci, A. Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. Biomaterials 2008, 29, 1285–1298. [Google Scholar]
- Le Guèhennec, L.; Soueidan, A.; Layrolle, P.; Amouriq, Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater 2007, 23, 844–854. [Google Scholar]
- Cochran, D.L.; Schenk, R.K.; Lussi, A.; Higginbottom, F.L.; Buser, D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. J. Biomed. Mater. Res 1998, 40, 1–11. [Google Scholar]
- Tomasi, C.; Bressan, E.; Corazza, B.; Mazzoleni, S.; Stellini, E.; Lith, A. Reliability and reproducibility of linear mandible measurements with the use of a cone-beam computed tomography and two object inclinations. Dentomaxillofac. Radiol 2011, 4, 244–250. [Google Scholar]
- Mendonça, G.; Mendonça, D.B.S.; Aragão, F.J.L.; Cooper, L.F. Advancing dental implant surface technology—From micron- to nanotopography. Biomaterials 2008, 29, 3822–3835. [Google Scholar]
- Liu, H.; Webster, T.J. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 2006, 28, 354–369. [Google Scholar]
- Whitesides, G.M. The “right” size in nanobiotechnology. Nat. Biotechnol 2003, 21, 1161–1165. [Google Scholar]
- Sniadecki, N.J.; Desai, R.A.; Ruiz, S.A.; Chen, C.S. Nanotechnology for cell substrate interactions. Ann. Biomed. Eng 2006, 34, 59–74. [Google Scholar]
- Ferreira, L.; Karp, J.M.; Nobre, L.; Langer, R. New Opportunities: The use of nanothechnologies to manipulate and track stem cells. Cell Stem Cell 2008, 3, 136–146. [Google Scholar]
- Bauer, S.; Park, J.; Faltenbacher, J.; Berger, S.; von Der Mark, K.; Schmuki, P. Size selective behavior of mesenchimal stem cells on ZrO2 and TiO2 nanotube arrays. Integr. Biol. (Camb. ) 2009, 1, 525–532. [Google Scholar]
- Cavalcanti-Adam, E.A.; Volberg, T.; Micoulet, A.; Kessler, H.; Geiger, B.; Spatz, J.P. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J 2007, 92, 2964–2974. [Google Scholar]
- Suchaneka, J.; Soukupb, T.; Visekb, B.; Ivancakovaa, R.; Kucerovac, L.; Mokryb, J. Dental pulp stem cells and their characterization. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub 2009, 153, 31–36. [Google Scholar]
- Atala, A.; Lanza, R.; Thomson, J.A.; Nerem, R.M. Principles of Regenerative Medicine; Elsevier: Burlington, MA, USA, 2008; Volume 1448. [Google Scholar]
- Macchiarini, P.; Jungebluth, P.; Go, T.; Asnaghi, M.A.; Rees, L.E.; Cogan, T.A.; Dodson, A.; Martorell, J.; Bellini, S.; Parnigotto, P.P.; et al. Clinical transplantation of a tissue-engineered airway. Lancet 2008, 372, 2023–2030. [Google Scholar]
- Discher, D.E.; Mooney, D.J.; Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324, 1673–1677. [Google Scholar]
- Nava, M.M.; Raimondi, M.T.; Pietrabissa, R. Controlling Self-Renewal and Differentiation of StemCells via Mechanical Cues. J. Biomed. Biotechnol. 2012, 2012, 797410:1–797410:12. [Google Scholar]
- Kulangara, K.; Yang, Y.; Yang, J.; Leong, K.W. Nanotopography as modulator of human mesenchymal stem cell function. Biomaterials 2012, 33, 4998–5003. [Google Scholar]
- Kanchanawong, P.; Shtengel, G.; Pasapera, A.M.; Ramko, E.B.; Davidson, M.W.; Hess, H.F.; Waterman, C.M. Nanoscale architecture of integrin-based cell adhesions. Nature 2010, 468, 580–584. [Google Scholar]
- Ballestrem, C.; Hinz, B.; Imhof, B.A.; Wehrle-Haller, B. Marching at the front and dragging behind: Differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. J. Cell Biol 2001, 155, 1319–1332. [Google Scholar]
- Rottner, K.; Hall, A.; Small, J.V. Interplay between Rac and Rho in the control of substrate contact dynamics. Curr. Biol 1999, 9, 640–648. [Google Scholar]
- Galbraith, C.G.; Yamada, K.M.; Sheetz, M.P. The relationship between force and focal complex development. J. Cell Biol 2002, 159, 695–705. [Google Scholar]
- Riveline, D.; Zamir, E.; Balaban, N.Q.; Schwarz, U.S.; Ishizaki, T.; Narumiya, S.; Kam, Z.; Geiger, B.; Bershadsky, A.D. Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-depependent and ROCK-independent mechanism. J. Cell Biol 2001, 153, 1175–1186. [Google Scholar]
- Lele, T.P.; Pendse, J.; Kumar, S.; Salanga, M.; Karavitis, J.; Ingber, D.E. Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J. Cell Physiol 2006, 207, 187–194. [Google Scholar]
