The Apolipoprotein M–Sphingosine-1-Phosphate Axis: Biological Relevance in Lipoprotein Metabolism, Lipid Disorders and Atherosclerosis
Abstract
:1. Introduction
2. Function of An apoM/S1P Axis
2.1. ApoM and Interaction with S1P and Other Ligands
2.2. ApoM Affects Plasma S1P Levels
2.3. ApoM and S1P Affect Lipoprotein Metabolism
2.4. VLDL/LDL Clearance Affects Plasma ApoM Levels
2.5. ApoM Influences Atherosclerosis
2.6. S1P Influences Atherosclerosis
3. Perspectives
Acknowledgments
Conflict of Interest
References
- Rosenson, R.S.; Brewer, H.B., Jr; Davidson, W.S.; Fayad, Z.A.; Fuster, V.; Goldstein, J.; Hellerstein, M.; Jiang, X.C.; Phillips, M.C.; Rader, D.J.; et al. Cholesterol efflux and atheroprotection: Advancing the concept of reverse cholesterol transport. Circulation 2012, 125, 1905–1919. [Google Scholar]
- Davidson, W.S.; Silva, R.A.G.; Chantepie, S.; Lagor, W.R.; Chapman, M.J.; Kontush, A. Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters. Arterioscler. Thromb. Vasc. Biol 2009, 29, 870–876. [Google Scholar]
- Karlsson, H.; Leanderson, P.; Tagesson, C.; Lindahl, M. Lipoproteomics II: Mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2005, 5, 1431–1445. [Google Scholar]
- Dixon, J.L.; Ginsberg, H.N. Hepatic synthesis of lipoproteins and apolipoproteins. Semin. Liver Dis 1992, 12, 364–372. [Google Scholar]
- Danielsen, E.M.; Hansen, G.H.; Poulsen, M.D. Apical secretion of apolipoproteins from enterocytes. J. Cell Biol 1993, 120, 1347–1356. [Google Scholar]
- Watson, A.D.; Berliner, J.A.; Hama, S.Y.; La Du, B.N.; Faull, K.F.; Fogelman, A.M.; Navab, M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J. Clin. Invest 1995, 96, 2882–2891. [Google Scholar]
- Nofer, J.R.; Brodde, M.F.; Kehrel, B.E. High-density lipoproteins, platelets and the pathogenesis of atherosclerosis. Clin. Exp. Pharmacol. Physiol 2010, 37, 726–735. [Google Scholar]
- Vanhamme, L.; Paturiaux-Hanocq, F.; Poelvoorde, P.; Nolan, D.P.; Lins, L.; van Den Abbeele, J.; Pays, A.; Tebabi, P.; van Xong, H.; Jacquet, A.; et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 2003, 422, 83–87. [Google Scholar]
- Berbee, J.F.; van der Hoogt, C.C.; Kleemann, R.; Schippers, E.F.; Kitchens, R.L.; van Dissel, J.T.; Bakker-Woudenberg, I.A.; Havekes, L.M.; Rensen, P.C. Apolipoprotein CI stimulates the response to lipopolysaccharide and reduces mortality in gram-negative sepsis. FASEB J 2006, 20, 2162–2164. [Google Scholar]
- Yan, Y.J.; Li, Y.; Lou, B.; Wu, M.P. Beneficial effects of ApoA-I on LPS-induced acute lung injury and endotoxemia in mice. Life Sci 2006, 79, 210–215. [Google Scholar]
- Van Oosten, M.; Rensen, P.C.; van Amersfoort, E.S.; van Eck, M.; van Dam, A.M.; Breve, J.J.; Vogel, T.; Panet, A.; van Berkel, T.J.; Kuiper, J. Apolipoprotein E protects against bacterial lipopolysaccharide-induced lethality. A new therapeutic approach to treat gram-negative sepsis. J. Biol. Chem 2001, 276, 8820–8824. [Google Scholar]
- Drew, B.G.; Fidge, N.H.; Gallon-Beaumier, G.; Kemp, B.E.; Kingwell, B.A. High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc. Nat. Acad. Sci. USA 2004, 101, 6999–7004. [Google Scholar]
- Xu, N.; Dahlback, B. A novel human apolipoprotein (apoM). J. Biol. Chem 1999, 274, 31286–31290. [Google Scholar]
- Christoffersen, C.; Nielsen, L.B.; Axler, O.; Andersson, A.; Johnsen, A.H.; Dahlback, B. Isolation and characterization of human apolipoprotein M-containing lipoproteins. J. Lipid Res 2006, 47, 1833–1843. [Google Scholar]
