Bacterial Growth Kinetics under a Novel Flexible Methacrylate Dressing Serving as a Drug Delivery Vehicle for Antiseptics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results for Negative Control and Non-Antimicrobial Methacrylate Dressing
2.2. Results for Methacrylate Dressing Loaded with Antimicrobial Compounds
3. Experimental Section
3.1. In-Vitro Test Model
3.2. Preparation of the Test-Suspension and Artificial Contamination of the Wound
3.3. Preparation of Test Model and Processing of Tissue Biopsies
4. Conclusions
Conflict of Interest
References
- Archibald, L.K.; Hierholzer, W.J. Principles of Infectious Disease Epidemiology. In Hospital Epidemiology and Infection Control, 3rd ed; Mayhall, G.C., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004; pp. 3–17. [Google Scholar]
- Braga, I.A.; Pirett, C.C.N.S.; Ribas, R.M.; Filho, P.P.G.; Filho, A.D. Bacterial colonization of pressure ulcers: Assessment of risk for bloodstream infection and impact on patient outcomes. J. Hosp. Infect 2013, 83, 314–320. [Google Scholar]
- Forstner, C.; Dungl, C.; Tobudic, S.; Mitteregger, D.; Lagler, H.; Burgmann, H. Predictors of clinical and microbiological treatment failure in patients with methicillin-resistant Staphylococcus aureus(MRSA) bacteraemia: A retrospective cohort study in a region with low MRSA prevalence. Clin. Microb. Infect. 2013. [Google Scholar] [CrossRef]
- Beldon, P. How to choose the appropriate dressing for each wound type. Wound Essentials 2010, 5, 140–144. [Google Scholar]
- Leaper, D. Topical antiseptics in wound care: Time for reflection. Int. Wound J 2011, 8, 547–549. [Google Scholar]
- Clark, L. Antibiotic resistance: A growing and multifaceted problem. Br. J. Nurs 2000, 9, 225–230. [Google Scholar]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis 2011, 17, 1791–1798. [Google Scholar]
- Disemond, J.; Assadian, O.; Gerber, V.; Kingsley, A.; Kramer, A.; Leaper, D.J.; Mosti, G.; de Grzymala, A.P.; Roepe, G.; Risse, A.; et al. Classification of wounds at risk and their antimicrobial treatment with polyhexanide: A practice-oriented expert recommendation. Skin Pharmacol. Physiol 2011, 24, 245–255. [Google Scholar]
- Cutting, K.F.; Harding, K.G. Criteria for identifying wound infection. J. Wound Care 1994, 3, 198–201. [Google Scholar]
- Leaper, D.; Ayello, E.A.; Carville, K.; Fletcher, J.; Keast, D.; Lindholm, C.; Martinez, J.L.L.; Mayanini, S.D.; McBain, A.; Moore, Z.; et al. Appropriate use of silver dressings in wounds. International Consensus Document. Int. Wound J 2012, 9, 461–464. [Google Scholar]
- Sibbald, R.G.; Leaper, D.J.; Queen, D. Iodine made easy. Wounds Int 2011, 2, S1–S6. [Google Scholar]
- Eberlein, T.; Assadian, O. Clinical use of polihexanide on acute and chronic wounds for antisepsis and decontamination. Skin Pharmacol. Physiol 2011, 23, S45–S51. [Google Scholar]
- Minnich, K.E.; Stolarick, R.; Wilkins, R.G.; Chilson, G.; Pritt, S.L.; Unverdorben, M. The effect of a wound care solution containing polyhexanide and betaine on bacterial counts: Results of an in vitro study. Ostomy. Wound Manag 2012, 58, 32–36. [Google Scholar]
- Vanscheidt, W.; Harding, K.; Téot, L.; Siebert, J. Effectiveness and tissue compatibility of a 12-week treatment of chronic venous leg ulcers with an octenidine based antiseptic—A randomized, double-blind controlled study. Int. Wound J 2012, 9, 316–323. [Google Scholar]
