A Comparative Study of Selected Trace Element Content in Malay and Chinese Traditional Herbal Medicine (THM) Using an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation
2.2. Daily Intake Estimation
2.3. Essentiality of Trace Elements Based on Their Estimated Daily Intake
2.4. Statistical Analysis
3. Experimental Section
3.1. Sampling
3.2. Sample Preparations
3.3. Reagents and Materials
3.4. Preparation of Standard Solution
3.5. Microwave Digestion
3.6. Instrumentation
3.7. Validation Procedure
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Stitch, S.R. Trace elements in human tissue. 1. A semi-quantitative spectrographic survey. Biochem. J 1957, 67, 97–103. [Google Scholar]
- Nason, A.P.; Schroeder, H.A. Trace-Element Analysis in Clinical Chemistry. Clin. Chem 1971, 17, 461–474. [Google Scholar]
- Brätter, P.; Gawlik, D.; Lausch, J.; Rösick, U. On the distribution of trace elements in human skeletons. J. Radioanal. Nucl. Chem 1977, 37, 393–403. [Google Scholar]
- Ajasa, M.A.; Bello, O.M.; Ibrahim, O.M.; Ogunwande, A.I.; Olawore, O.N. Heavy metals and macronutrients status in herbal plants of Nigeria. Food Chem 2004, 85, 67–71. [Google Scholar]
- Akerele, O. Summary of WHO guidelines for the assessment of herbal medicines. HerbalGram 1993, 28, 13–19. [Google Scholar]
- Robinson, M.M.; Zhang, X. The World Medicines Situation 2011—Traditional Medicines: Global Situation, Issues And Challenges, 3th ed; World Health Organization (WHO): Geneva, Switzland, 2011. [Google Scholar]
- Memory, E.-L. Should we be concerned about herbal remedies. J. Ethnopharmacol 2011, 75, 141–164. [Google Scholar]
- Barnes, J. Quality, efficacy and safety of complementary medicines: Fashions, facts and the future. Part 1. Regulation and quality. Br. J. Clin. Pharmacol 2003, 55, 226–233. [Google Scholar]
- Eisenberg, D.M.; Foster, K.R.C.; Norlock, F.E.; Calkins, D.R.; Delbanco, T.L. Unconventional medicine in the United States. N. Engl. J. Med 1993, 328, 246–252. [Google Scholar]
- Gardiner, P.; Graham, R.; Legedza, A.T.; Ahn, A.C.; Eisenberg, D.M.; Phillips, R.S. Factors associated with herbal therapy use by adults in the United States. Altern. Ther. Health Med 2007, 13, 22–29. [Google Scholar]
- World Health Organization (WHO), WHO Traditional Medicine Strategy 2002–2005; WHO: Geneva, Switzerland, 2002.
