Molecularly Targeted Agents as Radiosensitizers in Cancer Therapy—Focus on Prostate Cancer
Abstract
:1. Introduction to Targeted Radiosensitizers
2. Recommendations for Preclinical Studies with Radiosensitizers
2.1. Overview of Limitations
2.2. Rational Target Selection
2.3. In Vitro Studies
2.4. Statistical Analysis of Combination Studies
2.5. In Vivo Studies
3. Recommendations for Clinical Trials with Radiosensitizers
3.1. Identification of Patient Populations
3.2. Molecular Biomarkers and Functional Imaging
3.3. Toxicity
3.4. Considerations in Trials with Curative Intent
3.5. Considerations Specific to Phase I Clinical Trials
3.6. Phase 0 Studies
3.7. Drug Duration Escalation Study
3.8. Ping-Pong Design
3.9. Phase II Trial Designs with Radiosensitizers
3.10. Trial Funding and Development
4. Prostate Cancer: Overview and Rationale for Targeted Radiosensitizer Development
5. Candidate Targeted Agents as Radiosensitizers in Prostate Cancer
5.1. Heat Shock Protein 90 (HSP90) Inhibitors
5.2. Sunitinib and Sorafenib
5.3. Dasatanib and Other SRC Inhibitors
5.4. mTOR Pathway Inhibitors
5.5. Androgen Deprivation Therapy
6. Conclusions and Future Directions
Acknowledgments
Conflict of Interest
References
- Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005, 104, 1129–1137. [Google Scholar]
- Board of the Faculty of Clinical Oncology, Equipment, Workload and Staffing for Radiotherapy in the UK 1997–2002; Royal College of Radiologists: London, UK, 2003.
- Chow, E.; Harris, K.; Fan, G.; Tsao, M.; Sze, W.M. Palliative radiotherapy trials for bone metastases: A systematic review. J. Clin. Oncol 2007, 25, 1423–1436. [Google Scholar]
- Bentzen, S.M.; Harari, P.M.; Bernier, J. Exploitable mechanisms for combining drugs with radiation: Concepts, achievements and future directions. Nat. Clin. Pract. Oncol 2007, 4, 172–180. [Google Scholar]
- Souhami, R.; Hochhauser, D. Cancer and Its Management, 6th ed.; Wiley-Blackwell: Chichester, UK, 2010. [Google Scholar]
- Lawrence, Y.R.; Vikram, B.; Dignam, J.J.; Chakravarti, A.; Machtay, M.; Freidlin, B.; Takebe, N.; Curran, W.J.; Bentzen, S.M.; Okunieff, P.; et al. NCI-RTOG translational program strategic guidelines for the early-stage development of radiosensitizers. J. Natl. Cancer Inst 2013, 105, 11–24. [Google Scholar]
- Harrington, K.; Jankowska, P.; Hingorani, M. Molecular biology for the radiation oncologist: The 5Rs of radiobiology meet the hallmarks of cancer. Clin. Oncol 2007, 19, 561–571. [Google Scholar]
- Overgaard, J.; Hansen, H.S.; Overgaard, M.; Bastholt, L.; Berthelsen, A.; Specht, L.; Lindeløv, B.; Jørgensen, K. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother. Oncol 1998, 46, 135–146. [Google Scholar]
- Overgaard, J. Hypoxic radiosensitization: Adored and ignored. J. Clin. Oncol 2007, 25, 4066–4074. [Google Scholar]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Azarnia, N.; Shin, D.M.; Cohen, R.B.; Jones, C.U.; Sur, R.; Raben, D.; Jassem, J.; et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med 2006, 354, 567–578. [Google Scholar]
- Harrington, K.J.; Billingham, L.J.; Brunner, T.B.; Burnet, N.G.; Chan, C.S.; Hoskin, P.; Mackay, R.I.; Maughan, T.S.; Macdougall, J.; McKenna, W.G.; et al. Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br. J. Cancer 2011, 105, 628–639. [Google Scholar]
- Journal, B.; Glass, C. Toxicity of Phase I Radiation Oncology Trials: Worldwide Experience. Bodine J 2010, 3, 1–2. [Google Scholar]
- Ataman, O.U.; Sambrook, S.J.; Wilks, C.; Lloyd, A.; Taylor, A.E.; Wedge, S.R. The clinical development of molecularly targeted agents in combination with radiation therapy: A pharmaceutical perspective. Int. J. Radiat. Oncol. Biol. Phys 2012, 84, e447–454. [Google Scholar]
- Lin, S.H.; George, T.J.; Ben-Josef, E.; Bradley, J.; Choe, K.S.; Edelman, M.J.; Guha, C.; Krishnan, S.; Lawrence, T.S.; Le, Q.-T.; et al. Opportunities and challenges in the era of molecularly targeted agents and radiation therapy. J. Natl. Cancer Inst 2013, 105, 686–693. [Google Scholar]
- Colevas, A.D.; Brown, J.M.; Hahn, S.; Mitchell, J.; Camphausen, K.; Coleman, C.N. Development of investigational radiation modifiers. J. Natl. Cancer Inst 2003, 95, 646–651. [Google Scholar]
- Hall, E.J.; Astor, M.; Biaglow, J.; Parham, J.C. The enhanced sensitivity of mammalian cells to killing by X rays after prolonged exposure to several nitroimidazoles. Int. J. Radiat. Oncol. Biol. Phys 1982, 8, 447–451. [Google Scholar]
- Lally, B.E.; Geiger, G.A.; Kridel, S.; Arcury-Quandt, A.E.; Robbins, M.E.; Kock, N.D.; Wheeler, K.; Peddi, P.; Georgakilas, A.; Kao, G.D.; et al. Identification and biological evaluation of a novel and potent small molecule radiation sensitizer via an unbiased screen of a chemical library. Cancer Res 2007, 67, 8791–8799. [Google Scholar]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; Van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc 2006, 1, 2315–2319. [Google Scholar]
- Chou, T.-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010, 70, 440–446. [Google Scholar]
- Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul 1984, 22, 27–55. [Google Scholar]
- Twigger, K.; Vidal, L.; White, C.L.; de Bono, J.S.; Bhide, S.; Coffey, M.; Thompson, B.; Vile, R.G.; Heinemann, L.; Pandha, H.S.; et al. Enhanced in vitro and in vivo cytotoxicity of combined reovirus and radiotherapy. Clin. Cancer Res 2008, 14, 912–923. [Google Scholar]
- Tran, P.T.; Shroff, E.H.; Burns, T.F.; Thiyagarajan, S.; Das, S.T.; Zabuawala, T.; Chen, J.; Cho, Y.-J.; Luong, R.; Tamayo, P.; et al. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis. PLoS Genet. 2012, 8. [Google Scholar] [CrossRef]
- Ittmann, M.; Huang, J.; Radaelli, E.; Martin, P.; Signoretti, S.; Sullivan, R.; Simons, B.W.; Ward, J.M.; Robinson, B.D.; Chu, G.C.; et al. Animal models of human prostate cancer: The consensus report of the New York meeting of the mouse models of human cancers consortium prostate pathology committee. Cancer Res 2013, 73, 2718–2736. [Google Scholar]
