Low-Dose Interleukin-2 Therapy: A Driver of an Imbalance between Immune Tolerance and Autoimmunity
Abstract
:1. Introduction
2. The Role of IL-2 (Interleukin-2) in the Pathogenesis of Autoimmune Diseases: The Positive Effects of IL-2 on Treg Fitness and Homeostasis
3. IL-2 in the Pathogenesis of Autoimmune Diseases: The Role of IL-2 in Eliminating Tfh and Th17 Cells
4. IL-2 Immunotherapy in an Animal Model of Autoimmunity
5. Low-Dose IL-2-Based Clinical Trials in Humans
Type of Autoimmune Disease | Dose (×106 IU/day) and Frequency of IL-2 Administration (sq) | Cumulative Dose of IL-2 (×106 IU) | Immunologic Changes | Clinical Outcome |
---|---|---|---|---|
chronic GVHD [23] # n = 28 | 0.3, 1, or 3/m2 × 8 weeks | 100.2 * | Increase—Tregs, eosinophils, NK cells; No changes—Teffs, CD8, B cells, NKT cells | 23/28 PR + SD |
chronic GVHD [24] n = 14 | 0.3 or 1–1.5 × 8 weeks | 16.8 or 56.0–84.0 | Increase—pSTAT5 in Tregs, Tregs, serum IL2; Decrease—pSTAT5 in Teff, serum IL7 and IL-15 | 7/14 PR + SD |
HCV-induced vasculitis [25] n = 10 | 1.5 × 5 day plus 3 courses of 3 × 5 day at weeks 3, 6, and 9 | 52.5 | Increase—Tregs, NK cells (CD56bright); Decrease—B cells (marginal-zone) | 8/10 PR 2/10 NR |
type 1 diabetes [9] n = 9 | 4.5 × 106 IU three times a week for 1 month plus RAPA 2–4 mg/day for 3 months | 54.0 | Increase—Tregs, eosinophils, NK cells (CD56bright); Decrease—neutrophils; No changes—NKT | 9/9 C-peptide decrease |
type 1 diabetes [26] # n = 9 | 0.33, 1, or 3 × 5 day | 1.65, 5, or 15 | Dose-dependent increase—Tregs, NK, Teffs; Dose-dependent decrease—B cells | 24/24 no changes of C‑peptide levels |
6. Future Perspectives for Use of IL-2 Therapy in Autoimmune Diseases
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Gupta, S.; Cerosaletti, K.; Long, A. Renegade homeostatic cytokine responses in T1D: Drivers of regulatory/effector T cell imbalance. Clin. Immunol. 2014, 151, 146–154. [Google Scholar]
- Wing, K.; Sakaguchi, S. Regulatory T cells exert checks and balances of self tolerance and autoimmunity. Nat. Immunol. 2010, 11, 7–13. [Google Scholar]
- Dendrou, C.A.; Wicker, L.S. The IL-2/CD25 pathway determines susceptibility to T1D in humans and NOD mice. J. Clin. Immunol. 2008, 6, 685–696. [Google Scholar]
- Sgouroudis, E.; Albanse, A.; Piccirillo, C.A. Impact of protective IL-2 allelic variants on CD4+Foxp3+ regulatory T cell function in situ and resistance to autoimmune diabetes in NOD mice. J. Immunol. 2008, 181, 6283–6292. [Google Scholar]
- Tang, Q.; Adams, J.Y.; Penaranda, C.; Melli, K.; Piaggio, E.; Sgouroudis, E.; Piccirillo, C.A.; Salomon, B.L.; Bluestone, J.A. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 2008, 28, 687–697. [Google Scholar]
- Yamanouchi, D.; Rainbow, D.; Serra, P.; Howlett, K.; Hunter, K.; Garner, V.E.; Gonzalez-Munoz, A.; Clark, J.; Veijola, R.; Veijola, R.; et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat. Genet. 2007, 39, 329–337. [Google Scholar]
- Setoguchi, R.; Hori, S.; Takahashi, T.; Sakaguchi, S. Homeostatic maintenance of natural Foxp3+CD25+CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 2005, 201, 723–735. [Google Scholar]