- Abbot, N.C.; Ernst, E. Patients’ opinions about complimentary medicine. Forsch. Komplementarmed 1997, 4, 164–168. [Google Scholar]
- Huxtable, R.J. The harmful potential of herbal and other plant products. Drug Saf 1990, 5, 126–136. [Google Scholar]
- Titilayo, O.F.; Rasaq, A.; Ismail, E.M. Attitude and use of herbal medicines among pregnant women in Nigeria. BMC Complement. Altern. Med 2009, 9, 53. [Google Scholar]
- Chan, K. Some aspects of toxic contaminants in herbal medicines. Chemosphere 2003, 52, 1361–1371. [Google Scholar]
- Basgel, S.; Erdemoglu, S.B. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci. Total Environ 2006, 359, 82–89. [Google Scholar]
- Chan, T.Y.K. Monitoring the safety of herbal medicine. Drug Saf 1997, 17, 209–215. [Google Scholar]
- Ernst, E. Harmless herb? A review of the recent literature. Am. J. Med 1998, 104, 170–178. [Google Scholar]
- Garvey, J.G.; Gary, H.; Richard, V.L.; Raymond, D.H.C. Heavy metal hazard of Asian traditional remedies. Int. J. Environ. Health Res 2001, 11, 63–71. [Google Scholar]
- Heck, A.M.; DeWitt, B.A.; Lukes, A.L. Potential interactions between alternative therapies and warfarin. Am. J. Health Syst. Pharm 2006, 57, 1221–1227. [Google Scholar]
- Miller, L.G. Herbal medicine: Selected clinical considerations focusing on known or potential drug-herb interaction. Arch. Intern. Med 1998, 158, 2200–2211. [Google Scholar]
- Vaes, L.P.J.; Chyka, P.A. Interaction of warfarin with garlic, ginger, ginkgo, or gingseng: Nature of the evidence. Ann. Pharmacother 2000, 34, 1478–1482. [Google Scholar]
- Whitting, P.W.; Clouston, A.; Kerlin, P. Black cohosh and other herbal remedies associated with acute hepatitis. Med. J. Aust 2002, 177, 678–685. [Google Scholar]
- Abbot, N.C.; White, A.R.; Ernst, E. Complementary medicine. Nature 1996, 381, 361. [Google Scholar]
- Mazzanti, G.; Battineli, L.; Daniele, C.; Costantini, S.; Ciaralli, L.; Evandari, M.G. Purity control of some Chinese crude herbal drugs marketed in Itali. Food Chem. Toxicol 2008, 46, 3043–3047. [Google Scholar]
- Gomez, M.R.; Cerutti, S.; Sombra, L.L.; Silva, M.F.; Martínez, L.D. Determination of heavy metals for the quality control in argentinian herbal medicines by ETAAS and ICP-OES. Food Chem. Toxicol 2007, 45, 1060–1064. [Google Scholar]
- Branter, A.H.; Males, Z. Quality assessment of Paliurus spinachristi extracts. J. Ethnopharmacol 1999, 66, 175. [Google Scholar]
- Gosslim, R.E.; Smith, R.P.; Hodge, H.C.; Braddock, J.E. Clinical Toxicology of Commercial Products, 5th ed; Willians & Wilkins: Baltimore, MD, USA, 1984; p. 437. [Google Scholar]
- Schilcher, H. Possibilities and limitations of phytotherapy. Pharm. Weekbl 1987, 9, 215. [Google Scholar]
- Andrew, A.S.; Warren, A.J.; Barchowsky, A.; Temple, K.A.; Klei, L.; Soucy, N.V.; O’Hara, K.A.; Hamilton, J.W. Genomic and proteomic profiling of responses to toxic metals in human lung cells. Environ. Health Persp 2003, 111, 825–835. [Google Scholar]
- Shaw, D.; Leon, C.; Kolev, S.; Murray, V. Traditional remedies and food supplements. A 5-year toxicological study (1991–1995). Drug Saf 1997, 17, 342–356. [Google Scholar]
- Robert, B.S.; Stefanos, K.; Janet, P.; Michael, J.B.; David, M.E.; Roger, B.D.; Russell, S.P. Heavy metal content of Ayurvedic Herbal Medicine Products. JAMA 2004, 292, 2868–2873. [Google Scholar]
- Centre of Disease Control and Prevention. Lead poisoning: Associated death from Asian Indian folk remedies—Florida. MMWR Wkly. Rep 1984, 33, 643–645.
- Centre of Disease Control and Prevention. Lead poisoning associated with use of Ayurvedic medications—five states, 2000–2003. MMWR Wkly. Rep. 2004, 53, 582–584.