- Wong, J.; Armour, E.; Kazanzides, P.; Iordachita, I.; Tryggestad, E.; Deng, H.; Matinfar, M.; Kennedy, C.; Liu, Z.; Chan, T.; et al. High-resolution, small animal radiation research platform with X-ray tomographic guidance capabilities. Int. J. Radiat. Oncol. Biol. Phys 2008, 71, 1591–1599. [Google Scholar]
- Stojadinovic, S.; Low, D.A.; Hope, A.J.; Vicic, M.; Deasy, J.O.; Cui, J.; Khullar, D.; Parikh, P.J.; Malinowski, K.T.; Izaguirre, E.W.; et al. MicroRT-small animal conformal irradiator. Med. Phys 2007, 34, 4706–4716. [Google Scholar]
- Withers, H.R.; Elkind, M.M. Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int. J. Radiat. Biol 1970, 17, 261–267. [Google Scholar]
- Dörr, W.; Kummermehr, J. Proliferation kinetics of mouse tongue epithelium under normal conditions and following single dose irradiation. Virchows Arch. B 1991, 60, 287–294. [Google Scholar]
- Bese, N.S.; Hendry, J.; Jeremic, B. Effects of prolongation of overall treatment time due to unplanned interruptions during radiotherapy of different tumor sites and practical methods for compensation. Int. J. Radiat. Oncol. Biol. Phys 2007, 68, 654–661. [Google Scholar]
- Tran, P.T.; Hales, R.K.; Zeng, J.; Aziz, K.; Salih, T.; Gajula, R.P.; Chettiar, S.; Gandhi, N.; Wild, A.T.; Kumar, R.; et al. Tissue biomarkers for prostate cancer radiation therapy. Curr. Mol. Med 2012, 12, 772–787. [Google Scholar]
- Sweat, S.D.; Pacelli, A.; Murphy, G.P.; Bostwick, D.G. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 1998, 52, 637–640. [Google Scholar]
- Wright, G.L.; Grob, B.M.; Haley, C.; Grossman, K.; Newhall, K.; Petrylak, D.; Troyer, J.; Konchuba, A.; Schellhammer, P.F.; Moriarty, R. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 1996, 48, 326–334. [Google Scholar]
- Ross, J.S.; Sheehan, C.E.; Fisher, H.A.G.; Kaufman, R.P.; Kaur, P.; Gray, K.; Webb, I.; Gray, G.S.; Mosher, R.; Kallakury, B.V.S. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin. Cancer Res 2003, 9, 6357–6362. [Google Scholar]
- Evans, M.J.; Smith-Jones, P.M.; Wongvipat, J.; Navarro, V.; Kim, S.; Bander, N.H.; Larson, S.M.; Sawyers, C.L. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc. Natl. Acad. Sci. USA 2011, 108, 9578–9582. [Google Scholar]
- Kelloff, G.J.; Krohn, K.A.; Larson, S.M.; Weissleder, R.; Mankoff, D.A.; Hoffman, J.M.; Link, J.M.; Guyton, K.Z.; Eckelman, W.C.; Scher, H.I.; et al. The progress and promise of molecular imaging probes in oncologic drug development. Clin. Cancer Res 2005, 11, 7967–7985. [Google Scholar]
- Shankar, L.K.; Hoffman, J.M.; Bacharach, S.; Graham, M.M.; Karp, J.; Lammertsma, A.A.; Larson, S.; Mankoff, D.A.; Siegel, B.A.; van den Abbeele, A.; et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J. Nucl. Med 2006, 47, 1059–1066. [Google Scholar]
- Turlakow, A.; Larson, S.M.; Coakley, F.; Akhurst, T.; Gonen, M.; Macapinlac, H.A.; Kelly, W.; Leibel, S.; Humm, J.; Scardino, P.; et al. Local detection of prostate cancer by positron emission tomography with 2-fluorodeoxyglucose: Comparison of filtered back projection and iterative reconstruction with segmented attenuation correction. Q. J. Nucl. Med 2001, 45, 235–244. [Google Scholar]
- Hofer, C.; Laubenbacher, C.; Block, T.; Breul, J.; Hartung, R.; Schwaiger, M. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur. Urol 1999, 36, 31–35. [Google Scholar]
- Nuñez, R.; Macapinlac, H.A.; Yeung, H.W.D.; Akhurst, T.; Cai, S.; Osman, I.; Gonen, M.; Riedel, E.; Scher, H.I.; Larson, S.M. Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J. Nucl. Med 2002, 43, 46–55. [Google Scholar]
- Shreve, P.D.; Grossman, H.B.; Gross, M.D.; Wahl, R.L. Metastatic prostate cancer: Initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 1996, 199, 751–756. [Google Scholar]
- Hricak, H.; Choyke, P.L.; Eberhardt, S.C.; Leibel, S.A.; Scardino, P.T. Imaging prostate cancer: A multidisciplinary perspective. Radiology 2007, 243, 28–53. [Google Scholar]
- Lawrentschuk, N.; Davis, I.D.; Bolton, D.M.; Scott, A.M. Positron emission tomography and molecular imaging of the prostate: An update. BJU Int 2006, 97, 923–931. [Google Scholar]
- Scattoni, V.; Picchio, M.; Suardi, N.; Messa, C.; Freschi, M.; Roscigno, M.; da Pozzo, L.; Bocciardi, A.; Rigatti, P.; Fazio, F. Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: Results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur. Urol 2007, 52, 423–429. [Google Scholar]
- De Jong, I.J.; Pruim, J.; Elsinga, P.H.; Vaalburg, W.; Mensink, H.J. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J. Nucl. Med 2003, 44, 331–335. [Google Scholar]
- Picchio, M.; Messa, C.; Landoni, C.; Gianolli, L.; Sironi, S.; Brioschi, M.; Matarrese, M.; Matei, D.V.; de Cobelli, F.; del Maschio, A.; et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: A comparison with [18F]fluorodeoxyglucose-positron emission tomography. J. Urol 2003, 169, 1337–1340. [Google Scholar]
- Morris, M.J.; Scher, H.I. (11)C-acetate PET imaging in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 181–184. [Google Scholar]
- Even-Sapir, E.; Metser, U.; Mishani, E.; Lievshitz, G.; Lerman, H.; Leibovitch, I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J. Nucl. Med 2006, 47, 287–297. [Google Scholar]
- Even-Sapir, E.; Mishani, E.; Flusser, G.; Metser, U. 18F-Fluoride positron emission tomography and positron emission tomography/computed tomography. Semin. Nucl. Med 2007, 37, 462–469. [Google Scholar]
- Beattie, B.J.; Smith-Jones, P.M.; Jhanwar, Y.S.; Schöder, H.; Schmidtlein, C.R.; Morris, M.J.; Zanzonico, P.; Squire, O.; Meirelles, G.S.P.; Finn, R.; et al. Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J. Nucl. Med 2010, 51, 183–192. [Google Scholar]