- Jaiwalla, P.; Waukau, J.; Glisic, S.; Jana, S.; Ehlenbach, S.; Hessner, M.; Alemzadeh, R.; Matsuyama, S.; Laud, P.; Wang, X.; et al. Apoptosis CD4+CD25high T cells in type 1 diabetes may be partially mediated by IL-2 deprivation. PLoS One 2009, 4, e6527. [Google Scholar]
- Long, S.A.; Rieck, M.; Sanda, S.; Bollyky, J.B.; Samuels, P.L.; Goland, R.; Ahmann, A.; Rabinovitch, A.; Aggarwal, S.; Phippard, D.; et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Treg yet transiently impairs beta-cell function. Diabetes 2012, 61, 2340–2348. [Google Scholar]
- Altman, A.; Theofilopoulos, A.N.; Weiner, R.; Katz, D.H.; Dixon, F.J. Analysis of T cell function in autoimmune murine strains. Defects in production and responsiveness to interleukin 2. J. Exp. Med. 1981, 154, 791–808. [Google Scholar]
- Huang, F.P.; Stott, D.I. Restoration of an early, progressive defect in responsiveness to T cell activation in lupus mice by exogenous IL-2. Autoimmunity 1993, 15, 19–29. [Google Scholar]
- Brunkow, M.E.; Jeffery, E.W.; Hjerrild, K.A.; Paeper, B.; Clark, L.B.; Yasako, S.A.; Wilkinson, J.E.; Galas, D.; Ziegler, S.F.; Ramsdell, F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 2001, 27, 337–342. [Google Scholar]
- Hakonarson, H.; Qu, H.Q.; Bradfield, J.P.; Marchand, L.; Kim, C.E.; Glessner, J.T.; Grabs, R.; Casalunovo, T.; Taback, S.P.; Frackelton, E.C.; et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes 2008, 57, 1143–1146. [Google Scholar]
- Ochs, H.D.; Gambineri, E.; Torgerson, T.R. IPEX, FOXP3 and regulatory T cells: A model for autoimmunity. Immunol. Res. 2007, 38, 112–121. [Google Scholar]
- Rosenberg, S.A.; Lotze, M.T.; Muul, L.M.; Leitman, S.; Chang, A.E.; Ettinghausen, S.E.; Matory, Y.L.; Skibber, J.M.; Shiloni, E.; Vetto, J.T.; et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 1985, 313, 1485–1492. [Google Scholar]
- Kosmaczewska, A.; Swierkot, J.; Ciszak, L.; Szteblich, A.; Chrobak, A.; Karabon, L.; Partyka, A.; Szechinski, J.; Wiland, P.; Frydecka, I. Patients with the most advanced rheumatoid arthritis remain with Th1 systemic defects after TNF inhibitors treatment despite clinical improvement. Rheumatol. Int. 2014, 34, 243–253. [Google Scholar]
- Goldstein, J.D.; Perol, L.; Zaragoza, B.; Baeyens, A.; Marodon, G.; Piaggio, E. Role of cytokines in thymus- vs. peripherally derived-regulatory T cell differentiation and function. Front. Immunol. 2013, 4. [Google Scholar] [CrossRef]
- Baeyens, A.; Perol, L.; Fourcade, G.; Cagnard, N.; Carpentier, W.; Woytschak, J.; Boyman, O.; Hartemann, A.; Piaggio, E. Limitations of IL-2 and rapamycin in immunotherapy of type 1 diabetes. Diabetes 2013, 62, 3120–3131. [Google Scholar]
- Wilson, M.S.; Pesce, J.T.; Ramalingam, T.R.; Thompson, R.W.; Cheever, A.; Wynn, T.A. Suppression of murine allergic airway disease by IL-2; anti-IL-2 monoclonal antibody-induced regulatory T cells. J. Immunol. 2008, 181, 6942–6954. [Google Scholar]
