Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative Characterization of Bioactive Compounds Present in Rosemary-Leaf Extracts
Peak | Retention Time (min) | Theoretical m/z | Molecular Formula | Fragments | Proposed Compound |
---|---|---|---|---|---|
1 | 2.06 | 191.0561 | C7H12O6 | 93.0338 (3.7), 127.0423 (10.2) | Quinic acid |
2 | 2.45 | 197.0455 | C9H10O5 | 135.0731 (100.0), 179.0516 (57.9) | Siringic acid |
3 | 7.48 | 305.0666 | C15H14O7 | 96.9595 (47.1), 225.1178 (100.0) | Gallocatechin |
4 | 8.43 | 463.0882 | C21H20O12 | 301.0414 (63.3) | 6-Hydroxyluteolin-7-glucoside |
5 | 8.85 | 521.1300 | C24H26O13 | 323.0774 (68.7), 359.0801 (53.3), 477.1052 (100.0) | Rosmarinic acid-3-O-glucoside |
6 | 8.90 | 477.1038 | C22H22O12 | 315.0528 (36.5) | Nepetrin |
7 | 9.20 | 609.1824 | C28H34O15 | 301.0732 (100.0) | Hesperidin |
8 | 9.36 | 461.1089 | C22H22O11 | 161.0294 (32.8), 283.0258 (100.0), 297.0408 (14.3) | Homoplantaginin |
9 | 9.53 | 461.0725 | C21H18O12 | 285.0417 (100.0) | Luteolin-3'-glucuronide |
10 | 9.79 | 359.0772 | C18H16O8 | 123.0445 (19.9), 161.0244 (100.0), 179.0357 (29.6), 197.0463 (12.7) | Rosmarinic acid |
11 | 10.07 | 503.0831 | C23H20O13 | 285.0370 (29.1), 399.0737 (100.0) | Luteolin 3'-O-(O-acetyl)-β-d-glucuronide Isomer I |
12 | 10.28 | 503.0831 | C23H20O13 | 285.0418 (100.0), 443.0654 (20.0) | Luteolin 3'-O-(O-acetyl)-β-d-glucuronide Isomer II |
13 | 13.81 | 313.0717 | C17H14O6 | 283.0272 (100.0), 298.0503 (85.4) | Cirsimaritin |
14 | 13.92 | 345.1707 | C20H26O5 | 283.1718 (49.4), 301.1833 (100.0) | Rosmanol |
15 | 14.40 | 345.1707 | C20H26O5 | 283.1713 (48.0) | Epiisorosmanol |
16 | 15.00 | 345.1707 | C20H26O5 | 283.1712 (32.6) | Epirosmanol |
17 | 15.14 | 283.0611 | C16H12O5 | 268.0401 (100.0) | Genkwanin |
18 | 16.04 | 487.3428 | C30H48O5 | – | Asiatic acid |
19 | 18.69 | 359.1863 | C21H28O5 | 283.1734 (35.2), 329.3651 (21.6) | Epirosmanol methyl ether |
20 | 19.15 | 329.1758 | C20H26O4 | 285.1885 (100.0) | Carnosol |
21 | 20.00 | 329.1758 | C20H26O4 | 285.1887 (100.0) | Carnosol isomer |
22 | 20.32 | 343.1550 | C20H24O5 | 299.1644 (12.9), 315.1634 (24.1) | Rosmadial |
23 | 21.04 | 471.3479 | C30H48O4 | – | Anemosapogenin |
24 | 21.35 | 315.1965 | C20H28O3 | 285.1877 (42.8) | Rosmaridiphenol |
