Comparative Analysis of Serum (Anti)oxidative Status Parаmeters in Healthy Persons
Abstract
:Abbreviations
FRAP | ferric reducing ability of plasma |
BAP | biological antioxidant potential |
TAS | total antioxidant status |
ABTS | 2,2′-azino-bis(3-ethylbenzotiazoline-6-sulphonic acid) |
ROM | reactive oxygen metabolites |
CARR U | Carratelli Units |
TOS | total oxidant status |
TTP | total thiols in proteins |
OXY | oxy-adsorbent test |
1. Introduction
2. Methods
2.1. Volunteers
2.2. The FRAP Assay
2.3. The BAP Assay
2.4. The TAS Assay
2.5. The TTP Assay
2.6. The OXY Assay
2.7. The Uric Acid Assay
2.8. The ROM Assay
2.9. The TOS Assay
2.10. Statistics
3. Results
3.1. Antioxidant Assays
3.2. Oxidation Assays
4. Discussion
4.1. Antioxidant Assays
4.2. Oxidation Assays
5. Conclusion
Acknowledgements
Conflicts of Interest
References
- Grimsrud, P.A.; Picklo, M.J.; Griffin, T.J.; Bernlohr, D.A. Carbonylation of adipose proteins in obesity and insulin resistance: Identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol. Cell. Proteomics 2007, 6, 624–637. [Google Scholar]
- Curtis, J.M.; Grimsrud, P.A.; Wright, W.S.; Xu, X.; Foncea, R.E.; Graham, D.W.; Brestoff, J.R.; Wiczer, B.M.; Ilkayeva, O.; Cianflone, K.; et al. Downregulation of adipose glutathione s-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes 2010, 59, 1132–1142. [Google Scholar]
- Yu, R.; Navab, M. Oxidation hypothesis of atherogenesis: HDL inflammatory index and apolipoprotein A-I mimetic peptides. Future Cardiol 2007, 3, 309–319. [Google Scholar]
- Manea, A.; Simionescu, M. Nox enzymes and oxidative stress in atherosclerosis. Front Biosci. (Schol. Ed.) 2012, 4, 651–670. [Google Scholar]
- McMahon, M.; Grossman, J.; FitzGerald, J.; Dahlin-Lee, E.; Wallace, D.J.; Thong, B.Y.; Badsha, H.; Kalunian, K.; Charles, C.; Navab, M.; et al. Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 2006, 54, 2541–2549. [Google Scholar]
- Zarkovic, M. The role of oxidative stress on the pathogenesis of graves’ disease. J. Thyroid Res. 2012. [Google Scholar] [CrossRef]
- Melo, A.; Monteiro, L.; Lima, R.M.; de Oliveira, D.M.; de Cerqueira, M.D.; El-Bachá, R.S. Oxidative stress in neurodegenerative diseases: Mechanisms and therapeutic perspectives. Oxid. Med. Cell. Longev. 2011. [Google Scholar] [CrossRef]
- Butterfield, A.; Perluigi, M.; Reed, T.; Muharib, T.; Hughes, C.P.; Robinson, R.A.; Sultana, R. Redox proteomics in selected neurodegenerative disorders: From its infancy to future applications. Antioxid. Redox Signal 2012, 17, 1610–1655. [Google Scholar]
- Vaziri, N.D.; Navab, M.; Fogelman, A.M. HDL metabolism and activity in chronic kidney disease. Nat. Rev. Nephrol 2010, 6, 287–296. [Google Scholar]
- Johnson-Davis, K.L.; Fernelius, C.; Eliason, N.B.; Wilson, A.; Beddhu, S.; Roberts, W.L. Blood enzymes and oxidative stress in chronic kidney disease: A cross sectional study. Ann. Clin. Lab Sci 2011, 41, 331–339. [Google Scholar]
- Arsova-Sarafinovska, Z.; Eken, A.; Matevska, N.; Erdem, O.; Sayal, A.; Savaser, A.; Banev, S.; Petrovski, D.; Dzikova, S.; Georgiev, V.; et al. Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer. Clin. Biochem 2009, 42, 1228–1235. [Google Scholar]
- Maffei, F.; Angeloni, C.; Malaguti, M.; Moraga, J.M.; Pasqui, F.; Poli, C.; Colecchia, A.; Festi, D.; Hrelia, P.; Hrelia, S. Plasma antioxidant enzymes and clastogenic factors as possible biomarkers of colorectal cancer risk. Mutat. Res 2011, 714, 88–92. [Google Scholar]
- Kastle, M.; Grune, T. Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system. Curr. Pharm. Des 2011, 17, 4007–4022. [Google Scholar]
- Su, Y.; Xu, Y.; Sun, Y.M.; Li, J.; Liu, X.M.; Li, Y.B.; Liu, G.D.; Bi, S. Comparison of the effects of simvastatin versus atorvastatin on oxidative stress in patients with type 2 diabetes mellitus. J. Cardiovasc. Pharmacol 2010, 55, 21–25. [Google Scholar]
- Shinde, S.N.; Dhadke, V.N.; Suryakar, A.N. Evaluation of oxidative stress in type 2 Diabetes mellitus and follow-up along with vitamin E supplementation. Indian J. Clin. Biochem 2011, 26, 74–77. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem 1996, 239, 70–76. [Google Scholar]
- Diacron. Available online: http://www.diacron.com accessed on 15 December 2012.
- Relassay Diagnostics. Available online: http://www.RelAssay.com accessed on 15 December 2012.