- Webster, K.E.; Walters, S.; Kohler, R.; Mrkvan, T.; Boyman, O.; Surh, C.D.; Grey, S.T.; Sprent, J. In vivo expansion of Treg cells with IL-2 mAb complexes; induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J. Exp. Med. 2009, 206, 751–760. [Google Scholar]
- Grinberg-Bleyer, Y.; Baeyens, A.; You, S.; Elhage, R.; Fourcade, G.; Gregoire, S.; Cagnard, N.; Carpentier, W.; Tang, Q.; Bluestone, J.; et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J. Exp. Med. 2010, 207, 1871–1878. [Google Scholar]
- Dinh, T.N.; Kyaw, T.S.; Kanellakis, P.; To, K.; Tipping, P.; Toh, B.H.; Bobik, A.; Agrotis, A. Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis. Circulation 2012, 126, 1256–1266. [Google Scholar]
- Koreth, J.; Matsuoka, K.; Kim, H.T.; McDonough, S.M.; Bindra, B.; Alyea, E.P., 3rd; Armand, P.; Cutler, C.; Ho, V.T.; Treister, N.S.; et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 2011, 365, 2055–2066. [Google Scholar]
- Matsuoka, K.; Koreth, J.; Kim, H.T.; Bascug, G.; McDonough, S.; Kawano, Y.; Murase, K.; Cutler, C.; Ho, V.T.; Alyea, E.P.; et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci. Transl. Med. 2013, 5. [Google Scholar] [CrossRef]
- Saadoun, D.; Rosenzwajg, M.; Joly, F.; Six, A.; Carrat, F.; Thibault, V.; Sene, D.; Cacoub, P.; Klatzmann, D. Regulatory T cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 2011, 365, 2067–2077. [Google Scholar]
- Hartemann, A.; Bensimon, G.; Payan, C.; Jacqueminet, S.; Bourran, O.; Nicolas, N.; Fonfrede, M.; Rosenzwajg, M.; Bernard, C.; Klatzmann, D. Low-dose interleukin 2 in patients with type 1 diabetes: A phase 1/2 randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2013, 1, 295–305. [Google Scholar]
- O’Gorman, W.E.; Dooms, H.; Thorne, S.H.; Kuswanto, W.F.; Simonds, E.F.; Krutzik, P.O.; Nolan, G.P.; Abbas, A.K. The initial phase of an immune response functions to activate regulatory T cells. J. Immunol. 2009, 183, 332–339. [Google Scholar]
- Burchill, M.A.; Yang, J.; Vogtenhuber, C.; Blazar, B.R.; Farrar, M.A. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 2007, 178, 280–290. [Google Scholar]
- Fontenot, J.D.; Rasmussen, J.P.; Gavin, M.A.; Rudensky, A.Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 2005, 6, 1142–1151. [Google Scholar]
- Zheng, S.G.; Wang, J.; Wang, P.; Gray, J.D.; Horwitz, D.A. IL-2 is essential for TGF-β to convert naïve CD4+CD25− cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J. Immunol. 2007, 178, 2018–2027. [Google Scholar]
- Passerini, L.; Allan, S.E.; Battaglia, M.; di Nunzio, S.; Alstad, A.N.; Levings, M.K; Roncarolo, M.G.; Bacchetta, R. STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+. Int. Immunol. 2008, 20, 421–431. [Google Scholar]
- Zorn, E.; Nelson, E.A.; Mohseni, M.; Porcheray, F.; Kim, H.; Litsa, D.; Bellucci, R.; Raderschall, E.; Canning, C.; Soiffer, R.J.; et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 2006, 108, 1571–1579. [Google Scholar]
- Yang, C.H.; Tian, L.; Ling, G.S.; Trendell-Smith, N.J.; Ma, L.; Lo, C.K.; Stott, D.I.; Liew, F.Y.; Huang, F.P. Immunological mechanisms and clinical implications of regulatory T cell deficiency in a suystemic autoimmune disorder: Roles of IL-2 vs. IL-15. Eur. J. Immunol. 2008, 38, 1664–1676. [Google Scholar]