25 | 21.83 | 301.1809 | C19H26O3 | 258.6483 (42.6), 283.6915 (25.7) | 2,3,4,4a,10,10a-Hexahidro-5,6-dihydroxy-1,1-dimethyl-7-(1-methylethyl)-9(1H)-Phenantrenone |
26 | 21.91 | 471.3479 | C30H48O4 | – | Benthamic acid |
27 | 22.35 | 471.3479 | C30H48O4 | – | Augustic acid |
28 | 22.63 | 331.1914 | C20H28O4 | 287.2078 (100.0) | Carnosic acid |
29 | 24.84 | 345.2071 | C21H30O4 | 286.1999 (76.1), 301.2239 (100.0) | 12-metoxy-carnosic acid |
30 | 25.14 | 317.2122 | C20H30O3 | 179.8164 (23.8), 287.2076 (60.5) | [9]-Shogaol isomer |
31 | 27.05 | 317.2122 | C20H30O3 | 179.7812 (19.7), 287.2079 (54.8) | [9]-Shogaol |
32 | 27.99 | 453.3347 | C30H46O3 | – | Micromeric acid |
33 | 29.05 | 455.3530 | C30H48O3 | – | Betulinic acid |
34 | 30.25 | 455.3530 | C30H48O3 | – | Ursolic acid |
2.2. Quantitative Characterization of the Compounds Present in Rosemary-Leaf Extracts
Analyte | LOD (μg/mL) | LOQ (μg/mL) | Calibration Range (μg/mL) | Calibration Equations | R2 |
---|---|---|---|---|---|
Carnosic acid | 0.018 | 0.06 | LOQ − 70 | y = 94.036x + 0.0152 | 0.9907 |
Carnosol | 0.019 | 0.06 | LOQ − 25 | y = 84.476x + 0.3537 | 0.989 |
Ursolic acid | 0.07 | 0.22 | LOQ − 50 | y = 106x + 56483 | 0.9763 |
Rosmarinic acid | 0.035 | 0.09 | LOQ − 15 | y = 40352x − 0.0142 | 0.9909 |
Genkwanin | 0.014 | 0.04 | LOQ − 15 | y = 147.37x − 0.0399 | 0.9803 |
Luteolin-7-O-glucoside | 0.08 | 0.25 | LOQ − 15 | y = 14.22x + 0.088 | 0.9818 |
Homoplantaginin | 0.016 | 0.05 | LOQ − 5 | y = 62.358x + 0.0308 | 0.9912 |
Epigallocatechin | 0.08 | 0.26 | LOQ − 15 | y = 12.584x − 0.0429 | 0.9887 |
Neohesperidin | 0.03 | 0.1 | LOQ − 15 | y = 17.158x − 0.0018 | 0.9882 |
Quinic acid | 0.08 | 0.3 | LOQ − 15 | y = 15.223x − 0.0244 | 0.9918 |
Syringic acid | 0.24 | 0.8 | LOQ − 15 | y = 1.8012x + 0.0022 | 0.9909 |
(A) | |||||||
---|---|---|---|---|---|---|---|
Rt (min) | Compound | RS 1 | RS 2 | RS 3 | RS 4 | RS 5 | RS 6 |
2.06 | Quinic acid | 121 ± 2 | 128 ± 6 | 154 ± 8 | 72 ± 5 | ND | ND |
2.45 | Siringic acid | 300 ± 20 | ND | 250 ± 30 | ND | ND | ND |
7.48 | Gallocatechin | 9.0 ± 0.6 | 11.1 ± 0.5 | 10.6 ± 0.3 | 31 ± 1 | 8.5 ± 0.2 | 4.8 ± 0.4 |
8.43 | 6-Hydroxyluteolin 7-glucoside | ND | 0.81 ± 0.02 | 0.71 ± 0.05 | ND | ND | ND |
