Nanoparticle-Based Systems for T1-Weighted Magnetic Resonance Imaging Contrast Agents
Abstract
:1. Introduction
2. General Description of T1-Weighted Contrast Agents
3. Gd-Chelate Grafted Hydrophilic Macromolecule Nanoparticles
4. Gd-Chelate Grafted Inorganic Nanoparticles
5. Gadolinium Nanoparticles
6. Manganese-Based Nanoparticulate Systems
7. Dual (T1- and T2-) Weighted MRI Contrast Agents
8. Conclusions and Outlook
Acknowledgements
Conflict of Interest
References
- Benaron, D.A. The future of cancer imaging. Cancer Metast. Rev 2002, 21, 45–78. [Google Scholar]
- Townsend, D.W.; Beyer, T.; Blodgett, T.M. PET/CT scanners: A hardware approach to image fusion. Semin. Nucl. Med 2003, 33, 193–204. [Google Scholar]
- Massoud, T.F.; Gamrbhi, S.S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev 2003, 17, 545–580. [Google Scholar]
- Brenner, D.J.; Hall, E.J. Computed tomography—An increasing source of radiation exposure. N. Engl. J. Med 2007, 357, 2277–2284. [Google Scholar]
- Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 2008, 453, 869–878. [Google Scholar]
- Rabin, J.M.; Perez, J.; Grimm, G.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater 2006, 5, 118–122. [Google Scholar]
- Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P.L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev 2010, 110, 2620–2640. [Google Scholar]
- Louie, A. Multimodality imaging probes: Design and challenges. Chem. Rev 2010, 110, 3146–3195. [Google Scholar]
- Terreno, E.; Castelli, D.D.; Aime, A.S.V. Challenges for molecular magnetic resonance imaging. Chem. Rev 2010, 110, 3019–3042. [Google Scholar]
- Zhou, J.; Liu, Z.; Li, F.Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev 2012, 41, 1323–1349. [Google Scholar]
- Mitchell, D.G. MRI Principles; W. B. Saunders Company: Philadelphia, PA, USA, 1999. [Google Scholar]
- Artemov, D.; Bhujwalla, Z.M.; Bulte, J.W. Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr. Pharm. Biotechnol 2004, 5, 485–494. [Google Scholar]
- Blamire, A.M. The technology of MRI—The next 10 years? Br. J. Radiol 2008, 81, 601–617. [Google Scholar]
- Xu, W.; Kattel, K.; Park, J.Y.; Chang, Y.T.; Kim, J.; Lee, G.H. Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Phys. Chem. Chem. Phys 2012, 14, 12687–12700. [Google Scholar]
- Delikatny, E.J.; Poptani, H. MR techniques for in vivo molecular and cellular imaging. Radiol. Clin. North Am 2005, 43, 205–220. [Google Scholar]
- Weissleder, R. Molecular imaging in cancer. Science 2006, 312, 1168–1171. [Google Scholar]
- De, M.; Chou, S.S.; Joshi, H.M.; Dravid, V.P. Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. Adv. Drug Deliver. Rev 2011, 63, 1282–1299. [Google Scholar]
- Heeger, D.J.; Ress, D. What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci 2002, 3, 142–151. [Google Scholar]
- Sosnovik, D.E.; Nahrendorf, M.; Weissleder, R. Molecular magnetic resonance imaging in cardiovascular medicine. Circulation 2007, 115, 2076–2086. [Google Scholar]
- Francois, C.J.; Schiebler, M.L.; Reeder, S.B. Cardiac MRI evaluation of nonischemic cardiomyopathies. J. Magn. Reson. Imaging 2010, 31, 518–530. [Google Scholar]
- Seevinck, P.R.; Deddens, L.H.; Dijkhuizen, R.M. Magnetic resonance imaging of brain angiogenesis after stroke. Angiogenesis 2010, 13, 101–111. [Google Scholar]