- Tait, P.A.; Amish, V.; James, S.; Fitzgerald, D.J.; Pester, B.A. Severe congenital lead poisoning in a preterm infant due to a herbal remedy. Med. J. Aust 2002, 177, 193–195. [Google Scholar]
- Moore, C.; Adler, R. Herbal vitamins: Lead toxicity and developmental delay. Pediatrics 2000, 177, 193–195. [Google Scholar]
- Aslam, M.; Davis, S.; Healy, M.A. Heavy metals in some Asian medicines and cosmetics. Public Health 1979, 93, 274–284. [Google Scholar]
- Ernst, E. Risk Associated with Complementary Therapies. Meyler’s Side Effects of Drugs; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Ibrahim, A.S.; Latif, A.H. Adult lead poisoning from a herbal medicine. Saudi Med. J 2002, 23, 591–593. [Google Scholar]
- Lecours, S.; Osterman, J.; Lacasse, Y.; Melnychuck, D.; Gellinas, J. Environmental lead poisoning in three Montreal women of Asian Indian origin. Can. Dis. Wkly. Rep 1989, 15, 177–179. [Google Scholar]
- McElvaine, M.D.; Harder, E.M.; Johnson, L.; Baer, R.D.; Satzger, R.D. Lead poisoning from the use of Indian folk medicines. JAMA 1990, 264, 2212–2213. [Google Scholar]
- Prpic-Majic, D.; Pizent, A.; Jurasovic, J.; Pongracic, J.; Restek-Samarzija, N. Lead poisoning associated with the use of Ayurvedic metal-mineral tonics. J. Toxicol. Clin. Toxicol 1996, 34, 417–423. [Google Scholar]
- Spriewald, B.M.; Rascu, A.; Schaller, K.H.; Angerer, J.; Kalden, J.R.; Harrer, T. Lead induced anaemia due to traditional Indian medicine: a case report. Occup. Environ. Med 1999, 56, 282–283. [Google Scholar]
- Traub, S.J.; Hoffman, R.S.; Nelson, L.S. Lead toxicity due to use of an Ayurvedic compound. J. Toxicol. Clin. Toxicol 2002, 40, 322. [Google Scholar]
- Weide, R.; Klings, E.S.; Faber, H.; Kaufmann, F.; Heymanns, J.; Koopler, H. Severe lead poisoning due to Ayurvedic Indian plant medicine. Dtsch. Med. Wochenschr 2003, 128, 2418–2420. [Google Scholar]
- Fahey, J.W.; Zhang, Y.; Talalay, P. Broccoii sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. USA 1997, 94, 10367–10372. [Google Scholar]
- Elless, M.P.; Blaylock, M.J.; Huang, J.W.; Gussman, C.D. Plants as a natural source of concentrated mineral nutritional supplements. Food Chem 2000, 77, 181–188. [Google Scholar]
- Obi, E.; Akunyili, D.N.; Ekpo, B.; Orisakwe, O.E. Heavy metal hazards of Nigerian herbal remedies. Sci. Total Environ 2006, 369, 35–41. [Google Scholar]
- Fosmire, G.J. Zinc Toxicity. Am. J. Clin. Nutr 1990, 51, 225–227. [Google Scholar]
- Nolan, K. Copper Toxicity Syndrome. J. Orthomol. Psychiatry 2003, 12, 270–282. [Google Scholar]
- Young, R.A. Toxicity Profiles: Toxicity Summary for Cadmium, Risk Assessment Information System, RAIS; University of Tennessee: Nashville, TN, USA, 2005. [Google Scholar]
- George, K.S.; Andrea, J.R.; Robert, B. Zinc and human immunodeficiency virus infection. Nutr. Res. 2002, 22, 527–538. [Google Scholar]
- Nita, B.; Rajiv, B.; Sunita, T.; Tor, S.; Kåre, M.; Rune, J.U.; Halvor, S.; Maharaj, K.B. Effect of routine zinc supplementation on pneumonia in children aged 6 months to 3 years: Randomised controlled trial in an urban slum. BMJ 2002, 324, 1358. [Google Scholar]