8.85 | Rosmarinic acid-3-O-glucoside | ND | ND | ND | ND | 6.14 ± 0.08 | 7.9 ± 0.7 |
8.90 | Nepetrin | 9.9 ± 0.1 | 10.0 ± 0.5 | 10.3 ± 0.1 | 3.22 ± 0.08 | ND | ND |
9.20 | Hesperidin | 2.2 ± 0.1 | 2.6 ± 0.1 | 2.8 ± 0.2 | 3.2 ± 0.2 | 1.88 ± 0.05 | 1.9 ± 0.2 |
9.36 | Homoplantaginin | 1.28 ± 0.06 | 1.51 ± 0.03 | 1.71 ± 0.10 | 1.4 ± 0.1 | 0.57 ± 0.03 | 0.40 ± 0.03 |
9.53 | Luteolin-3'-glucuronide | 10.5 ± 0.3 | 9.2 ± 0.4 | 10.5 ± 0.5 | 6.2 ± 0.3 | 0.90 ± 0.02 | 0.68 ± 0.06 |
9.79 | Rosmarinic acid | 15.3 ± 0.5 | 25 ± 1 | 24.3 ± 0.5 | 6.3 ± 0.1 | 9.9 ± 0.6 | 5.6 ± 0.2 |
10.07 | Luteolin 3'-O-(O-acetyl)-β-d-glucuronide Isomer I | 4.5 ± 0.6 | 5.5 ± 0.2 | 6.8 ± 0.3 | 0.42 ± 0.01 | ND | ND |
10.28 | Luteolin 3'-O-(O-acetyl)-β-d-glucuronide Isomer II | 15 ± 1 | 17.9 ± 0.8 | 19.3 ± 0.6 | 4.8 ± 0.3 | <LQ | 0.3 ± 0.1 |
13.81 | Cirsimaritin | 0.47 ± 0.06 | 0.58 ± 0.02 | 0.70 ± 0.08 | 0.82 ± 0.09 | 0.32 ± 0.02 | 0.19 ± 0.01 |
13.92 | Rosmanol | 2.00 ± 0.04 | 1.49 ± 0.03 | 2.48 ± 0.09 | 1.69 ± 0.07 | 0.352 ± 0.006 | 0.173 ± 0.005 |
14.40 | Epiisorosmanol | 0.426 ± 0.010 | 0.95 ± 0.05 | 0.90 ± 0.03 | 1.1 ± 0.2 | 0.82 ± 0.05 | 0.19 ± 0.03 |
15.00 | Epirosmanol | 0.23 ± 0.01 | 0.41 ± 0.03 | 0.419 ± 0.002 | 0.6 ± 0.1 | 0.271 ± 0.003 | <LQ |
15.14 | Genkwanin | 0.44 ± 0.01 | 0.64 ± 0.03 | 0.75 ± 0.04 | 0.70 ± 0.02 | 0.234 ± 0.003 | 0.17 ± 0.02 |
16.04 | Asiatic acid | ND | 1.65 ± 0.08 | 3.3 ± 0.4 | 1.75 ± 0.05 | 0.907 ± 0.009 | ND |
18.69 | Epirosmanol methyl ether | 0.158 ± 0.005 | 0.70 ± 0.01 | 0.83 ± 0.07 | 0.62 ± 0.08 | 1.16 ± 0.03 | 0.159 ± 0.001 |
19.15 | Carnosol | 12 ± 1 | 22.1 ± 0.6 | 22 ± 1 | 18.8 ± 0.8 | 14.05 ± 0.02 | 5.3 ± 0.1 |
20.00 | Carnosol isomer | 0.75 ± 0.07 | 0.75 ± 0.10 | 0.80 ± 0.07 | 1.00 ± 0.03 | 0.17 ± 0.04 | 0.19 ± 0.01 |
20.32 | Rosmadial | 0.30 ± 0.04 | 0.23 ± 0.02 | 0.298 ± 0.006 | 0.32 ± 0.02 | <LQ | ND |
21.04 | Anemosapogenin | ND | 0.457 ± 0.002 | 1.8 ± 0.1 | 2.9 ± 0.6 | 3.5 ± 0.2 | ND |
21.35 | Rosmaridiphenol | 0.256 ± 0.001 | 0.62 ± 0.02 | 0.49 ± 0.02 | 0.35 ± 0.02 | 0.18 ± 0.01 | ND |
21.83 | 2,3,4,4a,10,10a-hexahidro-5,6-dihydroxy-1,1-dimethyl-7-(1-methylethyl)-9(1H)-Phenantrenone | 0.05 ± 0.02 | 0.24 ± 0.01 | 0.53 ± 0.01 | 0.49 ± 0.10 | 0.50 ± 0.01 | ND |