- Berry, E.; Bulpitt, A. Fundamentals of MRI; CRC Press: Boca Raton, FL, USA, 2009; p. 298. [Google Scholar]
- Westbrook, C. MRI in Practice, 3rd ed; Wiley-Blackwell: Hoboken, NJ, USA, 2005; p. 424. [Google Scholar]
- Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev 2006, 35, 512–523. [Google Scholar]
- Corot, C.; Robert, P.; Idée, J.-M.; Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliver. Rev 2006, 58, 1471–1504. [Google Scholar]
- Hu, F.; Zhao, Y.S. Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. Nanoscale 2012, 4, 6235–6243. [Google Scholar]
- Stephen, Z.R.; Kievit, F.M.; Zhang, M. Magnetic nanoparticles for medical MR imaging. Mater. Today 2011, 14, 330–338. [Google Scholar]
- Frey, N.A.; Peng, S.; Cheng, K.; Sun, S. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev 2009, 38, 2532–2542. [Google Scholar]
- Na, H.B.; Song, I.C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater 2009, 21, 2133–2148. [Google Scholar]
- Shan, L.; Chopra, A.; Leung, K.; Eckelman, W.C.; Menkens, A.E. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging. J. Nanopart. Res 2012, 14, 1122. [Google Scholar]
- Sosnovik, D.E.; Nahrendorf, M.; Weissleder, R. Magnetic nanoparticles for MR imaging: Agents, techniques and cardiovascular applications. Basic Res. Cardiol 2008, 103, 122–130. [Google Scholar]
- Jennings, L.E.; Long, N.J. ‘Two is better than one’—Probes for dual-modalitymolecular imaging. Chem. Comm. 2009, 3511–3524. [Google Scholar]
- Major, J.L.; Meade, T.J. Bioresponsive, cell-penetrating, and multimeric MR contrast agents. Acc. Chem. Res 2009, 42, 893–903. [Google Scholar]
- Hu, F.; Joshi, H.M.; Dravid, V.P.; Meade, T.J. High-performance nanostructured MR contrast probes. Nanoscale 2010, 2, 1884–1891. [Google Scholar]
- Liu, F.; Laurent, S.; Fattahi, H.; Vander Elst, L.; Muller, R.N. Superparamagnetic nanosystems based on iron oxide nanoparticles for biomedical imaging. Nanomedicine 2011, 6, 519–528. [Google Scholar]
- Jun, Y.-W.; Lee, J.-H.; Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed 2008, 47, 5122–5135. [Google Scholar]
- Taylor, A.; Wilson, K.M.; Murray, P.; Fernig, D.G.; Levy, R. Long-term tracking of cells using inorganic nanoparticles as contrast agents: Are we there yet? Chem. Soc. Rev 2012, 41, 2707–2717. [Google Scholar]
- Sailor, M.J.; Park, J.-H. Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater 2012, 24, 3779–3802. [Google Scholar]
- Goodwill, P.W.; Saritas, E.U.; Croft, L.R.; Kim, T.N.; Krishnan, K.M.; Schaffer, D.V.; Conolly, S.M. X-Space MPI: Magnetic nanoparticles for safe medical imaging. Adv. Mater 2012, 24, 3870–3877. [Google Scholar]
- Fang, C.; Zhang, M. Multifunctional magnetic nanoparticles for medical imaging applications. J. Mater. Chem 2009, 19, 6258–6266. [Google Scholar]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev 1999, 99, 2293–2352. [Google Scholar]
- Ratzinger, G.; Agrawal, P.; Körner, W.; Lonkai, J.; Sanders, H.M.H.F.; Terreno, E.; Wirth, M.; Strijkers, G.J.; Nicolay, K.; Gabor, F. Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents. Biomaterials 2010, 31, 8716–8723. [Google Scholar]