- Schuster, D.M.; Savir-Baruch, B.; Nieh, P.T.; Master, V.A.; Halkar, R.K.; Rossi, P.J.; Lewis, M.M.; Nye, J.A.; Yu, W.; Bowman, F.D.; et al. Detection of recurrent prostate carcinoma with anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT and 111In-capromab pendetide SPECT/CT. Radiology 2011, 259, 852–861. [Google Scholar]
- Schuster, D.M.; Votaw, J.R.; Nieh, P.T.; Yu, W.; Nye, J.A.; Master, V.; Bowman, F.D.; Issa, M.M.; Goodman, M.M. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J. Nucl. Med 2007, 48, 56–63. [Google Scholar]
- Greco, C.; Cascini, G.L.; Tamburrini, O. Is there a role for positron emission tomography imaging in the early evaluation of prostate cancer relapse? Prostate Cancer Prostatic Dis 2008, 11, 121–128. [Google Scholar]
- Bostwick, D.G.; Pacelli, A.; Blute, M.; Roche, P.; Murphy, G.P. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: A study of 184 cases. Cancer 1998, 82, 2256–2261. [Google Scholar]
- Chang, S.S.; Reuter, V.E.; Heston, W.D.; Gaudin, P.B. Comparison of anti-prostate-specific membrane antigen antibodies and other immunomarkers in metastatic prostate carcinoma. Urology 2001, 57, 1179–1183. [Google Scholar]
- Perner, S.; Hofer, M.D.; Kim, R.; Shah, R.B.; Li, H.; Möller, P.; Hautmann, R.E.; Gschwend, J.E.; Kuefer, R.; Rubin, M.A. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum. Pathol 2007, 38, 696–701. [Google Scholar]
- Malayeri, A.A.; El Khouli, R.H.; Zaheer, A.; Jacobs, M.A.; Corona-Villalobos, C.P.; Kamel, I.R.; Macura, K.J. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 2011, 31, 1773–1791. [Google Scholar]
- Thomas, C.T.; Bradshaw, P.T.; Pollock, B.H.; Montie, J.E.; Taylor, J.M.G.; Thames, H.D.; McLaughlin, P.W.; DeBiose, D.A.; Hussey, D.H.; Wahl, R.L. Indium-111-capromab pendetide radioimmunoscintigraphy and prognosis for durable biochemical response to salvage radiation therapy in men after failed prostatectomy. J. Clin. Oncol 2003, 21, 1715–1721. [Google Scholar]
- Wilkinson, S.; Chodak, G. The role of 111indium-capromab pendetide imaging for assessing biochemical failure after radical prostatectomy. J. Urol 2004, 172, 133–136. [Google Scholar]
- Chen, Y.; Pullambhatla, M.; Foss, C.A.; Byun, Y.; Nimmagadda, S.; Senthamizhchelvan, S.; Sgouros, G.; Mease, R.C.; Pomper, M.G. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res 2011, 17, 7645–7653. [Google Scholar]
- Mease, R.C.; Dusich, C.L.; Foss, C.A.; Ravert, H.T.; Dannals, R.F.; Seidel, J.; Prideaux, A.; Fox, J.J.; Sgouros, G.; Kozikowski, A.P.; et al. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: A new imaging probe for prostate cancer. Clin. Cancer Res 2008, 14, 3036–3043. [Google Scholar]
- Cho, S.Y.; Gage, K.L.; Mease, R.C.; Senthamizhchelvan, S.; Holt, D.P.; Jeffrey-Kwanisai, A.; Endres, C.J.; Dannals, R.F.; Sgouros, G.; Lodge, M.; et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J. Nucl. Med 2012, 53, 1883–1891. [Google Scholar]
- Fojo, T.; Grady, C. How much is life worth: Cetuximab, non-small cell lung cancer, and the $440 billion question. J. Natl. Cancer Inst 2009, 101, 1044–1048. [Google Scholar]
- Maity, A.; Bernhard, E.J. Modulating tumor vasculature through signaling inhibition to improve cytotoxic therapy. Cancer Res 2010, 70, 2141–2145. [Google Scholar]
- O’Quigley, J.; Pepe, M.; Fisher, L. Continual reassessment method: a practical design for phase I clinical trials in cancer. Biometrics 1990, 46, 33–48. [Google Scholar]
- LoRusso, P.M.; Boerner, S.A.; Seymour, L. An overview of the optimal planning, design, and conduct of phase I studies of new therapeutics. Clin. Cancer Res 2010, 16, 1710–1718. [Google Scholar]
- Desai, S.P.; Ben-Josef, E.; Normolle, D.P.; Francis, I.R.; Greenson, J.K.; Simeone, D.M.; Chang, A.E.; Colletti, L.M.; Lawrence, T.S.; Zalupski, M.M. Phase I study of oxaliplatin, full-dose gemcitabine, and concurrent radiation therapy in pancreatic cancer. J. Clin. Oncol 2007, 25, 4587–4592. [Google Scholar]
- Cheung, Y.K.; Chappell, R. Sequential designs for phase I clinical trials with late-onset toxicities. Biometrics 2000, 56, 1177–1182. [Google Scholar]
- Muler, J.H.; McGinn, C.J.; Normolle, D.; Lawrence, T.; Brown, D.; Hejna, G.; Zalupski, M.M. Phase I trial using a time-to-event continual reassessment strategy for dose escalation of cisplatin combined with gemcitabine and radiation therapy in pancreatic cancer. J. Clin. Oncol 2004, 22, 238–243. [Google Scholar]
- Polley, M.-Y.C. Practical modifications to the time-to-event continual reassessment method for phase I cancer trials with fast patient accrual and late-onset toxicities. Stat. Med 2011, 30, 2130–2143. [Google Scholar]
- Del Campo, J.M.; Hitt, R.; Sebastian, P.; Carracedo, C.; Lokanatha, D.; Bourhis, J.; Temam, S.; Cupissol, D.; de Raucourt, D.; Maroudias, N.; et al. Effects of lapatinib monotherapy: Results of a randomised phase II study in therapy-naive patients with locally advanced squamous cell carcinoma of the head and neck. Br. J. Cancer 2011, 105, 618–627. [Google Scholar]
- Kummar, S.; Doroshow, J.H.; Tomaszewski, J.E.; Calvert, A.H.; Lobbezoo, M.; Giaccone, G. Phase 0 clinical trials: Recommendations from the task force on methodology for the development of innovative cancer therapies. Eur. J. Cancer 2009, 45, 741–746. [Google Scholar]
- Formenti, S.C.; Demaria, S. Combining radiotherapy and cancer immunotherapy: A paradigm shift. J. Natl. Cancer Inst 2013, 105, 256–265. [Google Scholar]
- Choy, H.; Jain, A.K.; Moughan, J.; Curran, W.; Whipple, G.; Demas, W.F.; Ettinger, D.S. RTOG 0017: A phase I trial of concurrent gemcitabine/carboplatin or gemcitabine/paclitaxel and radiation therapy (“ping-pong trial”) followed by adjuvant chemotherapy for patients with favorable prognosis inoperable stage IIIA/B non-small cell lung cancer. J. Thorac. Oncol 2009, 4, 80–86. [Google Scholar]
- Rowland, S. Dual Phase I Studies to Determine the Dose of Cediranib (AZD2171) or AZD6244 to Use With Conventional Rectal Chemoradiotherapy. Available online: http://clinicaltrials.gov/show/NCT01160926 (accessed on accessed 12 July 2013).