21.91 | Benthamic acid | ND | 3.7 ± 0.5 | 5.1292 ± 0.0002 | 6.1 ± 0.4 | 6.6 ± 0.2 | ND |
22.35 | Augustic acid | ND | 1.68 ± 0.05 | 2.0 ± 0.4 | 3.6 ± 0.1 | 3.6 ± 0.3 | ND |
22.63 | Carnosic acid | 24 ± 2 | 17.2 ± 0.8 | 19 ± 1 | 25 ± 1 | 2.9 ± 0.2 | 3.2 ± 0.5 |
24.84 | 12-metoxy-carnosic acid | 2.9 ± 0.1 | 3.8 ± 0.1 | 4.0 ± 0.2 | 3.7 ± 0.3 | 0.64 ± 0.03 | 0.084 ± 0.005 |
25.14 | [9]-Shogaol isomer | 1.03 ± 0.02 | 1.41 ± 0.06 | 1.43 ± 0.04 | 1.7 ± 0.1 | 0.68 ± 0.01 | ND |
27.05 | [9]-Shogaol | 1.87 ± 0.08 | 3.4 ± 0.3 | 2.91 ± 0.07 | 1.58 ± 0.10 | 0.45 ± 0.02 | ND |
27.99 | Micromeric acid | 1.2 ± 0.2 | 8 ± 1 | 7.7 ± 1.0 | 33 ± 1 | 7.0 ± 0.7 | ND |
29.05 | Betulinic acid | 7.8 ± 0.6 | 77 ± 1 | 26 ± 1 | 70 ± 2 | 47 ± 2 | ND |
30.25 | Ursolic acid | 1.715 ± 0.008 | 21.9 ± 0.1 | 23 ± 1 | 40 ± 1 | 8.1 ± 0.3 | ND |
(B) | ||||||||
---|---|---|---|---|---|---|---|---|
Rt (min) | Compound | RS 7 | RS 8 | RS 9 | RS 10 | RS 11 | RS 12 | RS 13 |
2.06 | Quinic acid | ND | ND | ND | 12.97 ± 0.01 | ND | ND | ND |
2.45 | Siringic acid | ND | ND | ND | ND | ND | ND | ND |
7.48 | Gallocatechin | 5.1 ± 0.5 | 4.4 ± 0.4 | 4.0 ± 0.4 | 7.7 ± 0.5 | 10.2 ± 0.2 | 15.7 ± 0.2 | ND |
8.43 | 6-Hydroxyluteolin 7-glucoside | ND | ND | ND | ND | ND | ND | ND |
8.85 | Rosmarinic acid-3-O-glucoside | 10.1 ± 0.6 | 6.7 ± 0.5 | 9.5 ± 0.5 | 0.99 ± 0.01 | 17.4 ± 0.1 | 27 ± 1 | 1.10 ± 0.08 |
8.90 | Nepetrin | ND | ND | 50 ± 1 | 57 ± 1 | ND | ND | 0.270 ± 0.006 |
9.20 | Hesperidin | 1.92 ± 0.07 | 1.35 ± 0.10 | 1.56 ± 0.09 | 2.15 ± 0.02 | 2.7 ± 0.2 | 4.2 ± 0.1 | ND |
9.36 | Homoplantaginin | 0.66 ± 0.06 | 0.50 ± 0.03 | 0.49 ± 0.03 | 0.71 ± 0.03 | 0.71 ± 0.05 | 1.6 ± 0.2 | 0.45 ± 0.03 |
9.53 | Luteolin-3'-glucuronide | 1.31 ± 0.08 | 1.79 ± 0.05 | 0.44 ± 0.05 | 1.39 ± 0.08 | 2.6 ± 0.2 | 5.29 ± 0.09 | 0.11 ± 0.03 |
9.79 | Rosmarinic acid | 5.0 ± 0.6 | 7.0 ± 0.6 | 6.3 ± 0.4 | 0.855 ± 0.003 | 12.5 ± 0.1 | 20.57 ± 0.04 | 5.4 ± 0.3 |
10.07 | Luteolin 3'-O-(O-acetyl)-β-d-glucuronide Isomer I | ND | ND | ND | <LQ | <LQ | ND | ND |
10.28 | Luteolin 3'-O-(O-acetyl)-β-d-glucuronide Isomer II | 1.2 ± 0.2 | 0.7 ± 0.1 | 0.28 ± 0.08 | 0.33 ± 0.02 | 3.0 ± 0.2 | 8.1 ± 0.8 | ND |
13.81 | Cirsimaritin | 0.24 ± 0.02 | 0.27 ± 0.02 | 0.24 ± 0.01 | 0.2935 ± 0.0009 | 0.44 ± 0.02 | 0.745 ± 0.009 | ND |