- McMurray, R.J.; Gadegaard, N.; Tsimbouri, P.M.; Burgess, K.V.; McNamara, L.E.; Tare, R.; Murawski, K.; Kingham, E.; Oreffo, R.O.; Dalby, M.J. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat. Mater 2011, 10, 637–644. [Google Scholar]
- Zhang, Y.; Khan, D.; Delling, J.; Tobiasch, E. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. Sci. World J 2012, 2012, 793823. [Google Scholar]
- Lee, M.H.; Kim, Y.J.; Kim, H.J.; Park, H.D.; Kang, A.R.; Kyung, H.M.; Sung, J.H.; Wozney, J.M.; Kim, H.J.; Ryoo, H.M. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-β1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J. Biol. Chem 2003, 278, 34387–34394. [Google Scholar]
- Matsubara, T.; Kida, K.; Yamaguchi, A.; Hata, K.; Ichida, F.; Meguro, H.; Aburatani, H.; Nishimura, R.; Yoneda, T. BMP2 regulates osterix through Msx2 and Runx2 during osteoblast differentiation. J. Biol. Chem 2008, 283, 29119–29125. [Google Scholar]
- Harada, S.; Rodan, G.A. Control of osteoblast function and regulation of bone mass. Nature 2003, 423, 349–355. [Google Scholar]
- Komori, T. Regulation of osteoblast differentiation by transcription factors. J. Cell. Biochem 2006, 99, 1233–1239. [Google Scholar]
- Pavlin, D.; Zadro, R.; Gluhak-Heinrich, J. Temporal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo: Early responses of osteocalcin and type I collagen. Connect. Tissue Res 2001, 42, 135–148. [Google Scholar]
- Biggs, M.J.; Richards, R.G.; Dalby, M.J. Nanotopographical modification: A regulator of cellular function through focal adhesion. Nanomedicine 2010, 6, 619–633. [Google Scholar]
- Biggs, M.J.; Richards, R.G.; Gadegaard, N.; McMurray, R.J.; Affrossman, S.; Wilkinson, C.D.; Oreffo, R.O.; Dalby, M.J. Interactions with nanoscale topography: Adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J. Biomed. Mater. Res. A 2009, 91, 195–208. [Google Scholar]
- Dalby, M.J.; Macintyre, A.; Roberts, J.N.; Yang, J.; Lee, L.C.; Tsimbouri, P.M.; McNamara, L.E. Nanoscale titanium surface treatments for marrow progenitor culture. Nanomedicine 2012, 7, 20–21. [Google Scholar]
- Dalby, M.J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M.O.; Herzyk, P.; Wilkinson, C.D.; Oreffo, R.O. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater 2007, 6, 997–1003. [Google Scholar]
- Wood, M.A.; Bagnaninchi, P.; Dalby, M.J. The beta integrins and cytoskeletal nanoimprinting. Exp. Cell. Res 2008, 314, 927–935. [Google Scholar]
- Discher, D.E.; Janmey, P.; Wang, Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143. [Google Scholar]
- Benoit, D.S.; Schwartz, M.P.; Durney, A.R.; Anseth, K.S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater 2008, 7, 816–823. [Google Scholar]
- Tye, C.E.; Rattray, K.R.; Warner, K.J.; Gordon, J.A.; Sodek, J.; Hunter, G.K.; Goldberg, H.A. Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J. Biol. Chem 2003, 278, 7949–7955. [Google Scholar]
- Giordano, C.; Chiesa, R.; Sandrini, E.; Cigada, A.; Giavaresi, G.; Fini, M.; Giardino, R. Physical and biological characterizations of a novel multiphase anodic spark deposition coating to enhance implant osseointegration. J. Mater. Sci. Mater. Med 2005, 16, 1221–1229. [Google Scholar]
- Anderson, J.M.; Kushwaha, M.; Tambralli, A.; Bellis, S.L.; Camata, R.P.; Jun, H.W. Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules 2009, 10, 2935–2944. [Google Scholar]
- Even-Ram, S.; Artym, V.; Yamada, K.M. Matrix control of stem cell fate. Cell 2006, 126, 645–647. [Google Scholar]
- Variola, F.; Brunski, J.B.; Orsini, G.; Tambasco de Oliveira, P.; Wazen, R.; Nanci, A. Nanoscale surface modifications of medically relevant metals: State-of-the art and perspectives. Nanoscale 2011, 3, 335–353. [Google Scholar]
- Yao, C.; Slamovich, E.B.; Webster, T.J. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J. Biomed. Mater. Res. A 2008, 85, 157–166. [Google Scholar]
- Von Wilmowsky, C.; Bauer, S.; Lutz, R.; Meisel, M.; Neukam, F.W.; Toyoshima, T.; Schmuki, P.; Nkenke, E.; Schlegel, K.A. In vivo evaluation of anodic TiO2 nanotubes: An experimental study in pig. J. Biomed. Mater. Res. B Appl. Biomater 2009, 89, 165–171. [Google Scholar]