- Mandrekar, S.J.; Sargent, D.J. Randomized phase II trials: Time for a new era in clinical trial design. J. Thorac. Oncol 2010, 5, 932–934. [Google Scholar]
- Seymour, L.; Ivy, S.P.; Sargent, D.; Spriggs, D.; Baker, L.; Rubinstein, L.; Ratain, M.J.; Le Blanc, M.; Stewart, D.; Crowley, J.; et al. The design of phase II clinical trials testing cancer therapeutics: Consensus recommendations from the clinical trial design task force of the national cancer institute investigational drug steering committee. Clin. Cancer Res 2010, 16, 1764–1769. [Google Scholar]
- Lee, J.J.; Feng, L. Randomized phase II designs in cancer clinical trials: Current status and future directions. J. Clin. Oncol 2005, 23, 4450–4457. [Google Scholar]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA: Cancer J. Clin 2012, 62, 10–29. [Google Scholar]
- Antonarakis, E.S.; Eisenberger, M.A. Expanding treatment options for metastatic prostate cancer. N. Engl. J. Med 2011, 364, 2055–2058. [Google Scholar]
- Jones, C.U.; Hunt, D.; McGowan, D.G.; Amin, M.B.; Chetner, M.P.; Bruner, D.W.; Leibenhaut, M.H.; Husain, S.M.; Rotman, M.; Souhami, L.; et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N. Engl. J. Med 2011, 365, 107–118. [Google Scholar]
- Horwitz, E.M.; Bae, K.; Hanks, G.E.; Porter, A.; Grignon, D.J.; Brereton, H.D.; Venkatesan, V.; Lawton, C.A.; Rosenthal, S.A.; Sandler, H.M.; et al. Ten-year follow-up of radiation therapy oncology group protocol 92-02: A phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J. Clin. Oncol 2008, 26, 2497–2504. [Google Scholar]
- Bannuru, R.R.; Dvorak, T.; Obadan, N.; Yu, W.W.; Patel, K.; Chung, M.; Ip, S. Comparative evaluation of radiation treatments for clinically localized prostate cancer: An updated systematic review. Annu. Int. Med 2011, 155, 171–178. [Google Scholar]
- Roach, M.; Bae, K.; Speight, J.; Wolkov, H.B.; Rubin, P.; Lee, R.J.; Lawton, C.; Valicenti, R.; Grignon, D.; Pilepich, M.V. Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: Long-term results of RTOG 8610. J. Clin. Oncol 2008, 26, 585–591. [Google Scholar]
- D’Amico, A.V.; Chen, M.-H.; Renshaw, A.A.; Loffredo, M.; Kantoff, P.W. Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA 2008, 299, 289–295. [Google Scholar]
- Denham, J.W.; Steigler, A.; Lamb, D.S.; Joseph, D.; Mameghan, H.; Turner, S.; Matthews, J.; Franklin, I.; Atkinson, C.; North, J.; et al. Short-term androgen deprivation and radiotherapy for locally advanced prostate cancer: Results from the Trans-Tasman Radiation Oncology Group 96.01 randomised controlled trial. Lancet Oncol 2005, 6, 841–850. [Google Scholar]
- Crook, J.; Ludgate, C.; Malone, S.; Perry, G.; Eapen, L.; Bowen, J.; Robertson, S.; Lockwood, G. Final report of multicenter Canadian Phase III randomized trial of 3 versus 8 months of neoadjuvant androgen deprivation therapy before conventional-dose radiotherapy for clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys 2009, 73, 327–333. [Google Scholar]
- Jabbari, S.; Hansen, E.; Roach, M., III. Prostate Cancer. In Handbook of Evidence-Based Radiation Oncology; Hansen, E., Roach, M., III, Eds.; Springer: New York, NY, USA, 2010; pp. 431–477. [Google Scholar]
- Kuban, D.A.; Tucker, S.L.; Dong, L.; Starkschall, G.; Huang, E.H.; Cheung, M.R.; Lee, A.K.; Pollack, A. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys 2008, 70, 67–74. [Google Scholar]
- Zietman, A.L.; DeSilvio, M.L.; Slater, J.D.; Rossi, C.J.; Miller, D.W.; Adams, J.A.; Shipley, W.U. Comparison of conventional-dose vs. high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: A randomized controlled trial. JAMA 2005, 294, 1233–1239. [Google Scholar]
- Al-Mamgani, A.; van Putten, W.L.J.; Heemsbergen, W.D.; van Leenders, G.J.L.H.; Slot, A.; Dielwart, M.F.H.; Incrocci, L.; Lebesque, J.V. Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys 2008, 72, 980–988. [Google Scholar]
- Bolla, M.; van Tienhoven, G.; Warde, P.; Dubois, J.B.; Mirimanoff, R.-O.; Storme, G.; Bernier, J.; Kuten, A.; Sternberg, C.; Billiet, I.; et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol 2010, 11, 1066–1073. [Google Scholar]
- Saigal, C.S.; Gore, J.L.; Krupski, T.L.; Hanley, J.; Schonlau, M.; Litwin, M.S. Androgen deprivation therapy increases cardiovascular morbidity in men with prostate cancer. Cancer 2007, 110, 1493–1500. [Google Scholar]
- Ni, X.; Zhang, Y.; Ribas, J.; Chowdhury, W.H.; Castanares, M.; Zhang, Z.; Laiho, M.; deWeese, T.L.; Lupold, S.E. Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J. Clin. Invest 2011, 121, 2383–2390. [Google Scholar]
- Gandhi, N.; Wild, A.T.; Chettiar, S.T.; Aziz, K.; Kato, Y.; Gajula, R.P.; Williams, R.D.; Cades, J.A.; Annadanam, A.; Song, D.; et al. Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells. Cancer Biol. Ther 2013, 14, 347–356. [Google Scholar]
- Luo, J.; Solimini, N.L.; Elledge, S.J. Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell 2009, 136, 823–837. [Google Scholar]
- Jego, G.; Hazoumé, A.; Seigneuric, R.; Garrido, C. Targeting heat shock proteins in cancer. Cancer Lett 2013, 332, 275–285. [Google Scholar]
- Pearl, L.H.; Prodromou, C. Structure and in vivo function of Hsp90. Curr. Opin. Struct. Biol 2000, 10, 46–51. [Google Scholar]
- Solit, D.B.; Scher, H.I.; Rosen, N. Hsp90 as a therapeutic target in prostate cancer. Semin. Oncol 2003, 30, 709–716. [Google Scholar]
- Onuoha, S.C.; Coulstock, E.T.; Grossmann, J.G.; Jackson, S.E. Structural studies on the co-chaperone Hop and its complexes with Hsp90. J. Mol. Biol 2008, 379, 732–744. [Google Scholar]
- Akner, G.; Mossberg, K.; Sundqvist, K.G.; Gustafsson, J.A.; Wikström, A.C. Evidence for reversible, non-microtubule and non-microfilament-dependent nuclear translocation of hsp90 after heat shock in human fibroblasts. Eur. J. Cell Biol 1992, 58, 356–364. [Google Scholar]