13.92 | Rosmanol | 0.42 ± 0.02 | 0.308 ± 0.008 | 0.37 ± 0.03 | 0.65 ± 0.02 | 0.46 ± 0.01 | 1.08 ± 0.03 | 0.110 ± 0.006 |
14.40 | Epiisorosmanol | 0.57 ± 0.02 | 0.83 ± 0.02 | 0.97 ± 0.01 | 0.31 ± 0.02 | 0.57 ± 0.02 | 2.41 ± 0.07 | <LQ |
15.00 | Epirosmanol | 0.20 ± 0.02 | 0.257 ± 0.003 | 0.45 ± 0.02 | 0.106 ± 0.006 | 0.195 ± 0.003 | 1.02 ± 0.01 | ND |
15.14 | Genkwanin | 0.210 ± 0.007 | 0.26 ± 0.02 | 0.168 ± 0.006 | 0.275 ± 0.002 | 0.38 ± 0.02 | 0.476 ± 0.005 | ND |
16.04 | Asiatic acid | ND | ND | ND | 1.4 ± 0.1 | <LQ | ND | ND |
18.69 | Epirosmanol methyl ether | 0.59 ± 0.02 | 1.128 ± 0.001 | 0.385 ± 0.010 | 0.113 ± 0.003 | 0.57 ± 0.04 | 1.00 ± 0.07 | ND |
19.15 | Carnosol | 10 ± 2 | 11.7 ± 0.9 | 4.8 ± 0.1 | 5.5 ± 0.3 | 16.0 ± 0.2 | 18.5 ± 0.4 | 1.8 ± 0.1 |
20.00 | Carnosol isomer | ND | ND | 0.13 ± 0.02 | 0.39 ± 0.03 | 0.31 ± 0.02 | 0.8 ± 0.2 | ND |
20.32 | Rosmadial | ND | ND | ND | 0.116 ± 0.010 | ND | 0.22 ± 0.02 | ND |
21.04 | Anemosapogenin | ND | ND | ND | 4.60 ± 0.06 | ND | ND | ND |
21.35 | Rosmaridiphenol | ND | 0.15 ± 0.01 | ND | 0.132 ± 0.001 | 0.20 ± 0.01 | 0.3572 ± 0.0009 | ND |
21.83 | 2,3,4,4a,10,10a-hexahidro-5,6-dihydroxy-1,1-dimethyl-7-(1-methylethyl)-9(1H)-Phenantrenone | ND | 0.27 ± 0.03 | 0.27 ± 0.02 | ND | 0.15 ± 0.01 | 0.16 ± 0.05 | ND |
21.91 | Benthamic acid | ND | 1.2 ± 0.1 | ND | 8.3 ± 0.2 | 3.6 ± 0.2 | 2.80 ± 0.04 | ND |
22.35 | Augustic acid | ND | 0.235 ± 0.007 | ND | 4.8 ± 0.2 | 2.2 ± 0.1 | 0.9 ± 0.1 | ND |
22.63 | Carnosic acid | 2.6 ± 0.6 | 2.11 ± 0.02 | 3.4 ± 0.4 | 14 ± 1 | 5.8 ± 0.8 | 17 ± 1 | 1.1 ± 0.1 |
24.84 | 12-metoxy-carnosic acid | 0.30 ± 0.02 | 0.40 ± 0.04 | 0.287 ± 0.007 | 0.62 ± 0.02 | 0.52 ± 0.03 | 1.12 ± 0.01 | ND |
25.14 | [9]-Shogaol isomer | ND | ND | ND | 0.59 ± 0.02 | 0.63 ± 0.03 | 1.21 ± 0.03 | ND |
27.05 | [9]-Shogaol | ND | ND | ND | 0.779 ± 0.007 | 0.66 ± 0.07 | 1.264 ± 0.008 | ND |
27.99 | Micromeric acid | 1.7 ± 0.3 | 2.5 ± 0.2 | ND | 16.2 ± 0.9 | 11 ± 1 | 6.8 ± 0.6 | ND |
29.05 | Betulinic acid | 6.207 ± 0.001 | 7.2 ± 0.4 | 0.93 ± 0.05 | 76 ± 2 | 51.7 ± 0.3 | 39 ± 2 | ND |
30.25 | Ursolic acid | 3.0 ± 0.4 | 4.35 ± 0.06 | 0.11 ± 0.04 | 42 ± 1 | 26 ± 1 | 18.7 ± 0.4 | ND |
(C) | ||||||||
---|---|---|---|---|---|---|---|---|