- Brusko, T.M.; Wasserfall, C.H.; Clare-Salzler, M.J.; Schatz, D.A.; Atkinson, M.A. Functional defects and the influence of age on the frequency of CD4+CD25+ T cells in type 1 diabetes. Diabetes 2005, 54, 1407–1414. [Google Scholar]
- Boyer, O.; Saadoun, D.; Abriol, J.; Dodille, M.; Piette, J.C.; Cacoub, P.; Klatzmann, D. CD4+CD25+ regulatory T cell deficiency in patients with hepatitis C-mixed cryoglobulinemia vasculitis. Blood 2004, 103, 3428–3430. [Google Scholar]
- Xing, Q.; Wang, B.; Su, H.; Cui, J.; Li, J. Elevated Th17 cells are accompanied by FoxP3Treg cell decrease in patients with lupus nephritis. Rheumatol. Int. 2012, 32, 949–958. [Google Scholar]
- Yang, J.; Chu, Y.; Yang, X.; Gao, D.; Zhu, L.; Yang, X.; Wan, L.; Li, M. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheumatol. 2009, 60, 1472–1483. [Google Scholar]
- Szmyrka-Kaczmarek, M.; Kosmaczewska, A.; Ciszak, L.; Szteblich, A.; Wiland, P. Peripheral blood Th17/Treg imbalance in patients with low-active systemic lupus erythematosus. Postepy Hig. Med. Dosw. 2014, 68, 893–898. [Google Scholar]
- Landau, D.A.; Rosenzwajg, M.; Saadoun, D.; Trebeden-Negre, H.; Klatzmann, D.; Cacoub, P. Correlation of clinical and virologic responses to antiviral treatment and regulatory T cell evolution in patients with hepatitis C virus-induced mixed cryoglobulinemia vasculitis. Arthritis Rheumatol. 2008, 58, 2897–2907. [Google Scholar]
- Kawashima, M.; Miossec, P. mRNA quantification of T-bet, GATA-3, IFN-γ, and IL-4 shows a defectiva Th1 immune response in the peripheral blood from rheumatoid arthritis patients: Link with disease activiy. J. Clin. Immunol. 2005, 25, 209–214. [Google Scholar]
- Van Roon, J.A.G.; Verhoef, C.M.; van Roy, J.L.A.M.; Gmelig-Meyling, F.H.; Huber-Bruning, O.; Lafeber, F.P.; Bijlsma, J.W. Decrease in peripheral type 1 over type 2 T cell cytokine production in patients with rheumatoid arthritis correlates with an increase in severity of disease. Ann. Rheum. Dis. 1997, 56, 656–660. [Google Scholar]
- Sgouroudis, E.; Kornete, M.; Piccirillo, C.A. IL-2 production by dendritic cells promotes Foxp3+ regulatory T-cell expansion in autoimmune resistant NOD congenic mice. Autoimmunity 2011, 44, 406–414. [Google Scholar]
- Zhang, H.; Chua, K.S.; Guimond, M.; Kapoor, V.; Brown, M.V.; Fleisher, T.A.; Long, L.M.; Bernstein, D.; Hill, B.J.; Douek, D.C.; et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nat. Med. 2005, 11, 1238–1243. [Google Scholar]
- Kosmaczewska, A.; Ciszak, L.; Swierkot, J.; Szteblich, A.; Kosciow, K.; Frydecka, I. Exogenous IL-2 controls the balance in Th1, Th17, and Treg cell distribution in patients with progressive arthritis treated with TNF-alpha inhibitors. Inflammation 2014. [Google Scholar] [CrossRef]
- Sadlack, B.; Lohler, J.; Schorle, H.; Klebb, G.; Haber, H.; Sickel, E.; Noelle, R.J.; Horak, I. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur. J. Immunol. 1995, 25, 3053–3059. [Google Scholar]