- Fitzgerald, R.H.; Bharara, M.; Mills, J.L.; Armstrong, D.G. Use of a nanoflex powder dressing for wound management following debridement for necrotising fasciitis in the diabetic foot. Int. Wound J 2009, 6, 133–139. [Google Scholar]
- Winter, G.D. Formation of the scarb and the rate of epithelialization of superficial wounds in the skin of the young domestic pig. Nature 1962, 193, 293–294. [Google Scholar]
- Henry-Stanley, M.J.; Hess, D.J.; Barnes, A.M.; Dunny, G.M.; Wells, C.L. Bacterial contamination of surgical suture resembles a biofilm. Surg. Infect. (Lachmt.) 2010, 11, 433–439. [Google Scholar]
- Kim, P.Y.; Kim, Y.S.; Koo, I.G.; Jund, J.C.; Kim, G.J.; Choi, M.Y.; Yu, Z.; Collins, G.J. Bacterial inactivation of wound infection in a human skin model by liquid-phase discharge plasma. PLoS One 2011, 6, e24104. [Google Scholar]
- Wang, N.; Strugnell, R.; Wijburg, O.; Brodnicki, T. Measuring bacterial load and immune responses in mice infected with listeria monocytogenes. J. Vis. Exp 2011, 54, 3076. [Google Scholar]
- Assadian, O.; Assadian, A.; Stadler, M.; Diab-Elschahawi, M.; Kramer, A. Bacterial growth kinetic without the influence of the immune system using vacuum-assisted closure dressing with and without negative pressure in an in vitro wound model. Int. Wound J 2010, 7, 283–289. [Google Scholar]
- Migliaresi, C.; Carfagna, C.; Nicolais, L. Laminates of poly(2-hydroxyethyl methacrylate) and polybutadiene as potential burn covering. Biomaterials 1980, 1, 205–208. [Google Scholar]
- Nathan, P.; Robb, E.C.; Law, E.J.; MacMillan, B.G. A clinical study of antimicrobial agents delivered to burn wounds from a drug-loaded synthetic dressing. J. Trauma 1982, 22, 1015–1018. [Google Scholar]
- Fang, C.H.; Nathan, P.; Robb, E.C.; Alexander, J.W.; MacMillan, B.G. Prospective clinical study of Hydron, a synthetic dressing, in delivery of an antimicrobial drug to second-degree burns. J. Burn Care Rehabil 1987, 8, 206–209. [Google Scholar]
- Deitch, E.A.; Sittig, K.; Heimbach, D.; Jordan, M.; Cruse, W.; Kahn, A.; Achauer, B.; Finley, R.; Matsuda, T.; Salisbury, R.; et al. Results of a multicenter outpatient burn study on the safety and efficacy of Dimac-SSD, a new delivery system for silver sulfadiazine. J. Trauma 1989, 29, 430–434. [Google Scholar]
- Lalani, R.; Liu, L. Electrospun zwitterionic poly-(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules 2012, 13, 1853–1863. [Google Scholar]
- Chen, Y.H.; Dong, W.R.; Chen, Q.Y.; Zhao, B.L.; Zou, Z.Z.; Xiao, Y.Q.; Hu, G.D.; Qiu, X.X. Biological dressing with human hair keratin-collagen sponge-poly 2-hydroxyethyl methacrylate composite promotes burn wound healing in SD rats. Nan Fang Yi Ke Da Xue Xue Bao 2007, 27, 1621–1626. [Google Scholar]
- Tsou, T.L.; Tang, S.T.; Huang, Y.C.; Wu, J.R.; Young, J.J.; Wang, H.J. Poly(2-hydroxyethyl methacrylate) wound dressing containing ciprofloxacin and its drug release studies. J. Mater. Sci. Mater. Med 2005, 16, 95–100. [Google Scholar]
- Hirsch, T.; Limoochi-Deli, S.; Lahmer, A.; Jacobsen, F.; Goertz, O.; Steinau, H.U.; Seipp, H.M.; Steinstraesser, L. Antimicrobial activity of clinically used antiseptics and wound irrigating agents in combination with wound dressings. Plast. Reconstr. Surg 2011, 127, 1539–1545. [Google Scholar]
- Assadian, O.; Kramer, A.; Cutting, K.F.; Leaper, D.J. Bacterial growth kinetic under a novel nanoflex powder dressing serving as a drug delivery vehicle for various antiseptics. Presented at the 22 nd Conference of the European Wound Management Association, Vienna, Austria, 23–25 May 2012; EP 375. p. 318.