- Perdew, G.H.; Hord, N.; Hollenback, C.E.; Welsh, M.J. Localization and characterization of the 86- and 84-kDa heat shock proteins in Hepa 1c1c7 cells. Exp. Cell Res 1993, 209, 350–356. [Google Scholar]
- Eustace, B.K.; Sakurai, T.; Stewart, J.K.; Yimlamai, D.; Unger, C.; Zehetmeier, C.; Lain, B.; Torella, C.; Henning, S.W.; Beste, G.; et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat. Cell Biol 2004, 6, 507–514. [Google Scholar]
- Sreedhar, A.S.; Kalmár, E.; Csermely, P.; Shen, Y.-F. Hsp90 isoforms: Functions, expression and clinical importance. FEBS Lett 2004, 562, 11–15. [Google Scholar]
- Carver, B.S.; Chapinski, C.; Wongvipat, J.; Hieronymus, H.; Chen, Y.; Chandarlapaty, S.; Arora, V.K.; Le, C.; Koutcher, J.; Scher, H.; et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011, 19, 575–586. [Google Scholar]
- Fraser, M.; Harding, S.M.; Zhao, H.; Coackley, C.; Durocher, D.; Bristow, R.G. MRE11 promotes AKT phosphorylation in direct response to DNA double-strand breaks. Cell Cycle 2011, 10, 2218–2232. [Google Scholar]
- Pratt, W.B. The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc. Soc. Exp. Biol. Med. Soc 1998, 217, 420–434. [Google Scholar]
- Georget, V.; Térouanne, B.; Nicolas, J.-C.; Sultan, C. Mechanism of antiandrogen action: Key role of hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry 2002, 41, 11824–11831. [Google Scholar]
- Bozulic, L.; Surucu, B.; Hynx, D.; Hemmings, B.A. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol. Cell 2008, 30, 203–213. [Google Scholar]
- Surucu, B.; Bozulic, L.; Hynx, D.; Parcellier, A.; Hemmings, B.A. In vivo analysis of protein kinase B (PKB)/Akt regulation in DNA-PKcs-null mice reveals a role for PKB/Akt in DNA damage response and tumorigenesis. J. Biol. Chem 2008, 283, 30025–30033. [Google Scholar]
- Schulte, T.W.; Blagosklonny, M.V.; Ingui, C.; Neckers, L. Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J. Biol. Chem 1995, 270, 24585–24588. [Google Scholar]
- Bull, E.E.A.; Dote, H.; Brady, K.J.; Burgan, W.E.; Carter, D.J.; Cerra, M.A.; Oswald, K.A.; Hollingshead, M.G.; Camphausen, K.; Tofilon, P.J. Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin. Clin. Cancer Res 2004, 10, 8077–8084. [Google Scholar]
- Camphausen, K.; Tofilon, P.J. Inhibition of Hsp90: A multitarget approach to radiosensitization. Clin. Cancer Res 2007, 13, 4326–4330. [Google Scholar]
- Corn, P.G.; Song, D.Y.; Heath, E.; Maier, J.; Meyn, R.; Kuban, D.; Depetrillo, T.A.; Mathew, P. Sunitinib plus androgen deprivation and radiation therapy for patients with localized high-risk prostate cancer: Results from a multi-institutional phase I study. Int. J. Radiat. Oncol. Biol. Phys 2013, 86, 540–545. [Google Scholar]
- Vuky, J.; Pham, H.T.; Warren, S.; Douglass, E.; Badiozamani, K.; Madsen, B.; Hsi, A.; Song, G. Phase II study of long-term androgen suppression with bevacizumab and intensity-modulated radiation therapy (IMRT) in high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys 2012, 82, e609–615. [Google Scholar]
- Palacios, D.A.; Miyake, M.; Rosser, C.J. Radiosensitization in prostate cancer: Mechanisms and targets. BMC Urol. 2013, 13. [Google Scholar] [CrossRef]
- Stadler, W.M.; Cao, D.; Vogelzang, N.J.; Ryan, C.W.; Hoving, K.; Wright, R.; Karrison, T.; Vokes, E.E. A randomized Phase II trial of the antiangiogenic agent SU5416 in hormone-refractory prostate cancer. Clin. Cancer Res 2004, 10, 3365–3370. [Google Scholar]
- Nowakowski, G.S.; McCollum, A.K.; Ames, M.M.; Mandrekar, S.J.; Reid, J.M.; Adjei, A.A.; Toft, D.O.; Safgren, S.L.; Erlichman, C. A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin. Cancer Res 2006, 12, 6087–6093. [Google Scholar]
- Solit, D.B.; Ivy, S.P.; Kopil, C.; Sikorski, R.; Morris, M.J.; Slovin, S.F.; Kelly, W.K.; DeLaCruz, A.; Curley, T.; Heller, G.; et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin. Cancer Res 2007, 13, 1775–1782. [Google Scholar]
- Ronnen, E.A.; Kondagunta, G.V.; Ishill, N.; Sweeney, S.M.; Deluca, J.K.; Schwartz, L.; Bacik, J.; Motzer, R.J. A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest. New Drugs 2006, 24, 543–546. [Google Scholar]
- Solit, D.B.; Osman, I.; Polsky, D.; Panageas, K.S.; Daud, A.; Goydos, J.S.; Teitcher, J.; Wolchok, J.D.; Germino, F.J.; Krown, S.E.; et al. Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin. Cancer Res 2008, 14, 8302–8307. [Google Scholar]
- Eccles, S.A.; Massey, A.; Raynaud, F.I.; Sharp, S.Y.; Box, G.; Valenti, M.; Patterson, L.; de Haven Brandon, A.; Gowan, S.; Boxall, F.; et al. NVP-AUY922: A novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 2008, 68, 2850–2860. [Google Scholar]
- Russell, J.S.; Burgan, W.; Oswald, K.A.; Camphausen, K.; Tofilon, P.J. Enhanced cell killing induced by the combination of radiation and the heat shock protein 90 inhibitor 17-allylamino-17- demethoxygeldanamycin: A multitarget approach to radiosensitization. Clin. Cancer Res 2003, 9, 3749–3755. [Google Scholar]
- Dote, H.; Cerna, D.; Burgan, W.E.; Camphausen, K.; Tofilon, P.J. ErbB3 expression predicts tumor cell radiosensitization induced by Hsp90 inhibition. Cancer Res 2005, 65, 6967–6975. [Google Scholar]
- Yin, X.; Zhang, H.; Lundgren, K.; Wilson, L.; Burrows, F.; Shores, C.G. BIIB021, a novel Hsp90 inhibitor, sensitizes head and neck squamous cell carcinoma to radiotherapy. Int. J. Cancer 2010, 126, 1216–1225. [Google Scholar]
- Machida, H.; Nakajima, S.; Shikano, N.; Nishio, J.; Okada, S.; Asayama, M.; Shirai, M.; Kubota, N. Heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin potentiates the radiation response of tumor cells grown as monolayer cultures and spheroids by inducing apoptosis. Cancer Sci 2005, 96, 911–917. [Google Scholar]