- Suzuki, H.; Kundig, T.M.; Furlonger, C.; Wakeham, A.; Timms, E.; Matsuyama, T.; Schmits, R.; Simard, J.J.; Ohashi, P.S.; Greisser, H.; et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 1995, 268, 1472–1476. [Google Scholar]
- Willeford, D.M.; Chen, J.; Ferry, J.A.; Davidson, L.; Ma, A.; Alt, F.W. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995, 3, 521–530. [Google Scholar]
- Long, S.A.; Buckner, J.H. CD4+FOXP3+ T regulatory cells in human autoimmunity: More than a numbers game. J. Immunol. 2011, 187, 2061–2066. [Google Scholar]
- Garg, G.; Tyler, J.R.; Yang, J.H.; Cutler, A.J.; Downes, K.; Pekalski, M.; Bell, G.L.; Nutland, S.; Peakman, M.; Todd, J.A.; et al. Type 1 diabetes-associated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. J. Immunol. 2012, 188, 4644–4653. [Google Scholar]
- Long, S.A.; Cerosaletti, K.; Wan, J.Y.; Ho, J.C.; Tatum, M.; Wei, S.; Shilling, H.G.; Buckner, J.H. An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4+ T cells. Genes Immun. 2011, 12, 116–125. [Google Scholar]
- Long, S.A.; Rieck, M.; Sanda, S.; Bollyky, M.; Tatum, M.; Shilling, H.; Zhang, S.; Zhang, Z.Y.; Pihoker, C.; Sanda, S.; et al. Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4+CD25+ regulatory T cells of type 1 diabetic subjects. Diabetes 2010, 59, 407–415. [Google Scholar]
- Marwaha, A.K.; Crome, S.Q.; Panagiotopoulos, C.; Berg, K.B.; Qin, H.; Quyang, Q.; Xu, L.; Priatel, J.J.; Levings, M.K.; Tan, R. Cutting edge: Increased IL-17-secreting T cells in children with new-onset type 1 diabetes. J. Immunol. 2010, 185, 3814–3818. [Google Scholar]
- Cerosaletti, K.; Schneider, A.; Schwedhelm, S.; Frank, I.; Tatum, M.; Wei, S.; Whalen, E.; Greenbaum, C.; Kita, M.; Buckner, J.; et al. Multiple autoimmune-associated variants confer decreased IL-2R signaling in CD4+CD25hi T cells of type 1 diabetic and multiple sclerosis patients. PLoS One 2014, 8, e83811. [Google Scholar]
- Dendrou, C.A.; Plagnol, V.; Fung, E.; Yang, J.H.; Downes, K.; Cooper, J.D.; Nutland, S.; Coleman, G.; Himsworth, M.; Hardy, M.; et al. Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat. Genet. 2009, 41, 1011–1015. [Google Scholar]
- Long, A.; Buckner, J.H. Intersection between genetic polymorphisms and immune deviation in type 1 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 285–291. [Google Scholar]
- Goudy, K.S.; Johnson, M.C.; Garland, A.; Li, C.; Samulski, R.J.; Wang, B.; Tisch, R. Reduced IL-2 expression in NOD mice leads to a temporal increase in CD62Ll FoxP3+CD4+ T cells with limited suppressor activity. Eur. J. Immunol. 2011, 41, 1480–1490. [Google Scholar]
- Johnson, M.C.; Garland, A.L.; Nickolson, S.C.; Li, C.; Samulski, R.J.; Wang, B.; Tisch, R. Beta-cell-specific IL-2 therapy increases islet Foxp3+ Treg and suppresses type 1 diabetes in NOD mice. Diabetes 2013, 62, 3775–3784. [Google Scholar]
- Crotty, S. Follicular helper T cells (TFH). Annu. Rev. Immunol. 2011, 29, 621–663. [Google Scholar]