- Duan, J.; Dahlback, B.; Villoutreix, B.O. Proposed lipocalin fold for apolipoprotein M based on bioinformatics and site-directed mutagenesis. FEBS Lett 2001, 499, 127–132. [Google Scholar]
- Sevvana, M.; Ahnstrom, J.; Egerer-Sieber, C.; Lange, H.A.; Dahlback, B.; Muller, Y.A. Serendipitous fatty acid binding reveals the structural determinants for ligand recognition in apolipoprotein M. J. Mol. Biol 2009, 393, 920–936. [Google Scholar]
- Bocskei, Z.; Groom, C.R.; Flower, D.R.; Wright, C.E.; Phillips, S.E.; Cavaggioni, A.; Findlay, J.B.; North, A.C. Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography. Nature 1992, 360, 186–188. [Google Scholar]
- Cowan, S.W.; Newcomer, M.E.; Jones, T.A. Crystallographic refinement of human serum retinol binding protein at 2A resolution. Proteins 1990, 8, 44–61. [Google Scholar]
- Christoffersen, C.; Obinata, H.; Kumaraswamy, S.B.; Galvani, S.; Ahnstrom, J.; Sevvana, M.; Egerer-Sieber, C.; Muller, Y.A.; Hla, T.; Nielsen, L.B.; et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc. Nat. Acad. Sci. USA 2011, 108, 9613–9618. [Google Scholar]
- Zhang, X.Y.; Dong, X.; Zheng, L.; Luo, G.H.; Liu, Y.H.; Ekstrom, U.; Nilsson-Ehle, P.; Ye, Q.; Xu, N. Specific tissue expression and cellular localization of human apolipoprotein M as determined by in situ hybridization. Acta Histochem 2003, 105, 67–72. [Google Scholar]
- Axler, O.; Ahnstrom, J.; Dahlback, B. An ELISA for apolipoprotein M reveals a strong correlation to total cholesterol in human plasma. J. Lipid Res 2007, 48, 1772–1780. [Google Scholar]
- Bury, J.; Vercaemst, R.; Rosseneu, M.; Belpaire, F. Apolipoprotein E quantified by enzyme-linked immunosorbent assay. Clin Chem 1986, 32, 265–270. [Google Scholar]
- Christoffersen, C.; Jauhiainen, M.; Moser, M.; Porse, B.; Ehnholm, C.; Boesl, M.; Dahlback, B.; Nielsen, L.B. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice. J. Biol. Chem 2008, 283, 1839–1847. [Google Scholar]
- Wolfrum, C.; Poy, M.N.; Stoffel, M. Apolipoprotein M is required for pre[beta]-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat. Med 2005, 11, 418–422. [Google Scholar]
- Christoffersen, C.; Pedersen, T.X.; Gordts, P.L.S.M.; Roebroek, A.J.M.; Dahlback, B.; Nielsen, L.B. Opposing effects of apolipoprotein M on catabolism of apolipoprotein B-containing lipoproteins and atherosclerosis. Circ. Res 2010, 106, 1624–1634. [Google Scholar]
- Dullaart, R.P.F.; Plomgaard, P.; de Vries, R.; Dahlback, B.; Nielsen, L.B. Plasma apolipoprotein M is reduced in metabolic syndrome but does not predict intima media thickness. Clin. Chim. Acta 2009, 406, 129–133. [Google Scholar]
- Wolfrum, C.; Howell, J.J.; Ndungo, E.; Stoffel, M. Foxa2 activity increases plasma high density lipoprotein levels by regulating apolipoprotein M. J. Biol. Chem 2008, 283, 16940–16949. [Google Scholar]
- Elsoe, S.; Ahnstrom, J.; Christoffersen, C.; Hoofnagle, A.N.; Plomgaard, P.; Heinecke, J.W.; Binder, C.J.; Bjorkbacka, H.; Dahlback, B.; Nielsen, L.B. Apolipoprotein M binds oxidized phospholipids and increases the antioxidant effect of HDL. Atherosclerosis 2012, 221, 91–97. [Google Scholar]
- Stoffel, W.; Assmann, G. Metabolism of sphingosine bases. XV. Enzymatic degradation of 4t-sphingenine 1-phosphate (sphingosine 1-phosphate) to 2t-hexadecen-1-al and ethanolamine phosphate. Hoppe. Seylers. Z Physiol. Chem 1970, 351, 1041–1049. [Google Scholar]