- Bahl, R.N.B.; Hambidge, K.M.; Bhan, M.K. Plasma zinc as a predictor of diarrheal and respiratory morbidity in children in an urban slum setting. Am. J. Clin. Nutr 1998, 68, 414s–417s. [Google Scholar]
- Sazawal, S.R.B.; Bhan, M.K.; Jalla, S.; Sinha, A.; Bhandari, N. Efficacy of zinc supplementation in reducing the incidence and prevalence of acute diarrhea—a community-based, double-blind, controlled trial. Am. J. Clin. Nutr 1997, 66, 413–418. [Google Scholar]
- Prasad, A.S.; Bao, B.; Beck, F.W.J.; Kucuk, O.; Sarkar, F.H. Antioxidant effect of zinc in humans. Free Radic. Bio. Med 2004, 37, 1182–1190. [Google Scholar]
- Dobson, A.W.; Erikson, K.M.; Aschner, M. Manganese Neurotoxicity. Ann. N. Y. Acad. Sci 2004, 1012, 115–128. [Google Scholar]
- Uauy, R.; Olivares, M.; Gonzalez, M. Essentiality of copper in humans. Am. J. Clin. Nutr 1998, 67, 952S–959S. [Google Scholar]
- De Romaña, D.L.; Olivares, M.; Uauy, R.; Araya, M. Risks and benefits of copper in light of new insights of copper homeostasis. J. Trace Elem. Med. Biol 2011, 25, 3–13. [Google Scholar]
- Blankenberg, S.; Rupprecht, H.J.; Bickel, C.; Torzewski, M.; Hafner, G.; Tiret, L.; Smieja, M.; Cambien, F.; Meyer, J.; Lackner, K.J. Glutathione Peroxidase 1 Activity and Cardiovascular Events in Patients with Coronary Artery Disease. N. Engl. J. Med 2003, 349, 1605–1613. [Google Scholar]
- Mueller, A.S.; Pallauf, J. Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J. Nutr. Biochem 2006, 17, 548–560. [Google Scholar]
- Stapleton, S.R. Selenium: An insulin mimetic. Cell. Mol. Life Sci 2000, 57, 1874–1879. [Google Scholar]
- Powlin, S.S.; Keng, P.C.; Miller, R.K. Toxicity of Cadmium in Human Trophoblast Cells (JAr Choriocarcinoma): Role of Calmodulin and the Calmodulin Inhibitor, Zaldaride Maleate. Toxicol. Appl. Pharmacol 1997, 144, 225–234. [Google Scholar]
- Kaji, T.; Mishima, A.; Yamamoto, C.; Sakamoto, M.; Kozuka, H. Zinc protection against cadmium-induced destruction of the monolayer of cultured vascular endothelial cells. Toxicol. Lett 1993, 66, 247–255. [Google Scholar]
- Kreis, I.A.; de Does, M.; Hoekstra, J.A.; de Lezenne Coulander, C.; Peters, P.W.J.; Wentink, G.H. Effects of cadmium on reproduction, an epizootologic study. Teratology 1993, 48, 189–196. [Google Scholar]
- Piersma, A.H.; Roelen, B.; Roest, P.; Haakamt-Hoesenie, A.S.; Van Achterberg, T.A.E.; Mummery, C.L. Cadmium-induced inhibition of proliferation and differentiation of embryonal carcinoma cells and mechanistic aspects of protection by zinc. Teratology 1993, 48, 335–341. [Google Scholar]
- Hengstler, J.G.; Bolm-Audorff, U.; Faldum, A.; Janssen, K.; Reifenrath, M.; Götte, W.; Jung, D.; Mayer-Popken, O.; Fuchs, J.; Gebhard, S.; et al. Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis 2003, 24, 63–73. [Google Scholar]
- Youngs, H.L.; Sundaramoorthy, M.; Gold, M.H. Effects of cadmium on manganese peroxidase. Competitive inhibition of Mn(II) oxidation and thermal stabilization of the enzyme. Eur. J. Biochem 2000, 267, 1761–1769. [Google Scholar]