- Nurieva, R.I.; Chung, Y.; Martinez, G.J.; Yang, X.O.; Tanaka, S.; Matskevitch, T.D.; Wang, Y.H.; Dong, C. Bcl6 mediates the development of T follicular helper cells. Science 2009, 325, 1001–1005. [Google Scholar]
- Yu, D.; Rao, S.; Tsai, L.M.; Lee, S.K.; He, Y.; Sutcliffe, E.L.; Srivastava, M.; Linterman, M.; Zheng, L.; Simpson, N.; et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 2009, 31, 457–468. [Google Scholar]
- Linterman, M.A.; Rigby, R.J.; Wong, R.K.; Yu, D.; Brink, R.; Cannons, J.L.; Schwartzberg, P.L.; Cook, M.C.; Walters, G.D.; Vinuesa, C.G. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 2009, 206, 561–576. [Google Scholar]
- Johnston, R.J.; Poholek, A.C.; di Toro, D.; Yusuf, I.; Eto, D.; Barnett, B.; Dent, AL.; Craft, J.; Crotty, S. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 2009, 325, 1006–1010. [Google Scholar]
- Johnston, R.J.; Choi, Y.S.; Diamond, J.A.; Yang, J.A.; Crotty, S. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. 2012, 209, 243–250. [Google Scholar]
- Laurence, A.; Tato, C.M.; Davidson, T.S.; Kanno, Y.; Chen, Z.; Yao, Z.; Blank, R.B.; Meylan, F.; Siegel, R.; Henninghausen, L.; et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007, 26, 371–381. [Google Scholar]
- Malek, T.R.; Castro, I. Interleukin-2 receptor signaling: At the interface between tolerance and immunity. Immunity 2010, 33, 153–165. [Google Scholar]
- Buckner, J.H. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 2010, 10, 849–859. [Google Scholar]
- Shao, S.; He, F.; Yang, Y.; Yuan, G.; Zhang, M.; Yu, X. Th17 cells in type 1 diabetes. Cell. Immunol. 2012, 280, 16–21. [Google Scholar]
- Goudy, K.S.; Johnson, M.C.; Garland, A.; Li, C.; Samulski, R.J.; Wang, B.; Tisch, R. Inducible adeno-associated virus-mediated IL-2 gene therapy prevents autoimmune diabetes. J. Immunol. 2011, 186, 3779–3786. [Google Scholar]
- Atkinson, M.A.; Leiter, E.H. The NOD mouse model of type 1 diabetes: As good as it gets? Nat. Med. 1999, 5, 601–604. [Google Scholar]
- Diaz-de-Durana, Y.; Lau, J.; Knee, D.; Filippi, C.; Londei, M.; McNamara, P.; Nasoff, M.; Dodonatao, M.; Glynne, R.; Herman, A.E. IL-2 immunotherapy reveals potential for innate beta cell regeneration in the non-obese diabetic mouse model of autoimmune diabetes. PLoS One 2013, 8, e78483. [Google Scholar]
- Bluestone, J.A.; Herold, K.; Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010, 464, 1293–1300. [Google Scholar]
- Van Belle, T.L.; Coppieters, K.T.; von Herrath, M.G. Type 1 diabetes: Etiology, immunology, and therapeutic strategies. Physiol. Rev. 2011, 91, 79–118. [Google Scholar]
- Rabinovitch, A.; Suarez-Pinzon, W.L.; Shapiro, A.M.J.; Rajotte, R.V.; Power, R. Combination therapy with sirolimus and interleukin-2 prevents spontaneous and recurrent autoimmune diabetes in NOD mice. Diabetes 2002, 51, 638–645. [Google Scholar]
- Shin, H.J.; Baker, J.; Leveson-Gower, D.B.; Smith, A.T.; Sega, E.I.; Negrin, R.S. Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4+CD25+Foxp3+ regulatory T cells. Blood 2011, 118, 2342–2350. [Google Scholar]