- Zhang, H.; Desai, N.N.; Olivera, A.; Seki, T.; Brooker, G.; Spiegel, S. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J. Cell Biol 1991, 114, 155–167. [Google Scholar]
- Liu, Y.; Wada, R.; Yamashita, T.; Mi, Y.; Deng, C.X.; Hobson, J.P.; Rosenfeldt, H.M.; Nava, V.E.; Chae, S.S.; Lee, M.J.; et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest 2000, 106, 951–961. [Google Scholar]
- Pappu, R.; Schwab, S.R.; Cornelissen, I.; Pereira, J.P.; Regard, J.B.; Xu, Y.; Camerer, E.; Zheng, Y.W.; Huang, Y.; Cyster, J.G.; et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 2007, 316, 295–298. [Google Scholar]
- English, D.; Welch, Z.; Kovala, A.T.; Harvey, K.; Volpert, O.V.; Brindley, D.N.; Garcia, J.G. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J 2000, 14, 2255–2265. [Google Scholar]
- Takuwa, Y. S1P(2), the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Res 2010, 70, 772–781. [Google Scholar]
- Ishii, I.; Fukushima, N.; Ye, X.; Chun, J. Lysophospholipid receptors: Signaling and biology. Annu. Rev. Biochem 2004, 73, 321–354. [Google Scholar]
- Venkataraman, K.; Lee, Y.M.; Michaud, J.; Thangada, S.; Ai, Y.; Bonkovsky, H.L.; Parikh, N.S.; Habrukowich, C.; Hla, T. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res 2008, 102, 669–676. [Google Scholar]
- Sattler, K.J.; Elbasan, S.; Keul, P.; Elter-Schulz, M.; Bode, C.; Graler, M.H.; Brocker-Preuss, M.; Budde, T.; Erbel, R.; Heusch, G.; et al. Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res. Cardiol 2010, 105, 821–832. [Google Scholar]
- Murata, N.; Sato, K.; Kon, J.; Tomura, H.; Yanagita, M.; Kuwabara, A.; Ui, M.; Okajima, F. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J 2000, 352, 809–815. [Google Scholar]
- Karuna, R.; Park, R.; Othman, A.; Holleboom, A.G.; Motazacker, M.M.; Sutter, I.; Kuivenhoven, J.A.; Rohrer, L.; Matile, H.; Hornemann, T.; et al. Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism. Atherosclerosis 2011, 219, 855–863. [Google Scholar]
- Lee, M.J.; Thangada, S.; Claffey, K.P.; Ancellin, N.; Liu, C.H.; Kluk, M.; Volpi, M.; Sha’afi, R.I.; Hla, T. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 1999, 99, 301–312. [Google Scholar]
- Wilkerson, B.A.; Grass, G.D.; Wing, S.B.; Argraves, W.S.; Argraves, K.M. Sphingosine 1-Phosphate (S1P) Carrier-dependent regulation of endothelial barrier: High density lipoprotein (hdl)-s1p prolongs endothelial barrier enhancement as compared with albumin-s1p via effects on levels, trafficking and signaling of s1p1. J. Biol. Chem 2012, 287, 44645–44653. [Google Scholar]
- Nofer, J.R.; van der Giet, M.; Tolle, M.; Wolinska, I.; von Wnuck Lipinski, K.; Baba, H.A.; Tietge, U.J.; Godecke, A.; Ishii, I.; Kleuser, B.; et al. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest 2004, 113, 569–581. [Google Scholar]
- Ahnstrom, J.; Faber, K.; Axler, O.; Dahlback, B. Hydrophobic ligand binding properties of the human lipocalin apolipoprotein M. J. Lipid Res 2007, 48, 1754–1762. [Google Scholar]
- D’Ambrosio, D.N.; Clugston, R.D.; Blaner, W.S. Vitamin A metabolism: An update. Nutrients 2011, 3, 63–103. [Google Scholar]
- Arnold, S.L.; Amory, J.K.; Walsh, T.J.; Isoherranen, N. A sensitive and specific method for measurement of multiple retinoids in human serum with UHPLC-MS/MS. J. Lipid Res 2012, 53, 587–598. [Google Scholar]
- Bektas, M.; Allende, M.L.; Lee, B.G.; Chen, W.; Amar, M.J.; Remaley, A.T.; Saba, J.D.; Proia, R.L. Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. J. Biol. Chem 2010, 285, 10880–10889. [Google Scholar]