- López, E.; Arce, C.; Oset-Gasque, M.J.; Cañadas, S.; González, M.P. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic. Biol. Med 2006, 40, 940–951. [Google Scholar]
Trace element | Certified concentration | Measured concentration | Recovery (%) |
---|---|---|---|
Zinc | 82 ± 3 | 71 ± 2 | 86.4 |
Manganese | 75.9 ± 0.6 | 72.5 ± 0.3 | 95.6 |
Copper | 12.2 ± 0.6 | 11.5 ± 0.3 | 86.5 |
Cadmium | 2.89 ± 0.07 | 2.47 ± 0.02 | 85.3 |
Selenium | 0.117 ± 0.009 | 0.116 ± 0.003 | 98.9 |
Trace element | Coefficient of variation (%) | |
---|---|---|
Intraday precision | Interday precision | |
Zinc | 2.41 | 1.35 |
Manganese | 0.54 | 0.74 |
Copper | 2.24 | 1.65 |
Cadmium | 0.86 | 1.11 |
Selenium | 2.65 | 3.58 |
Element | Copper | Zinc | Manganese | Selenium | Cadmium |
---|---|---|---|---|---|
LOD | 0.38 | 0.05 | 0.28 | 0.21 | 0.03 |
LOQ | 1.15 | 0.15 | 0.84 | 0.64 | 0.10 |
Step | Power (W) | % max | Time (min) to raise temperature | Temperature (°C) | Running time (min) |
---|---|---|---|---|---|
1 | 400 | 100 | 15 | 200 | 5 |
2 | 400 | 100 | 1 | 210 | 5 |
3 | 400 | 100 | 1 | 220 | 5 |
ICP-MS System | Parameter |
---|---|
RF Power | 1550 watts |
RF Matching | 1.55 V |
Reflected Power | 0 W |
Sample Uptake Time | 30 sec |
Sample Uptake Rate | 0.4 r sec−1 |
Sample Depth | 5.0–5.5 mm |
Coolant Argon Flow Rate | 15 L min−1 |
Carrier Gas Flow Rate | 1.2 L min−1 |
Auxiliary gas flow rate | 0.9 L min−1 |
Water RF/TP Flow Rate | 2.4 L min−1 |
Water RF/TP Temperature | 20 °C |
Element | Mass | Mode | Integration Time (sec per point) |
---|---|---|---|
Zn | 66 | He | 0.10 |
Mg | 24 | He | 0.05 |
Cu | 63 | He | 0.10 |
Cd | 111 | No gas | 1.00 |
Se | 78 | He/H2 | 5.00 |
© 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rasdi, F.L.M.; Bakar, N.K.A.; Mohamad, S. A Comparative Study of Selected Trace Element Content in Malay and Chinese Traditional Herbal Medicine (THM) Using an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Int. J. Mol. Sci. 2013, 14, 3078-3093. https://doi.org/10.3390/ijms14023078
Rasdi FLM, Bakar NKA, Mohamad S. A Comparative Study of Selected Trace Element Content in Malay and Chinese Traditional Herbal Medicine (THM) Using an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). International Journal of Molecular Sciences. 2013; 14(2):3078-3093. https://doi.org/10.3390/ijms14023078
Chicago/Turabian StyleRasdi, Fairuz Liyana Mohd, Nor Kartini Abu Bakar, and Sharifah Mohamad. 2013. "A Comparative Study of Selected Trace Element Content in Malay and Chinese Traditional Herbal Medicine (THM) Using an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS)" International Journal of Molecular Sciences 14, no. 2: 3078-3093. https://doi.org/10.3390/ijms14023078
APA StyleRasdi, F. L. M., Bakar, N. K. A., & Mohamad, S. (2013). A Comparative Study of Selected Trace Element Content in Malay and Chinese Traditional Herbal Medicine (THM) Using an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). International Journal of Molecular Sciences, 14(2), 3078-3093. https://doi.org/10.3390/ijms14023078