- Nanci, A.; Wuest, J.D.; Peru, L.; Brunet, P.; Sharma, V.; Zalzal, S.; McKee, M.D. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J. Biomed. Mat. Res 1998, 40, 324–335. [Google Scholar]
- Vetrone, F.; Variola, F.; Tambasco de Oliveira, P.; Zalzal, S.F.; Yi, J.H.; Sam, J.; Bombonato-Prado, K.F.; Sarkissian, A.; Perepichka, D.F.; Wuest, J.D.; et al. Nanoscale oxidative patterning of metallic surfaces to modulate cell activity and fate. Nano Lett 2009, 9, 659–665. [Google Scholar]
- Grössner-Schreiber, B.; Herzog, M.; Hedderich, J.; Dück, A.; Hannig, M.; Griepentrog, M. Focal adhesion contact formation by fibroblasts cultured on surface-modified dental implants: An in vitro study. Clin. Oral Implants Res 2006, 17, 736–745. [Google Scholar]
- Reising, A.; Yao, C.; Storey, D.; Webster, T.J. Greater osteoblast long-term functions on ionic plasma deposited nanostructured orthopedic implant coatings. J. Biomed. Mater. Res. A 2008, 87, 78–83. [Google Scholar]
- Ellingsen, J.E.; Johansson, C.B.; Wennerberg, A.; Holmén, A. Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. Int. J. Oral Maxillofac. Implants 2004, 19, 659–666. [Google Scholar]
- Abrahamsson, I.; Albouy, J.P.; Berglundh, T. Healing at fluoride-modified implants placed in wide marginal defects: An experimental study in dogs. Clin. Oral Implants Res 2008, 19, 153–159. [Google Scholar]
- Stanford, C.M.; Johnson, G.K.; Fakhry, A.; Gratton, D.; Mellonig, J.T.; Wanger, W. Outcomes of a fluoride modified implant one year after loading in the posterior-maxilla when placed with the osteotome surgical technique. Appl. Osseointegr. Res 2006, 5, 50–55. [Google Scholar]
- Aparicio, C.; Gil, F.J.; Fonseca, C.; Barbosa, M.; Planell, J.A. Corrosion behavior of commercially pure titanium shot blasted with different materials and size of shot particles for dental implant applications. Biomaterials 2003, 24, 263–273. [Google Scholar]
- Ivanoff, C.J.; Hallgren, C.; Widmark, G.; Sennerby, L.; Wennerberg, A. Histologic evaluation of the bone integration of TiO2 blasted and turned titanium microimplants in humans. Clin. Oral Implants Res 2001, 12, 128–134. [Google Scholar]
- Rasmusson, L.; Kahnberg, K.E.; Tan, A. Effects of implant design and surface on bone regeneration and implant stability: An experimental study in the dog mandible. Clin. Implant Dent. Relat. Res 2001, 3, 2–8. [Google Scholar]
- Buser, D.; Mericske-Stern, R.; Dula, K.; Lang, N.P. Clinical experience with one-stage, non-submerged dental implants. Adv. Dent. Res 1999, 13, 153–161. [Google Scholar]
- Masaki, C.; Schneider, G.B.; Zaharias, R.; Seabold, D.; Stanford, C. Effects of implant surface microtopography on osteoblast gene expression. Clin. Oral Implants Res 2005, 16, 650–656. [Google Scholar]
- Brunette, D.M.; Chehroudi, B. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. J. Biomech. Eng 1999, 121, 49–57. [Google Scholar]
© 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bressan, E.; Sbricoli, L.; Guazzo, R.; Tocco, I.; Roman, M.; Vindigni, V.; Stellini, E.; Gardin, C.; Ferroni, L.; Sivolella, S.; et al. Nanostructured Surfaces of Dental Implants. Int. J. Mol. Sci. 2013, 14, 1918-1931. https://doi.org/10.3390/ijms14011918
Bressan E, Sbricoli L, Guazzo R, Tocco I, Roman M, Vindigni V, Stellini E, Gardin C, Ferroni L, Sivolella S, et al. Nanostructured Surfaces of Dental Implants. International Journal of Molecular Sciences. 2013; 14(1):1918-1931. https://doi.org/10.3390/ijms14011918
Chicago/Turabian StyleBressan, Eriberto, Luca Sbricoli, Riccardo Guazzo, Ilaria Tocco, Marco Roman, Vincenzo Vindigni, Edoardo Stellini, Chiara Gardin, Letizia Ferroni, Stefano Sivolella, and et al. 2013. "Nanostructured Surfaces of Dental Implants" International Journal of Molecular Sciences 14, no. 1: 1918-1931. https://doi.org/10.3390/ijms14011918
APA StyleBressan, E., Sbricoli, L., Guazzo, R., Tocco, I., Roman, M., Vindigni, V., Stellini, E., Gardin, C., Ferroni, L., Sivolella, S., & Zavan, B. (2013). Nanostructured Surfaces of Dental Implants. International Journal of Molecular Sciences, 14(1), 1918-1931. https://doi.org/10.3390/ijms14011918