Rt (min) | Compound | RS 14 | RS 15 | RS 16 | RS 17 | RS 18 | RS 19 | RS 20 |
2.06 | Quinic acid | ND | ND | 14.2 ± 0.8 | ND | 46 ± 3 | 16.8 ± 0.5 | ND |
2.45 | Siringic acid | ND | ND | ND | ND | 210 ± 10 | ND | ND |
7.48 | Gallocatechin | 3.1 ± 0.1 | 6.9 ± 0.5 | 6.5 ± 0.5 | 12.2 ± 0.6 | 6.6 ± 0.2 | 3.7 ± 0.1 | 9.6 ± 0.7 |
8.43 | 6-Hydroxyluteolin 7-glucoside | ND | ND | ND | ND | 0.19 ± 0.04 | ND | ND |
8.85 | Rosmarinic acid-3-O-glucoside | 2.2 ± 0.1 | 12.4 ± 0.8 | ND | 16 ± 1 | ND | 0.90 ± 0.02 | 10.4 ± 0.6 |
8.90 | Nepetrin | 0.82 ± 0.08 | ND | 2.3 ± 0.2 | ND | 9.7 ± 0.3 | 3.7 ± 0.3 | ND |
9.20 | Hesperidin | 1.2 ± 0.1 | 1.93 ± 0.05 | 1.3 ± 0.1 | 2.93 ± 0.06 | 2.29 ± 0.08 | 1.01 ± 0.05 | 4.4 ± 0.2 |
9.36 | Homoplantaginin | 0.417 ± 0.009 | 0.64 ± 0.04 | 0.59 ± 0.05 | 0.95 ± 0.09 | 1.4 ± 0.1 | 0.59 ± 0.03 | 1.10 ± 0.07 |
9.53 | Luteolin-3'-glucuronide | 1.24 ± 0.09 | 1.6 ± 0.1 | 7.3 ± 0.8 | 5.5 ± 0.4 | 9.3 ± 0.9 | 3.34 ± 0.04 | 3.2 ± 0.3 |
9.79 | Rosmarinic acid | 1.02 ± 0.02 | 10.1 ± 0.5 | 7.5 ± 0.6 | 9.7 ± 0.4 | 23 ± 1 | 9.0 ± 0.6 | 5.6 ± 0.2 |
10.07 | Luteolin 3'-O-(O-acetyl)-β-d-glucuronide Isomer I | ND | ND | 3.2 ± 0.2 | 0.367 ± 0.004 | 5.2 ± 0.3 | 1.46 ± 0.05 | ND |
10.28 | Luteolin 3'-O-(O-acetyl)-β-d-glucuronide isomer II | 0.67 ± 0.01 | 0.74 ± 0.06 | 10.1 ± 0.7 | 8.8 ± 0.9 | 16.6 ± 0.3 | 5.8 ± 0.3 | 0.89 ± 0.08 |
13.81 | Cirsimaritin | 0.17 ± 0.01 | 0.27 ± 0.02 | 0.31 ± 0.01 | 0.41 ± 0.05 | 0.51 ± 0.03 | 0.276 ± 0.009 | 0.53 ± 0.02 |
13.92 | Rosmanol | 0.10 ± 0.02 | 0.32 ± 0.02 | 0.69 ± 0.04 | 0.421 ± 0.008 | 1.44 ± 0.04 | 0.39 ± 0.01 | 0.78 ± 0.02 |
14.40 | Epiisorosmanol | 0.84 ± 0.04 | 0.51 ± 0.05 | 0.34 ± 0.01 | 0.26 ± 0.01 | 0.865 ± 0.004 | 0.492 ± 0.003 | 1.5 ± 0.1 |
15.00 | Epirosmanol | 0.103 ± 0.002 | 0.177 ± 0.009 | 0.126 ± 0.003 | 0.094 ± 0.007 | 0.41 ± 0.03 | 0.198 ± 0.008 | 0.636 ± 0.009 |
15.14 | Genkwanin | 0.16 ± 0.02 | ND | 0.42 ± 0.03 | 0.34 ± 0.04 | 0.56 ± 0.05 | 0.31 ± 0.02 | 0.531 ± 0.009 |
16.04 | Asiatic acid | ND | ND | ND | ND | 2.4 ± 0.3 | ND | ND |
18.69 | Epirosmanol methyl ether | 3.0 ± 0.2 | 0.534 ± 0.009 | 0.34 ± 0.01 | 0.15 ± 0.02 | 0.67 ± 0.03 | 0.67 ± 0.04 | 1.10 ± 0.04 |
19.15 | Carnosol | 3.7 ± 0.5 | 17.977 ± 0.002 | 11 ± 1 | 9.8 ± 0.3 | 18.2 ± 0.5 | 10 ± 1 | 22 ± 1 |