Dressing +/− antiseptic or no dressing | Mean bacterial colony forming units (log10) per gram tissue (±1 SD) after | |||||
---|---|---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | 96 h | 120 h | |
Negative control | 4.02 (± 2.67) | 7.12 (± 6.52) | 8.61 (± 7.43) | 8.26 (± 7.12) | 7.56 (± 6.59) | 7.07 (± 6.89) |
Methacrylate dressing | 4.02 (± 2.67) | 6.11 (± 5.40) | 7.02 (± 7.11) | 7.56 (± 6.71) | 7.05 (± 5.80) | 6.90 (± 6.65) |
0.02% PHMB a | 4.01 (± 2.46) | 3.93 (± 2.85) | 3.98 (± 2.93) | 3.87 (± 2.94) | 4.01 (± 2.83) | 4.01 (± 2.71) |
0.1% PHMB a + 0.1% betaine b | 4.03 (± 2.67) | 4.12 (± 3.63) | 4.20 (± 3.54) | 4.96 (± 3.76) | 4.95 (± 3.71) | 5.38 (± 4.96) |
0.4% PHMB a | 4.01 (± 2.32) | 3.39 (± 2.68) | 3.29 (± 2.10) | 3.63 (± 2.87) | 3.84 (± 2.35) | 3.79 (± 2.26) |
7.7 mg/mL PVP-I c | 4.02 (± 2.67) | 1.43 (± 0.91) | 1.84 (± 1.01) | 2.45 (± 1.64) | 3.14 (± 1.98) | 3.29 (± 1.89) |
0.1% OCT d + 2% PE e | 4.01 (± 1.91) | 3.14 (± 1.79) | 2.41 (± 1.69) | 2.78 (± 1.49) | 2.89 (± 1.74) | 3.24 (± 2.02) |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Forstner, C.; Leitgeb, J.; Schuster, R.; Dosch, V.; Kramer, A.; Cutting, K.F.; Leaper, D.J.; Assadian, O. Bacterial Growth Kinetics under a Novel Flexible Methacrylate Dressing Serving as a Drug Delivery Vehicle for Antiseptics. Int. J. Mol. Sci. 2013, 14, 10582-10590. https://doi.org/10.3390/ijms140510582
Forstner C, Leitgeb J, Schuster R, Dosch V, Kramer A, Cutting KF, Leaper DJ, Assadian O. Bacterial Growth Kinetics under a Novel Flexible Methacrylate Dressing Serving as a Drug Delivery Vehicle for Antiseptics. International Journal of Molecular Sciences. 2013; 14(5):10582-10590. https://doi.org/10.3390/ijms140510582
Chicago/Turabian StyleForstner, Christina, Johannes Leitgeb, Rupert Schuster, Verena Dosch, Axel Kramer, Keith F. Cutting, David J. Leaper, and Ojan Assadian. 2013. "Bacterial Growth Kinetics under a Novel Flexible Methacrylate Dressing Serving as a Drug Delivery Vehicle for Antiseptics" International Journal of Molecular Sciences 14, no. 5: 10582-10590. https://doi.org/10.3390/ijms140510582
APA StyleForstner, C., Leitgeb, J., Schuster, R., Dosch, V., Kramer, A., Cutting, K. F., Leaper, D. J., & Assadian, O. (2013). Bacterial Growth Kinetics under a Novel Flexible Methacrylate Dressing Serving as a Drug Delivery Vehicle for Antiseptics. International Journal of Molecular Sciences, 14(5), 10582-10590. https://doi.org/10.3390/ijms140510582