- Flacke, S.; Fischer, S.; Scott, M.J.; Fuhrhop, R.J.; Allen, J.S.; McLean, M.; Winter, P.; Sicard, G.A.; Gaffney, P.J.; Wickline, S.A.; et al. Novel MRI contrast agent for molecular imaging of fibrin: Implications for detecting vulnerable plaques. Circulation 2001, 104, 1280–1285. [Google Scholar]
- Winter, P.M.; Morawski, A.M.; Caruthers, S.D.; Fuhrhop, R.W.; Zhang, H.; Williams, T.A.; Allen, J.S.; Lacy, E.K.; Robertson, J.D.; Lanza, G.M.; et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-integrin-targeted nanoparticles. Circulation 2003, 108, 2270–2274. [Google Scholar]
- Rieter, W.J.; Kim, J.S.; Taylor, K.M.L.; An, H.; Lin, W.; Tarrant, T.; Lin, W. Hybrid silica nanoparticles for multimodal imaging. Angew. Chem. Int. Ed 2007, 46, 3680–3682. [Google Scholar]
- Rieter, W.J.; Taylor, K.M.L.; An, H.; Lin, W.; Lin, W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc 2006, 128, 9024–9025. [Google Scholar]
- Taylor, K.M.L.; Kim, J.S.; Rieter, W.J.; An, H.; Lin, W.; Lin, W. Mesoporous silica nanopheres as highly efficient MRI contrast agents. J. Am. Chem. Soc 2008, 130, 2154–2155. [Google Scholar]
- Richard, C.; Doan, B.-T.; Beloeil, J.-C.; Bessodes, M.; Tóth, É.; Scherman, D. Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: Toward powerful T1 and T2 MRI contrast agents. Nano Lett 2008, 8, 232–236. [Google Scholar]
- Sitharaman, B.; Kissell, K.R.; Hartman, K.B.; Tran, L.A.; Baikalov, A.; Rusakova, I.; Sun, Y.; Khant, H.A.; Ludtke, S.J.; Chiu, W.; et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun 2005, 3915–3917. [Google Scholar]
- Lee, G.H.; Chang, Y.; Kim, T.-J. Blood-Pool and targeting MRI contrast agents: From Gd-chelates to Gd-nanoparticles. Eur. J. Inorg. Chem. 2012, 1924–1933. [Google Scholar]
- Swanson, S.D.; Kukowska-Latallo, J.F.; Patri, A.K.; Chen, C.; Ge, S.; Cao, Z.; Kotlyar, A.; East, A.T.; Baker, J.R. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int. J. Nanomed 2008, 3, 201–210. [Google Scholar]
- Rowe, M.D.; Thamm, D.H.; Kraft, S.L.; Boyes, S.G. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 2009, 10, 983–993. [Google Scholar]
- Yim, H.; Yang, S.-G.; Jeon, Y.S.; Park, I.S.; Kim, M.; Lee, D.H.; Bae, Y.H.; Na, K. The performance of gadolinium diethylene triamine pentaacetate-pullulan hepatocyte-specific T1 contrast agent for MRI. Biomaterials 2011, 32, 5187–5194. [Google Scholar]
- Chen, K.-J.; Wolahan, S.M.; Wang, H.; Hsu, C.-H.; Chang, H.-W.; Durazo, A.; Hwang, L.-P.; Garcia, M.A.; Jiang, Z.K.; Wu, L.; et al. A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity. Biomaterials 2011, 32, 2160–2165. [Google Scholar]
- Liu, Y.J.; Chen, Z.J.; Liu, C.X.; Yu, D.X.; Lu, Z.J.; Zhang, N. Gadolinium-loaded polymeric nanoparticles modified with anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials 2011, 32, 5167–5176. [Google Scholar]
- Cheng, Z.L.; Thorek, D.L.J.; Tsourkas, A. Gadolinium-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew. Chem. Int. Ed 2010, 49, 346–350. [Google Scholar]
- Kumar, R.; Ohulchanskyy, T.Y.; Turowski, S.G.; Thompson, M.E.; Seshadri, M.; Prasad, P.N. Combined magnetic resonance and optical imaging of head and neck tumor xenografts using Gadolinium-labelled phosphorescent polymeric nanomicelles. Head Neck Oncol 2010, 2, 35. [Google Scholar]