20.00 | Carnosol isomer | ND | 0.41 ± 0.05 | 0.281 ± 0.004 | 0.45 ± 0.01 | 0.57 ± 0.04 | ND | 0.34 ± 0.03 |
20.32 | Rosmadial | ND | 0.20 ± 0.03 | ND | ND | 0.226 ± 0.009 | ND | 0.26 ± 0.01 |
21.04 | Anemosapogenin | ND | ND | ND | ND | 0.84 ± 0.01 | ND | ND |
21.35 | Rosmaridiphenol | ND | ND | 0.206 ± 0.008 | 0.158 ± 0.007 | 0.383 ± 0.007 | 0.19 ± 0.01 | 0.37 ± 0.03 |
21.83 | 2,3,4,4a,10,10a-Hexahidro-5,6-dihydroxy-1,1-dimethyl-7-(1-methylethyl)-9(1H)-phenantrenone | ND | ND | ND | ND | ND | ND | ND |
21.91 | Benthamic acid | ND | 1.0 ± 0.1 | ND | 1.3 ± 0.2 | 3.86 ± 0.07 | ND | 1.37 ± 0.07 |
22.35 | Augustic acid | ND | <LQ | ND | 0.48 ± 0.04 | 1.10 ± 0.03 | ND | <LQ |
22.63 | Carnosic acid | ND | 8.5 ± 0.6 | 6.5 ± 0.6 | 10.3 ± 0.6 | 13.7 ± 0.6 | 1.6 ± 0.1 | 4.8 ± 0.1 |
24.84 | 12-Metoxy-carnosic acid | 0.13 ± 0.03 | 0.52 ± 0.04 | 4.05 ± 0.08 | 0.73 ± 0.09 | 3.15 ± 0.01 | 1.02 ± 0.03 | 1.06 ± 0.03 |
25.14 | [9]-Shogaol isomer | ND | 0.76 ± 0.05 | ND | 0.60 ± 0.03 | 1.14 ± 0.03 | ND | 1.11 ± 0.03 |
27.05 | [9]-Shogaol | ND | 0.85 ± 0.01 | 0.79 ± 0.05 | 0.88 ± 0.03 | 2.53 ± 0.08 | 0.51 ± 0.02 | 1.05 ± 0.04 |
27.99 | Micromeric acid | ND | 4.47 ± 0.06 | ND | 15 ± 1 | 5.4 ± 0.7 | ND | 4.1 ± 0.4 |
29.05 | Betulinic acid | ND | 26 ± 1 | ND | 58 ± 2 | 40 ± 1 | ND | 17 ± 1 |
30.25 | Ursolic acid | ND | 5.2 ± 0.7 | ND | 27 ± 1 | 5.5 ± 0.7 | ND | 3.61 ± 0.05 |
3. Experimental Section
3.1. Chemicals
3.2. Samples
Sample Code | Geographical Area | Altitude |
---|---|---|
RS 1 | Kikinda (Vojvodina) | 73 |
RS 2 | Sokobanja 1 (sur de Serbia) | 400 |
RS 3 | Sokobanja 2 (sur de Serbia) | 415 |
RS 4 | Sokobanja 3 (sur de Serbia) | 350 |
RS 5 | Bačka Palanka (Vojvodina) | 80 |
RS 6 | Bačka Palanka (Vojvodina) | 80 |
RS 7 | Novi Sad 1 (Vojvodina) | 72 |
RS 8 | Novi Sad 2 (Vojvodina) | 80 |
RS 9 | Silbaš (Vojvodina) | 85 |
RS 10 | Gložan (Vojvodina) | 83 |
RS 11 | Čelarevo (Vojvodina) | 76 |
RS 12 | Bačko Petrovo Selo 1 (Vojvodina) | 86 |
RS 13 | Bačko Petrovo Selo 2 (Vojvodina) | 86 |
RS 14 | Rumenka (Vojvodina) | 88 |
RS 15 | Fruška Gora (Vojvodina) | 539 |
RS 16 | Zrenjanin (Vojvodina) | 80 |
RS 17 | Vranje (sur de Serbia) | 487 |
RS 18 | Stara Planina (sur de Serbia) | 764 |
RS 19 | Leskovac (sur de Serbia) | 225 |