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem 2004, 37, 277–285. [Google Scholar]
- Petz, B. Dotatak. In Osnovne Statisticke Metode za Nematematicare, Manualia Universitatis Studiorum Zagrabiensis, 2nd ed.; SNL: Zagreb, Croatia, 1985; p. 344. [Google Scholar]
- Kolomvotsou, A.I.; Rallidis, L.S.; Mountzouris, K.C.; Lekakis, J.; Koutelidakis, A.; Efstathiou, S.; Nana-Anastasiou, M.; Zampelas, A. Adherence to Mediterranean diet and close dietetic supervision increase total dietary antioxidant intake and plasma antioxidant capacity in subjects with abdominal obesity. Eur. J. Nutr 2013, 52, 37–48. [Google Scholar]
- Kappus, R.M.; Curry, C.D.; McAnulty, S.; Welsh, J.; Morris, D.; Nieman, D.C.; Soukup, J.; Collier, S.R. The effects of a multiflavonoid supplement on vascular and hemodynamic parameters following acute exercise. Oxid. Med. Cell. Longev. 2011. [Google Scholar] [CrossRef]
- Nakayama, K.; Terawaki, H.; Nakayama, M.; Iwabuchi, M.; Sato, T.; Ito, S. Reduction of serum antioxidative capacity during hemodialysis. Clin. Exp. Nephrol 2007, 11, 18–24. [Google Scholar]
- Nagashima, M.; Saito, K. Antioxidant activity of the new black vinegar “IZUMI”. J. Nutr. Health Aging 2010, 14, 845–849. [Google Scholar]
- Alp, R.; Selek, S.; Ilhan Alp, S.; Taskin, A.; Kocyigit, A. Oxidative and antioxidative balance in patients of migraine. Eur. Rev. Med. Pharmacol 2010, 14, 877–882. [Google Scholar]
- Emecen, O.; Bercic Inal, B.; Erdenen, F.; Usta, M.; Aral, H.; Guvenen, G. Evaluation of oxidant/antioxidant status and ECP levels in asthma. Turk. J. Med. Sci 2010, 40, 889–895. [Google Scholar]
- Cao, G.; Prior, R.L. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin. Chem 1998, 44, 1309–1315. [Google Scholar]
- Lamonta, J.; Campbell, J.; FitzGerald, P. Measurement of individual vs. total antioxidants. Clin. Chem 1997, 43, 852–854. [Google Scholar]
- Palmieri, B.; Sblendorio, V. Oxidative stress tests: Overview on reliability and use. Part II. Eur. Rev. Med. Pharmacol. Sci 2007, 11, 383–399. [Google Scholar]
- Da Costa, C.M.; Dos Santos, R.C.C.; Lima, E.S. A simple automated procedure for thiol measurement in human serum samples. J. Bras. Patol. Med. Lab 2006, 42, 345–350. [Google Scholar]
- Leufkens, A.M.; van Duijnhoven, F.J.B.; Woudt, S.H.S.; Siersema, P.D.; Jenab, M.; Jansen, E.H.J.M.; Pischon, T.; Tjønneland, A.; Olsen, A.; Overvad, K.; et al. Biomarkers of oxidative stress and risk of developing colorectal cancer: A cohort-nested case-control study in the European Prospective Investigation Into Cancer and Nutrition. Am. J. Epidemiol 2012, 175, 653–663. [Google Scholar]
Assay | Mean ± SD | CV (%) |
---|---|---|
FRAP (μmol/L) | 1,392 ± 158 | 11.4 |
BAP (μEq/L) | 2,455 ± 147 | 6.0 |
TAS (μmol/L) | 1,570 ± 140 | 8.9 |
TTP (μmol/L) | 431 ± 52 | 12.1 |
OXY (μmol HClO/mL) | 416 ± 62 | 14.9 |
Uric acid (μmol/L) | 310 ± 52 | 16.8 |
ROM (CARR U) | 396 ± 85 | 21.5 |
TOS (μmol H2O2 Eq/L) | 1.99 ± 0.85 | 42.7 |
FRAP | BAP | TAS | TTP | OXY | Uric acid | ROM | TOS | |
---|---|---|---|---|---|---|---|---|
FRAP | -- | 0.097 | 0.807* | −0.008 | 0.102 | 0.869* | 0.090 | 0.039 |
BAP | -- | 0.501* | 0.510* | 0.009 | 0.302 | −0.037 | −0.140 | |
TAS | -- | 0.279 | 0.287 | 0.922* | −0.050 | −0.105 | ||
TTP | -- | 0.042 | 0.114 | −0.171 | −0.048 | |||
OXY | -- | 0.272 | −0.144 | 0.073 | ||||
Uric acid | -- | −0.005 | −0.109 | |||||
ROM | -- | 0.204 | ||||||
TOS | -- |
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jansen, E.H.; Ruskovska, T. Comparative Analysis of Serum (Anti)oxidative Status Parаmeters in Healthy Persons. Int. J. Mol. Sci. 2013, 14, 6106-6115. https://doi.org/10.3390/ijms14036106
Jansen EH, Ruskovska T. Comparative Analysis of Serum (Anti)oxidative Status Parаmeters in Healthy Persons. International Journal of Molecular Sciences. 2013; 14(3):6106-6115. https://doi.org/10.3390/ijms14036106
Chicago/Turabian StyleJansen, Eugène HJM, and Tatjana Ruskovska. 2013. "Comparative Analysis of Serum (Anti)oxidative Status Parаmeters in Healthy Persons" International Journal of Molecular Sciences 14, no. 3: 6106-6115. https://doi.org/10.3390/ijms14036106
APA StyleJansen, E. H., & Ruskovska, T. (2013). Comparative Analysis of Serum (Anti)oxidative Status Parаmeters in Healthy Persons. International Journal of Molecular Sciences, 14(3), 6106-6115. https://doi.org/10.3390/ijms14036106