- Bruckman, M.A.; Hern, S.; Jiang, K.; Flask, C.A.; Yu, X.; Steinmetz, N.F. Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents. J. Mater. Chem. B 2013, 1. [Google Scholar] [CrossRef]
- Rowe, T.M.D.; Chang, C.-C.; Thamm, D.H.; Kraft, S.L.; Harmon, J.F.; Vogt, A.P.; Sumerlin, B.S.; Boyes, S.G. Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers. Langmuir 2009, 25, 9487–9499. [Google Scholar]
- Huang, C.-H.; Nwe, K.; Zaki, A.A.; Brechbiel, M.W.; Tsourkas, A. Biodegradable polydisulfide dendrimer nanoclusters as MRI contrast agents. ACS Nano 2012, 6, 9416–9424. [Google Scholar]
- Hou, S.J.; Tong, S.; Zhou, J.; Bao, C. Block copolymer-based gadolinium nanoparticles as MRI contrast agents with high T1 relaxivity. Nanomedicine 2012, 7, 211–218. [Google Scholar]
- Alric, C.; Taleb, J.; Duc, G.L.; Mandon, C.; Billotey, C.; Meur-Herland, A.L.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc 2008, 130, 5908–5915. [Google Scholar]
- Moriggi, L.; Cannizzo, C.; Dumas, E.; Mayer, C.R.; Ulianov, A.; Helm, L. Gold nanoparticles functionalized with gadolinium chelates as high-relaxivity MRI contrast agents. J. Am. Chem. Soc 2009, 131, 10828–10829. [Google Scholar]
- Xia, A.; Chen, M.; Gao, Y.; Wu, D.M.; Feng, W.; Li, F.Y. Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials 2012, 33, 5394–5405. [Google Scholar]
- Wen, S.; Li, K.; Cai, H.; Chen, Q.; Shen, M.; Huang, Y.; Peng, C.; Hou, W.; Zhu, M.; Zhang, G.; et al. Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 2013, 34, 1570–1580. [Google Scholar]
- Duncan, A.K.; Klemm, P.J.; Raymond, K.N.; Landry, C.C. Silica microparticles as a solid support for gadolinium phosphonate magnetic resonance imaging contrast agents. J. Am. Chem. Soc 2012, 134, 8046–8049. [Google Scholar]
- Sharma, P.; Bengtsson, N.E.; Walter, G.A.; Sohn, H.-B.; Zhou, G.; Iwakuma, N.; Zeng, H.; Grobmyer, S.R.; Scott, E.W.; Moudgil, B.M. Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging. Small 2012, 8, 2856–2868. [Google Scholar]
- Lin, W.-I.; Lin, C.-Y.; Lin, Y.-S.; Wu, S.-H.; Huang, Y.-R.; Hung, Y.; Chang, C.; Mou, C.-Y. High payload Gd(III) encapsulated in hollow silica nanospheres for high resolution magnetic resonance imaging. J. Mater. Chem. B 2013, 1, 639–645. [Google Scholar]
- Hifumi, H.; Yamaoka, S.; Tanimoto, A.; Citterio, D.; Suzuki, K. Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J. Am. Chem. Soc 2006, 128, 15090–15091. [Google Scholar]
- Park, J.Y.; Baek, M.J.; Choi, E.S.; Woo, S.; Kim, J.H.; Kim, T.J.; Jung, J.C.; Chae, K.S.; Chang, Y.; Lee, G.H. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 2009, 3, 3663–3669. [Google Scholar]
- Tseng, C.-L.; Shih, I.-L.; Stobinski, L.; Lin, F.-H. Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 2010, 31, 5427–5435. [Google Scholar]
- Fillmore, H.L.; Shultz, M.D.; Henderson, S.C.; Cooper, P.; Broaddus, W.C.; Chen, Z.J.; Shu, C.-Y.; Zhang, J.; Ge, J.; Dorn, H.C.; et al. Conjugation of functionalized gadolinium metallofullerenes with IL-13 peptides for targeting and imaging glial tumors. Nanomedicine 2011, 6, 449–458. [Google Scholar]
- Faucher, L.; Guay-Begin, A.-A.; Lagueux, J.; Cote, M.-F.; Petitclerc, E.; Fortin, M.-A. Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media Mol. Imaging 2011, 6, 209–218. [Google Scholar]