- Matsumoto, Y.; Machida, H.; Kubota, N. Preferential sensitization of tumor cells to radiation by heat shock protein 90 inhibitor geldanamycin. J. Radiat. Res 2005, 46, 215–221. [Google Scholar]
- Moran, D.M.; Gawlak, G.; Jayaprakash, M.S.; Mayar, S.; Maki, C.G. Geldanamycin promotes premature mitotic entry and micronucleation in irradiated p53/p21 deficient colon carcinoma cells. Oncogene 2008, 27, 5567–5577. [Google Scholar]
- Kelland, L.R.; Sharp, S.Y.; Rogers, P.M.; Myers, T.G.; Workman, P. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J. Natl. Cancer Inst 1999, 91, 1940–1949. [Google Scholar]
- Jensen, M.R.; Schoepfer, J.; Radimerski, T.; Massey, A.; Guy, C.T.; Brueggen, J.; Quadt, C.; Buckler, A.; Cozens, R.; Drysdale, M.J.; et al. NVP-AUY922: A small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res. 2008, 10. [Google Scholar] [CrossRef]
- Moser, C.; Lang, S.A.; Hackl, C.; Wagner, C.; Scheiffert, E.; Schlitt, H.J.; Geissler, E.K.; Stoeltzing, O. Targeting HSP90 by the novel inhibitor NVP-AUY922 reduces growth and angiogenesis of pancreatic cancer. Anticancer Res 2012, 32, 2551–2561. [Google Scholar]
- Chatterjee, M.; Andrulis, M.; Stühmer, T.; Müller, E.; Hofmann, C.; Steinbrunn, T.; Heimberger, T.; Schraud, H.; Kressmann, S.; Einsele, H.; et al. The PI3K/Akt signalling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Haematologica 2012, 97. [Google Scholar] [CrossRef]
- Ueno, T.; Tsukuda, K.; Toyooka, S.; Ando, M.; Takaoka, M.; Soh, J.; Asano, H.; Maki, Y.; Muraoka, T.; Tanaka, N.; et al. Strong anti-tumor effect of NVP-AUY922, a novel Hsp90 inhibitor, on non-small cell lung cancer. Lung Cancer 2012, 76, 26–31. [Google Scholar]
- Ying, W.; Du, Z.; Sun, L.; Foley, K.P.; Proia, D.A.; Blackman, R.K.; Zhou, D.; Inoue, T.; Tatsuta, N.; Sang, J.; et al. Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy. Mol. Cancer Ther 2012, 11, 475–484. [Google Scholar]
- Zaidi, S.; McLaughlin, M.; Bhide, S.A.; Eccles, S.A.; Workman, P.; Nutting, C.M.; Huddart, R.A.; Harrington, K.J. The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage. PloS One 2012, 7. [Google Scholar] [CrossRef]
- Ha, K.; Fiskus, W.; Rao, R.; Balusu, R.; Venkannagari, S.; Nalabothula, N.R.; Bhalla, K.N. Hsp90 inhibitor-mediated disruption of chaperone association of ATR with hsp90 sensitizes cancer cells to DNA damage. Mol. Cancer Ther 2011, 10, 1194–1206. [Google Scholar]
- Wang, X.; Ma, Z.; Xiao, Z.; Liu, H.; Dou, Z.; Feng, X.; Shi, H. Chk1 knockdown confers radiosensitization in prostate cancer stem cells. Oncol. Rep 2012, 28, 2247–2254. [Google Scholar]
- Stingl, L.; Niewidok, N.; Müller, N.; Selle, M.; Djuzenova, C.S.; Flentje, M. Radiosensitizing effect of the novel Hsp90 inhibitor NVP-AUY922 in human tumour cell lines silenced for Hsp90α. Strahlentherapie Onkol 2012, 188, 507–515. [Google Scholar]
- Niewidok, N.; Wack, L.-J.; Schiessl, S.; Stingl, L.; Katzer, A.; Polat, B.; Sukhorukov, V.L.; Flentje, M.; Djuzenova, C.S. Hsp90 inhibitors NVP-AUY922 and NVP-BEP800 may exert a significant radiosensitization on tumor cells along with a cell type-specific cytotoxicity. Transl. Oncol 2012, 5, 356–369. [Google Scholar]
- Abrams, T.J.; Murray, L.J.; Pesenti, E.; Holway, V.W.; Colombo, T.; Lee, L.B.; Cherrington, J.M.; Pryer, N.K. Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol. Cancer Ther 2003, 2, 1011–1021. [Google Scholar]
- Mendel, D.B.; Laird, A.D.; Xin, X.; Louie, S.G.; Christensen, J.G.; Li, G.; Schreck, R.E.; Abrams, T.J.; Ngai, T.J.; Lee, L.B.; et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res 2003, 9, 327–337. [Google Scholar]
- O’Farrell, A.-M.; Abrams, T.J.; Yuen, H.A.; Ngai, T.J.; Louie, S.G.; Yee, K.W.H.; Wong, L.M.; Hong, W.; Lee, L.B.; Town, A.; et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 2003, 101, 3597–3605. [Google Scholar]
- Cuneo, K.C.; Geng, L.; Fu, A.; Orton, D.; Hallahan, D.E.; Chakravarthy, A.B. SU11248 (sunitinib) sensitizes pancreatic cancer to the cytotoxic effects of ionizing radiation. Int. J. Radiat. Oncol. Biol. Phys 2008, 71, 873–879. [Google Scholar]
- Schueneman, A.J.; Himmelfarb, E.; Geng, L.; Tan, J.; Donnelly, E.; Mendel, D.; McMahon, G.; Hallahan, D.E. SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 2003, 63, 4009–4016. [Google Scholar]
- Brooks, C.; Sheu, T.; Bridges, K.; Mason, K.; Kuban, D.; Mathew, P.; Meyn, R. Preclinical evaluation of sunitinib, a multi-tyrosine kinase inhibitor, as a radiosensitizer for human prostate cancer. Radiat. Oncol. 2012, 7. [Google Scholar] [CrossRef]
- Williams, K.J.; Telfer, B.A.; Brave, S.; Kendrew, J.; Whittaker, L.; Stratford, I.J.; Wedge, S.R. ZD6474, a potent inhibitor of vascular endothelial growth factor signaling, combined with radiotherapy: Schedule-dependent enhancement of antitumor activity. Clin. Cancer Res 2004, 10, 8587–8593. [Google Scholar]
- Murata, R.; Nishimura, Y.; Hiraoka, M. An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int. J. Radiat. Oncol. Biol. Phys 1997, 37, 1107–1113. [Google Scholar]
- Teicher, B.A.; Dupuis, N.P.; Emi, Y.; Ikebe, M.; Kakeji, Y.; Menon, K. Increased efficacy of chemo- and radio-therapy by a hemoglobin solution in the 9L gliosarcoma. In Vivo 1995, 9, 11–18. [Google Scholar]
- Rockwell, S.; Dobrucki, I.T.; Kim, E.Y.; Marrison, S.T.; Vu, V.T. Hypoxia and radiation therapy: Past history, ongoing research, and future promise. Curr. Mol. Med 2009, 9, 442–458. [Google Scholar]
- Armstrong, A.J. Multimodality Phase II Study in Prostate Cancer. Available online: http://clinicaltrials.gov/show/NCT00734851 (on accessed 12 July 2013).