- Piemonti, L.; Maffi, P.; Monti, L.; Lampasona, V.; Perseghin, G.; Magistretti, P.; Secchi, A.; Bonifacio, E. Beta cell function during rapamycin monotherapy in long-term type 1 diabetes. Diabetologia 2011, 54, 433–439. [Google Scholar]
- Monti, P.; Scirpoli, M.; Maffi, P.; Piemonti, L.; Secchi, A.; Bonifacio, E.; Roncarolo, M.G.; Battaglia, M. Rapamycin monotherapy in patients with type 1 diabetes modifies CD4+CD25+Foxp3+ regulatory T cells. Diabetes 2008, 57, 2341–2347. [Google Scholar]
- Koulmanda, M.; Budo, E.; Bonner-Weir, S.; Qipo, A.; Puthet, P.; Degauque, N.; Shi, H.; Fan, Z.; Flier, J.S.; Auchincloss, H., Jr.; et al. Modification of adverse inflammation is required to cure new-onset type 1 diabetic hosts. Proc. Natl. Acad. Sci. USA 2007, 104, 13074–13079. [Google Scholar]
- Xie, Y.; Wu, M.; Song, M.; Ma, J.; Qin, W.; Jin, Y. A glucocorticoid amplifies IL-2-induced selective expansion of CD4+CD25+FOXP3+ regulatory T cells in vivo and suppresses graft-versus-host disease after allogeneic lymphocyte transplantation. Acta Biochim. Biophys. Sin. 2009, 41, 781–791. [Google Scholar]
- Chen, X.; Oppenheim, J.J.; Winkler-Pickett, T.T.; Ortaldo, J.R.; Howard, O.M. Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3+CD4+ T regulatory cells in vivo and enhances their capacity to suppress. EAE. Eur. J. Immunol. 2006, 36, 2139–2149. [Google Scholar]
- Yan, X.Q.; Briddell, R.; Hartley, C.; Stoney, G.; Samal, B.; McNiece, I. Mobilization of long-term hematopoietic reconstituting cells in mice by the combination of stem cell factor plus granulocyte colony-stimulating factor. Blood 1994, 84, 795–799. [Google Scholar]
- Chen, X.; Murakami, T.; Oppenheim, J.J.; Howard, O.M. Differential response of murine CD4+CD25+ and CD4+CD25− T cells to dexamethasone-induced cell death. Eur. J. Immunol. 2004, 34, 859–869. [Google Scholar]
- Churlaud, G.; Jimenez, V.; Ruberte, J.; Zin, M.A.; Fourcade, G.; Gottrand, G.; Casana, E.; Lambrecht, B.; Bellier, B.; Piaggio, E.; et al. Sustained stimulation and expansion of Tregs by IL2 control autoimmunity without impairing immune responses to infection vaccination and cancer. Clin. Immunol. 2014, 151, 114–126. [Google Scholar]
- Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self tolerance and negative control of immune responses. Annu. Rev. Immunol. 2004, 22, 531–562. [Google Scholar]
- Herold, K.C.; Vignali, D.A.; Cooke, A.; Bluestone, J.A. Type 1 diabetes: Translating mechanistic observations into effective clinical outcomes. Nat. Rev. Immunol. 2013, 13, 243–256. [Google Scholar]
- Abrams, D.; Levy, Y.; Losso, M.H.; Babiker, A.; Collins, G.; Cooper, D.A; Darbyshire, J.; Emery, S.; INSIGHT-ESPRIT Study Group; SILCAAT Scientific Committee; et al. Interleukin-2 therapy in patients with HIV infection. N. Engl. J. Med. 2009, 361, 1548–1559. [Google Scholar]
- Schwartzentruber, D.J.; Lawson, D.H.; Richards, J.M.; Conry, R.M.; Miller, D.M.; Treisman, J.; Gailani, F.; Riley, L.; Conlon, K.; Pockaj, B.; et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 2011, 364, 2119–2127. [Google Scholar]