- Rahman, A.T.M.A.; Majewski, P.; Vasilev, K. Gd2O3 nanoparticles: Size-dependent nuclear magnetic resonance. Contrast Media Mol. Imaging 2013, 8, 92–95. [Google Scholar]
- Kryza, D.; Taleb, J.; Janier, M.; Marmuse, L.; Miladi, I.; Bonazza, P.; Louis, C.; Perriat, P.; Roux, S.; Tillement, O.; et al. Biodistribution study of nanometric hybrid gadolinium oxide particles as a multimodal SPECT/MR/Optical imaging and theragnostic agent. Bioconjugate Chem 2011, 22, 1145–1152. [Google Scholar]
- Faucher, L.; Gossuin, Y.; Hocq, A.; Fortin, M.A. Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles. Nanotechnology 2011, 22, 295103. [Google Scholar]
- Azizian, G.; Riyahi-Alam, N.; Haghgoo, S.; Moghimi, H.R.; Zohdiaghdam, R.; Rafiei, B.; Gorji, E. Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging. Nanoscale Res. Lett 2012, 7, 549–555. [Google Scholar]
- Liang, G.; Cao, L.; Chen, H.; Zhang, Z.; Zhang, S.; Yu, S.; Shen, X.; Kong, J. Ultrasmall gadolinium hydrated carbonate nanoparticle: An advanced T1 MRI contrast agent with large longitudinal relaxivity. J. Mater. Chem. B 2013, 1, 629–638. [Google Scholar]
- Hinklin, T.R.; Rand, S.C.; Laine, R.M. Transparent, polycrystalline upconverting nanoceramics: Towards 3-D displays. Adv. Mater 2008, 20, 1270–1273. [Google Scholar]
- He, M.; Huang, P.; Zhang, C.L.; Hu, H.Y.; Bao, C.C.; Gao, G. Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv. Funct. Mater 2011, 21, 4470–4477. [Google Scholar]
- Das, G.K.; Zhang, Y.; D’Silva, L.; Padmanabhan, P.; Heng, B.C.; Loo, J.S.C.; Selvan, S.T.; Bhakoo, K.K.; Tan, T.T.Y. Single-phase Dy2O3:Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging. Chem. Mater 2011, 21, 2439–2446. [Google Scholar]
- Zeng, S.J.; Tsang, M.-K.; Chan, C.-F.; Wong, K.-L.; Hao, J.H. PEG modified BaGdF5:Yb/Er nanoprobes for multi-modal upconversio fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials 2012, 33, 9232–9238. [Google Scholar]
- Wang, Y.F.; Sun, L.D.; Xiao, J.W.; Feng, W.; Zhou, J.C.; Shen, J. Rare-Earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage. Chem. Eur. J 2012, 18, 5558–5564. [Google Scholar]
- Jung, J.; Kim, M.A.; Cho, J.-H.; Lee, S.J.; Yang, I.; Cho, J.; Kim, S.K.; Lee, C.; Park, J.K. Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging. Biomaterials 2012, 33, 5865–5874. [Google Scholar]
- Wu, Y.; Xu, X.; Tang, Q.; Li, Y. A new type of silica-coated Gd2(CO3)3:Tb nanoparticle as a bifunctional agent for magnetic resonance imaging and fluorescent imaging. Nanotechnology 2012, 23, 205103. [Google Scholar]
- Hou, Y.; Qiao, R.; Fang, F.; Wang, X.; Dong, C.; Liu, K.; Liu, C.; Liu, Z.; Lei, H.; Wang, F.; et al. NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. ACS Nano 2013, 7, 330–338. [Google Scholar]
- Liu, Z.; Pu, F.; Huang, S.; Yuan, Q.; Ren, J.; Qu, X. Long-circulating Gd2O3:Yb3+, Er3+ up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging. Biomaterials 2013, 34, 1712–1721. [Google Scholar]
- Silva, A.C.; Lee, J.H.; Aoki, I.; Koretsky, A.P. Manganese-enhanced magnetic resonance imaging (MEMRI): Methodological and practical considerations. NMR Biomed 2004, 17, 532–543. [Google Scholar]