- Guérin, O.; Formento, P.; Lo Nigro, C.; Hofman, P.; Fischel, J.L.; Etienne-Grimaldi, M.C.; Merlano, M.; Ferrero, J.M.; Milano, G. Supra-additive antitumor effect of sunitinib malate (SU11248, Sutent) combined with docetaxel. A new therapeutic perspective in hormone refractory prostate cancer. J. Cancer Res. Clin. Oncol 2008, 134, 51–57. [Google Scholar]
- Belldegrun, A. Clinical Study of SU011248 in Subjects With High Risk Prostate Cancer Who Have Elected to Undergo Radical Prostatectomy. Available online: http://clinicaltrials.gov/show/NCT00790595 (12 July 2013).
- Suen, A.W.; Galoforo, S.; Marples, B.; McGonagle, M.; Downing, L.; Martinez, A.A.; Robertson, J.M.; Wilson, G.D. Sorafenib and radiation: a promising combination in colorectal cancer. Int. J. Radiat. Oncol. Biol. Phys 2010, 78, 213–220. [Google Scholar]
- Kasibhatla, M.; Steinberg, P.; Meyer, J.; Ernstoff, M.S.; George, D.J. Radiation therapy and sorafenib: Clinical data and rationale for the combination in metastatic renal cell carcinoma. Clin. Genitourin. Cancer 2007, 5, 291–294. [Google Scholar]
- Cohen, S. Phase I/II Study of Sorafenib Concurrent With Androgen Deprivation and Radiotherapy in the Treatment of Intermediate- and High-Risk Localized Prostate Cancer. Available online: http://ichgcp.net/clinical-trials-registry/research/index/NCT00924807 (on accessed 12 July 2013).
- Nam, S.; Kim, D.; Cheng, J.Q.; Zhang, S.; Lee, J.-H.; Buettner, R.; Mirosevich, J.; Lee, F.Y.; Jove, R. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res 2005, 65, 9185–9189. [Google Scholar]
- Slack, J.K.; Adams, R.B.; Rovin, J.D.; Bissonette, E.A.; Stoker, C.E.; Parsons, J.T. Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene 2001, 20, 1152–1163. [Google Scholar]
- Recchia, I.; Rucci, N.; Festuccia, C.; Bologna, M.; MacKay, A.R.; Migliaccio, S.; Longo, M.; Susa, M.; Fabbro, D.; Teti, A. Pyrrolopyrimidine c-Src inhibitors reduce growth, adhesion, motility and invasion of prostate cancer cells in vitro. Eur. J. Cancer 2003, 39, 1927–1935. [Google Scholar]
- Evans, C.; Lara, P., Jr; Kung, H.; Yang, J. Activity of the Src-kinase inhibitor AZD0530 in androgen-independent prostate cancer (AIPC): Pre-clinical rationale for a phase II trial. J. Clin. Oncol. 2006, 24, 14542. [Google Scholar]
- Migliaccio, A.; Castoria, G.; di Domenico, M.; de Falco, A.; Bilancio, A.; Lombardi, M.; Barone, M.V.; Ametrano, D.; Zannini, M.S.; Abbondanza, C.; et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 2000, 19, 5406–5417. [Google Scholar]
- Rice, L.; Lepler, S.; Pampo, C.; Siemann, D.W. Impact of the SRC inhibitor dasatinib on the metastatic phenotype of human prostate cancer cells. Clin. Exp. Metast 2012, 29, 133–142. [Google Scholar]
- Yu, E.Y.; Wilding, G.; Posadas, E.; Gross, M.; Culine, S.; Massard, C.; Morris, M.J.; Hudes, G.; Calabrò, F.; Cheng, S.; et al. Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res 2009, 15, 7421–7428. [Google Scholar]
- Araujo, J.C.; Mathew, P.; Armstrong, A.J.; Braud, E.L.; Posadas, E.; Lonberg, M.; Gallick, G.E.; Trudel, G.C.; Paliwal, P.; Agrawal, S.; et al. Dasatinib combined with docetaxel for castration-resistant prostate cancer: Results from a phase 1–2 study. Cancer 2012, 118, 63–71. [Google Scholar]
- Purnell, P.R.; Mack, P.C.; Tepper, C.G.; Evans, C.P.; Green, T.P.; Gumerlock, P.H.; Lara, P.N.; Gandara, D.R.; Kung, H.-J.; Gautschi, O. The Src inhibitor AZD0530 blocks invasion and may act as a radiosensitizer in lung cancer cells. J. Thorac. Oncol 2009, 4, 448–454. [Google Scholar]
- Raju, U.; Riesterer, O.; Wang, Z.-Q.; Molkentine, D.P.; Molkentine, J.M.; Johnson, F.M.; Glisson, B.; Milas, L.; Ang, K.K. Dasatinib, a multi-kinase inhibitor increased radiation sensitivity by interfering with nuclear localization of epidermal growth factor receptor and by blocking DNA repair pathways. Radiother. Oncol 2012, 105, 241–249. [Google Scholar]
- Khurshid, H.; Dipetrillo, T.; Ng, T.; Mantripragada, K.; Birnbaum, A.; Berz, D.; Radie-Keane, K.; Perez, K.; Constantinou, M.; Luppe, D.; et al. A phase I study of dasatinib with concurrent chemoradiation for stage III non-small cell lung cancer. Front. Oncol. 2012, 2. [Google Scholar] [CrossRef]
- Mega, A. Study of Dasatinib, Androgen Deprivation Therapy and Radiation. Available online: http://clinicaltrials.nlm.nih.gov/ct2/show/NCT01826838 (on accessed 12 July 2013).
- Cairns, P.; Okami, K.; Halachmi, S.; Halachmi, N.; Esteller, M.; Herman, J.G.; Jen, J.; Isaacs, W.B.; Bova, G.S.; Sidransky, D. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997, 57, 4997–5000. [Google Scholar]
- McMenamin, M.E.; Soung, P.; Perera, S.; Kaplan, I.; Loda, M.; Sellers, W.R. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 1999, 59, 4291–4296. [Google Scholar]
- Cao, C.; Subhawong, T.; Albert, J.M.; Kim, K.W.; Geng, L.; Sekhar, K.R.; Gi, Y.J.; Lu, B. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res 2006, 66, 10040–10047. [Google Scholar]
- Schiewer, M.J.; Den, R.; Hoang, D.T.; Augello, M.A.; Lawrence, Y.R.; Dicker, A.P.; Knudsen, K.E. mTOR is a selective effector of the radiation therapy response in androgen receptor-positive prostate cancer. Endocr. Relat. Cancer 2012, 19, 1–12. [Google Scholar]
- Azria, D. A. Phase I Trial to Evaluate Acute and Late Toxicities of Concurrent Treatment With Everolimus (RAD001) and Radio-Hormonotherapy in High-risk Prostate Cancer. Available online: http://clinicaltrials.gov/show/NCT00943956 (on accessed 12 July 2013).