- Poti, F.; Bot, M.; Costa, S.; Bergonzini, V.; Maines, L.; Varga, G.; Freise, H.; Robenek, H.; Simoni, M.; Nofer, J.R. Sphingosine kinase inhibition exerts both pro- and anti-atherogenic effects in low-density lipoprotein receptor-deficient (LDL-R−/−) mice. Thromb. Haemost 2012, 107, 552–561. [Google Scholar]
- Skoura, A.; Michaud, J.; Im, D.S.; Thangada, S.; Xiong, Y.; Smith, J.D.; Hla, T. Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol 2011, 31, 81–85. [Google Scholar]
- Keul, P.; Lucke, S.; von Wnuck Lipinski, K.; Bode, C.; Graler, M.; Heusch, G.; Levkau, B. Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis / novelty and significance. Circ. Res 2011, 108, 314–323. [Google Scholar]
- Nofer, J.R.; Bot, M.; Brodde, M.; Taylor, P.J.; Salm, P.; Brinkmann, V.; van Berkel, T.; Assmann, G.; Biessen, E.A.L. FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2007, 115, 501–508. [Google Scholar]
- Keul, P.; Tolle, M.; Lucke, S.; von Wnuck Lipinski, K.; Heusch, G.; Schuchardt, M.; van der Giet, M.; Levkau, B. The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol 2007, 27, 607–613. [Google Scholar]
- Klingenberg, R.; Nofer, J.R.; Rudling, M.; Bea, F.; Blessing, E.; Preusch, M.; Grone, H.J.; Katus, H.A.; Hansson, G.K.; Dengler, T.J. Sphingosine-1-phosphate analogue FTY720 causes lymphocyte redistribution and hypercholesterolemia in apoE-deficient mice. Arterioscler. Thromb Vasc. Biol 2007, 27, 2392–2399. [Google Scholar]
- Ahnstrom, J.; Axler, O.; Jauhiainen, M.; Salomaa, V.; Havulinna, A.S.; Ehnholm, C.; Frikke-Schmidt, R.; Tybjaerg-Hansen, A.; Dahlback, B. Levels of apolipoprotein M are not associated with the risk of coronary heart disease in two independent case-control studies. J. Lipid Res 2008, 49, 1912–1917. [Google Scholar]
- Plomgaard, P.; Dullaart, R.P.F.; de Vries, R.; Groen, A.K.; Dahlback, B.; Nielsen, L.B. Apolipoprotein M predicts pre-beta-HDL formation: Studies in type 2 diabetic and nondiabetic subjects. J. Int. Med 2009, 266, 258–267. [Google Scholar]
- Christoffersen, C.; Ahnstrom, J.; Axler, O.; Christensen, E.I.; Dahlback, B.; Nielsen, L.B. The signal peptide anchors apolipoprotein M in plasma lipoproteins and prevents rapid clearance of apolipoprotein M from plasma. J. Biol. Chem 2008, 283, 18765–18772. [Google Scholar]
- Christoffersen, C.; Benn, M.; Christensen, P.M.; Gordts, P.L.; Roebroek, A.J.; Frikke-Schmidt, R.; Tybjaerg-Hansen, A.; Dahlback, B.; Nielsen, L.B. The plasma concentration of HDL-associated apoM is influenced by LDL receptor-mediated clearance of apoB-containing particles. J. Lipid Res 2012, 53, 2198–2204. [Google Scholar]
- Le, S.H.; Milstien, S.; Spiegel, S. Generation and metabolism of bioactive sphingosine-1-phosphate. J. Cell Biochem 2004, 92, 882–899. [Google Scholar]
- Puri, V.; Jefferson, J.R.; Singh, R.D.; Wheatley, C.L.; Marks, D.L.; Pagano, R.E. Sphingolipid storage induces accumulation of intracellular cholesterol by stimulating SREBP-1 cleavage. J. Biol. Chem 2003, 278, 20961–20970. [Google Scholar]
- Witting, S.R.; Maiorano, J.N.; Davidson, W.S. Ceramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP-binding cassette transporter A1. J. Biol. Chem 2003, 278, 40121–40127. [Google Scholar]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317–325. [Google Scholar]
- Maceyka, M.; Harikumar, K.B.; Milstien, S.; Spiegel, S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 2012, 22, 50–60. [Google Scholar]