- Kim, T.; Momin, E.; Choi, J.; Yuan, K.; Zaidi, H.; Kim, J.; Park, M.; Lee, N.; McMahon, M.T.; Quinones-Hinojosa, A.; et al. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc 2011, 133, 2955–2961. [Google Scholar]
- Chen, Y.; Yin, Q.; Ji, X.; Zhang, S.; Chen, H.; Zheng, Y.; Sun, Y.; Qu, H.; Wang, Z.; Li, Y.; et al. Manganese oxide-based multifunctionalized esoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 2012, 33, 7126–7137. [Google Scholar]
- Zhen, Z.; Xie, J. Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging. Theranostics 2012, 2, 45–54. [Google Scholar]
- Lee, Y.-C.; Chen, D.-Y.; Dodd, S.J.; Bouraoud, N.; Koretsky, A.P.; Krishnan, K.M. The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes. Biomaterials 2012, 33, 3560–3567. [Google Scholar]
- Pan, D.; Schmieder, A.H.; Wickline, S.A.; Lanza, G.M. Manganese-based MRI contrast agents: Past, present, and future. Tetrahedron 2011, 67, 8431–8444. [Google Scholar]
- Chen, Y.; Chen, H.; Zhang, S.; Chen, F.; Sun, S.; He, Q.; Ma, M.; Wang, X.; Wu, H.; Zhang, L.; et al. Structure-property relationships in manganese oxide–mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials 2012, 33, 2388–2398. [Google Scholar]
- Kuo, P.H.; Kanal, E.; Abu-Alfa, A.K.; Cowper, S.E. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 2007, 242, 647–649. [Google Scholar]
- Bulte, J.W.M.; Kraitchman, D.L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004, 17, 484–499. [Google Scholar]
- Zhang, F.; Huang, X.; Qian, C.; Zhu, L.; Hida, N.; Niu, G.; Chen, X. Synergistic enhancement of iron oxide nanoparticle and gadolinium for dual-contrast MRI. Biochem. Biophys. Res. Commun 2012, 425, 886–891. [Google Scholar]
- Hu, F.; Jia, Q.; Li, Y.; Gao, M. Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1- and T2-weighted magnetic resonance imaging. Nanotechnology 2011, 22, 245604. [Google Scholar]
- Li, Z.; Yi, P.W.; Sun, Q.; Lei, H.; Zhao, H.L.; Zhu, Z.H.; Smith, S.C.; Lan, M.B.; Lu, G.Q.M. Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv. Funct. Mater 2012, 22, 2387–2393. [Google Scholar]
- Zhou, Z.; Wang, L.; Chi, X.; Bao, J.; Yang, L.; Zhao, W.; Chen, Z.; Wang, X.; Chen, X.; Gao, J. Engineered iron-oxide-based nanoparticles as enhanced T1contrast agents for efficient tumor imaging. ACS Nano 2013, 7. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhu, D.; Liu, F.; Ma, L.; Liu, D.; Wang, Z. Nanoparticle-Based Systems for T1-Weighted Magnetic Resonance Imaging Contrast Agents. Int. J. Mol. Sci. 2013, 14, 10591-10607. https://doi.org/10.3390/ijms140510591
Zhu D, Liu F, Ma L, Liu D, Wang Z. Nanoparticle-Based Systems for T1-Weighted Magnetic Resonance Imaging Contrast Agents. International Journal of Molecular Sciences. 2013; 14(5):10591-10607. https://doi.org/10.3390/ijms140510591
Chicago/Turabian StyleZhu, Derong, Fuyao Liu, Lina Ma, Dianjun Liu, and Zhenxin Wang. 2013. "Nanoparticle-Based Systems for T1-Weighted Magnetic Resonance Imaging Contrast Agents" International Journal of Molecular Sciences 14, no. 5: 10591-10607. https://doi.org/10.3390/ijms140510591
APA StyleZhu, D., Liu, F., Ma, L., Liu, D., & Wang, Z. (2013). Nanoparticle-Based Systems for T1-Weighted Magnetic Resonance Imaging Contrast Agents. International Journal of Molecular Sciences, 14(5), 10591-10607. https://doi.org/10.3390/ijms140510591