- Hamstra, D.A. A Multi-institutional Phase I and Biomarker Study of Everolimus Added to Combined Hormonal and Radiation Therapy for High Risk Prostate Cancer. Available online: http://clinicaltrials.gov/show/NCT01642732 (on accessed 12 July 2013).
- Haas, N. Phase 1 Trial of the Mammalian Target of Rapamycin (mTOR) Inhibitor Everolimus Plus Radiation Therapy (RT) for Salvage Treatment of Biochemical Recurrence in Prostate Cancer Patients Following Prostatectomy. Available online: http://clinicaltrials.gov/show/NCT01548807 (on accessed 12 July 2013).
- Potiron, V.A.; Abderrhamani, R.; Giang, E.; Chiavassa, S.; di Tomaso, E.; Maira, S.-M.; Paris, F.; Supiot, S. Radiosensitization of prostate cancer cells by the dual PI3K/mTOR inhibitor BEZ235 under normoxic and hypoxic conditions. Radiother. Oncol 2013, 106, 138–146. [Google Scholar]
- Zietman, A.L.; Prince, E.A.; Nakfoor, B.M.; Park, J.J. Androgen deprivation and radiation therapy: Sequencing studies using the Shionogi in vivo tumor system. Int. J. Radiat. Oncol. Biol. Phys 1997, 38, 1067–1070. [Google Scholar]
- Kaminski, J.M.L.; Hanlon, A.L.; Joon, D.L.; Meistrich, M.; Hachem, P.; Pollack, A. Effect of sequencing of androgen deprivation and radiotherapy on prostate cancer growth. Int. J. Radiat. Oncol. Biol. Phys 2003, 57, 24–28. [Google Scholar]
- Milecki, P.; Martenka, P.; Antczak, A.; Kwias, Z. Radiotherapy combined with hormonal therapy in prostate cancer: The state of the art. Cancer Manag. Res 2010, 2, 243–253. [Google Scholar]
- Pollack, A.; Salem, N.; Ashoori, F.; Hachem, P.; Sangha, M.; von Eschenbach, A.C.; Meistrich, M.L. Lack of prostate cancer radiosensitization by androgen deprivation. Int. J. Radiat. Oncol. Biol. Phys 2001, 51, 1002–1007. [Google Scholar]
- Hermann, R.M.; Schwarten, D.; Fister, S.; Grundker, C.; Rave-Frank, M.; Nitsche, M.; Hille, A.; Thelen, P.; Schmidberger, H.; Christiansen, H. No supra-additive effects of goserelin and radiotherapy on clonogenic survival of prostate carcinoma cells. in vitro. Radiat. Oncol. 2007, 2. [Google Scholar] [CrossRef]
- Roden, A.C.; Moser, M.T.; Tri, S.D.; Mercader, M.; Kuntz, S.M.; Dong, H.; Hurwitz, A.A.; McKean, D.J.; Celis, E.; Leibovich, B.C.; et al. Augmentation of T cell levels and responses induced by androgen deprivation. J. Immunol 2004, 173, 6098–6108. [Google Scholar]
- Tsao, C.-K.; Galsky, M.D.; Small, A.C.; Yee, T.; Oh, W.K. Targeting the androgen receptor signalling axis in castration-resistant prostate cancer (CRPC). BJU Int 2012, 110, 1580–1588. [Google Scholar]
Radiosensitizer | Risk group | Target | Trial number ** | Trial phase | Trial status | Outcomes |
---|---|---|---|---|---|---|
Semaxanib + ADT | Intermediate-to high-risk | VEGF receptor | NCT00026377 | I | Completed | See note † |
Sunitinib + ADT | High-risk | Multi-targeted RTK | NCT00631527 | I | Completed | Feasibility achieved with recommended phase 2 dose of sunitnib (25 mg daily) [112] |
Panobinostat | High-risk | HDAC | NCT00670553 | I | Completed | - |
Everolimus + ADT | High-risk | mTOR | NCT00943956 | I | Unknown ‡ | - |
Everolimus | Biochemical recurrence (salvage) | mTOR | NCT01548807 | I | Recruiting | - |
Everolimus + ADT | High-risk | mTOR | NCT01642732 | I | Recruiting | - |
Dasatinib + ADT | Intermediate-to high-risk | SRC | NCT01826838 | I | Recruiting | - |
Ganetespib + ADT | High-risk | HSP90 | Pending | I | Pending | - |
Sorafenib + ADT | Intermediate-to high-risk | Multi-targeted RTK | NCT00924807 | I/II | Terminated | - |
Bevacizumab + ADT | High-risk | VEGF receptor | NCT00349557 | II | Completed | Bevacizumab + ADT does not exacerbate acute side effects but may worsen late effects following IMRT [113] |
Sunitinib + docetaxel | Biochemical recurrence (salvage) | Multi-targeted RTK | NCT00734851 | II | Active but not recruiting | - |
TAK-700 + ADT | High-risk | CYP17A1 | NCT01546987 (RTOG 1115) | III | Recruiting | - |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Alcorn, S.; Walker, A.J.; Gandhi, N.; Narang, A.; Wild, A.T.; Hales, R.K.; Herman, J.M.; Song, D.Y.; DeWeese, T.L.; Antonarakis, E.S.; et al. Molecularly Targeted Agents as Radiosensitizers in Cancer Therapy—Focus on Prostate Cancer. Int. J. Mol. Sci. 2013, 14, 14800-14832. https://doi.org/10.3390/ijms140714800
Alcorn S, Walker AJ, Gandhi N, Narang A, Wild AT, Hales RK, Herman JM, Song DY, DeWeese TL, Antonarakis ES, et al. Molecularly Targeted Agents as Radiosensitizers in Cancer Therapy—Focus on Prostate Cancer. International Journal of Molecular Sciences. 2013; 14(7):14800-14832. https://doi.org/10.3390/ijms140714800
Chicago/Turabian StyleAlcorn, Sara, Amanda J. Walker, Nishant Gandhi, Amol Narang, Aaron T. Wild, Russell K. Hales, Joseph M. Herman, Danny Y. Song, Theodore L. DeWeese, Emmanuel S. Antonarakis, and et al. 2013. "Molecularly Targeted Agents as Radiosensitizers in Cancer Therapy—Focus on Prostate Cancer" International Journal of Molecular Sciences 14, no. 7: 14800-14832. https://doi.org/10.3390/ijms140714800
APA StyleAlcorn, S., Walker, A. J., Gandhi, N., Narang, A., Wild, A. T., Hales, R. K., Herman, J. M., Song, D. Y., DeWeese, T. L., Antonarakis, E. S., & Tran, P. T. (2013). Molecularly Targeted Agents as Radiosensitizers in Cancer Therapy—Focus on Prostate Cancer. International Journal of Molecular Sciences, 14(7), 14800-14832. https://doi.org/10.3390/ijms140714800