- Duenas, A.I.; Aceves, M.; Fernandez-Pisonero, I.; Gomez, C.; Orduna, A.; Crespo, M.S.; Garcia-Rodriguez, C. Selective attenuation of Toll-like receptor 2 signalling may explain the atheroprotective effect of sphingosine 1-phosphate. Cardiovasc. Res 2008, 79, 537–544. [Google Scholar]
- Kempe, S.; Kestler, H.; Lasar, A.; Wirth, T. NF-kappaB controls the global pro-inflammatory response in endothelial cells: Evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res 2005, 33, 5308–5319. [Google Scholar]
- De, P.C.; Meacci, E.; Perrotta, C.; Bruni, P.; Clementi, E. Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1 and sphingosine 1 phosphate receptors: A novel pathway relevant to the pathophysiology of endothelium. Arterioscler. Thromb. Vasc. Biol 2006, 26, 99–105. [Google Scholar]
- Argraves, K.M.; Sethi, A.A.; Gazzolo, P.J.; Wilkerson, B.A.; Remaley, A.T.; Tybjaerg-Hansen, A.; Nordestgaard, B.G.; Yeatts, S.D.; Nicholas, K.S.; Barth, J.L.; et al. S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease. Lipids Health Dis 2011, 10, 70. [Google Scholar]
Genotype | ApoM level | S1P level | Cholesterol level | Atherosclerosis |
---|---|---|---|---|
apoM-TgH*[19,23] | ++ | ++ | + | Unknown |
apoM-TgN*[23] | + | + | 0 | Unknown |
apom−/− *[23,39] | −− | − | − | Unknown |
apoM-TgHldlr−/− **[25] | ++ | Unknown | ++ | + |
apoM-TgNldlr−/− **[23,25] | + | Unknown | 0 | −− |
apom−/−ldlr−/− **[25] | −− | Unknown | − | −− |
apoM-TgHapoe−/− ***[25] | ++ | Unknown | 0 | −− |
S1Plyase−/− *[46] | Unknown | ++ | ++ | Unknown |
ldlr−/−+ Sphingosine kinase inhibitor **[47] | Unknown | - | 0 | 0 |
apoe−/−S1Pr2−/− ***[48] | Unknown | Unknown | 0 | −− |
apoe−/−S1Pr3−/− ***[49] | Unknown | Unknown | 0 | 0 |
ldlr−/−+ FTY720 (0.04 mg/kg/day) **[50] | Unknown | Unknown | 0 | 0 |
ldlr−/−+ FTY720 (0.4 mg/kg/day) **[50] | Unknown | Unknown | 0 | − |
apoe−/−+ FTY720 (1.25 mg/kg/d) ***[51] | Unknown | Unknown | 0 | −− |
apoe−/−+ FTY720 (3 mg/kg/d) ***[52] | Unknown | + | ++ | 0 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Arkensteijn, B.W.C.; Berbée, J.F.P.; Rensen, P.C.N.; Nielsen, L.B.; Christoffersen, C. The Apolipoprotein M–Sphingosine-1-Phosphate Axis: Biological Relevance in Lipoprotein Metabolism, Lipid Disorders and Atherosclerosis. Int. J. Mol. Sci. 2013, 14, 4419-4431. https://doi.org/10.3390/ijms14034419
Arkensteijn BWC, Berbée JFP, Rensen PCN, Nielsen LB, Christoffersen C. The Apolipoprotein M–Sphingosine-1-Phosphate Axis: Biological Relevance in Lipoprotein Metabolism, Lipid Disorders and Atherosclerosis. International Journal of Molecular Sciences. 2013; 14(3):4419-4431. https://doi.org/10.3390/ijms14034419
Chicago/Turabian StyleArkensteijn, Bas W. C., Jimmy F. P. Berbée, Patrick C. N. Rensen, Lars B. Nielsen, and Christina Christoffersen. 2013. "The Apolipoprotein M–Sphingosine-1-Phosphate Axis: Biological Relevance in Lipoprotein Metabolism, Lipid Disorders and Atherosclerosis" International Journal of Molecular Sciences 14, no. 3: 4419-4431. https://doi.org/10.3390/ijms14034419
APA StyleArkensteijn, B. W. C., Berbée, J. F. P., Rensen, P. C. N., Nielsen, L. B., & Christoffersen, C. (2013). The Apolipoprotein M–Sphingosine-1-Phosphate Axis: Biological Relevance in Lipoprotein Metabolism, Lipid Disorders and Atherosclerosis. International Journal of Molecular Sciences, 14(3), 4419-4431. https://doi.org/10.3390/ijms14034419