- Almadzadeh, M.; Rosenberg, S.A. IL-2 administration increases CD4+CD25hiFoxp3+ regulatory T cells in cancer patients. Blood 2006, 107, 2409–2414. [Google Scholar]
- Josefowicz, S.Z.; Rudensky, A. Control of regulatory T cell lineage commitment and maintenance. Immunity 2009, 30, 616–625. [Google Scholar]
- Boyman, O.; Purton, J.F.; Surh, C.D.; Sprent, J. Cytokines and T-cell homeostasis. Curr. Opin. Immunol. 2007, 19, 320–326. [Google Scholar]
- Valle, A.; Jofra, T.; Stabilini, A.; Atkinson, M.; Roncarolo, M.G.; Battaglia, M. Rapamycin prevents and breaks the anti-CD3-induced tolerance in NOD mice. Diabetes 2009, 58, 875–881. [Google Scholar]
- Yang, S.B.; Lee, H.Y.; Young, D.M.; Tien, A.C.; Rowson-Baldwin, A.; Shu, Y.Y.; Jan, Y.N.; Jan, L.Y. Rapamycin induces glucose intolerance in mice by reducing islet mass, insulin content, and insulin sensitivity. J. Mol. Med. 2012, 90, 575–585. [Google Scholar]
- De Paz, B.; Alper-Lopez, M.; Ballina-Garcia, F.J.; Prado, C.; Mozo, L.; Gutierrez, C.; Suarez, A. Interleukin 10 and tumor necrosis factor-alpha genotypes in rheumatoid arthritis-association with clinical response to glucocorticoids. J. Rheumatol. 2010, 37, 503–511. [Google Scholar]
- De Paz, B.; Alper-Lopez, M.; Ballina-Garcia, F.J.; Prado, C.; Gutierrez, C.; Suarez, A. Cytokines and regulatory T cells in rheumatoid arthritis and their relationship with response to corticosteroids. J. Rheumatol. 2010, 37, 2502–2510. [Google Scholar]
- Margolin, K.; Atkins, M.B.; Dutcher, J.P.; Ernstoff, M.S.; Smith, J.W., 2nd; Clark, J.I.; Baar, J.; Sosman, J.; Weber, J.; Brunetti, J.; et al. Phase I trial of BAY 50-4798, an interlukin-2-specific agonist in advanced melanoma and renal cancer. Clin. Cancer Res. 2007, 13, 3312–3319. [Google Scholar]
- Pretto, F.; Elia, G.; Castioni, N.; Neri, D. Preclinical evaluation of IL-2-based immunocytokines supports their use in combination with dacarbazine, paclitaxel and TNF-based immunotherapy. Cancer Immunol. Immunother. 2014, 63, 901–910. [Google Scholar]
- Liao, W.; Lin, J.X.; Leonard, W.J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013, 38, 13–25. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmaczewska, A. Low-Dose Interleukin-2 Therapy: A Driver of an Imbalance between Immune Tolerance and Autoimmunity. Int. J. Mol. Sci. 2014, 15, 18574-18592. https://doi.org/10.3390/ijms151018574
Kosmaczewska A. Low-Dose Interleukin-2 Therapy: A Driver of an Imbalance between Immune Tolerance and Autoimmunity. International Journal of Molecular Sciences. 2014; 15(10):18574-18592. https://doi.org/10.3390/ijms151018574
Chicago/Turabian StyleKosmaczewska, Agata. 2014. "Low-Dose Interleukin-2 Therapy: A Driver of an Imbalance between Immune Tolerance and Autoimmunity" International Journal of Molecular Sciences 15, no. 10: 18574-18592. https://doi.org/10.3390/ijms151018574
APA StyleKosmaczewska, A. (2014). Low-Dose Interleukin-2 Therapy: A Driver of an Imbalance between Immune Tolerance and Autoimmunity. International Journal of Molecular Sciences, 15(10), 18574-18592. https://doi.org/10.3390/ijms151018574