RS 20 | Niš (sur de Serbia) | 194 |
3.3. Microwave-Assisted Extractions of Rosemary Leaves
3.4. HPLC–ESI-QTOF-MS Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sotelo-Félix, J.I.; Martinez-Fong, D.; Muriel, P.; Santillán, R.L.; Castillo, D.; Yahuaca, P. Evaluation of the effectiveness of Rosmarinus Officinalis (Lamiaceae) in the alleviation of carbon tetrachloride-induced acute hepatotoxicity in the rat. J. Ethnopharmacol. 2002, 81, 145–154. [Google Scholar]
- Del Campo, J.; Amiot, M.; Nguyen-The, C. Antimicrobial effect of rosemary extracts. J. Food Prot. 2000, 63, 1359–1368. [Google Scholar]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar]
- Yamamoto, J.; Yamada, K.; Naemura, A.; Yamashita, T.; Arai, R. Testing various herbs for antithrombotic effect. Nutrition 2005, 21, 580–587. [Google Scholar]
- Haloui, M.; Louedec, L.; Michel, J.; Lyoussi, B. Experimental diuretic effects of Rosmarinus officinalis and Centaurium erythraea. J. Ethnopharmacol. 2000, 71, 465–472. [Google Scholar]
- Bakirel, T.; Bakirel, U.; Keleş, O.U.; Ülgen, S.G.; Yardibi, H. In Vivo Assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J. Ethnopharmacol. 2008, 116, 64–73. [Google Scholar]
- Altinier, G.; Sosa, S.; Aquino, R.P.; Mencherini, T.; Loggia, R.D.; Tubaro, A. Characterization of topical antiinflammatory compounds in Rosmarinus officinalis L. J. Agric. Food Chem. 2007, 55, 1718–1723. [Google Scholar]
- Perez-Fons, L.; Garzon, M.T.; Micol, V. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J. Agric. Food Chem. 2010, 58, 161–171. [Google Scholar]
- Lo, A.; Liang, Y.; Lin-Shiau, S.; Ho, C.; Lin, J. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis 2002, 23, 983–991. [Google Scholar]
- Dörrie, J.; Sapala, K.; Zunino, S.J. Carnosol-induced apoptosis and downregulation of Bcl-2 in B-lineage leukemia cells. Cancer Lett. 2001, 170, 33–39. [Google Scholar]
- Huang, S.; Ho, C.; Lin-Shiau, S.; Lin, J. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-κB and c-Jun. Biochem. Pharmacol. 2005, 69, 221–232. [Google Scholar]
- Visanji, J.M.; Thompson, D.G.; Padfield, P.J. Induction of G2/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Lett. 2006, 237, 130–136. [Google Scholar]
- Yesil-Celiktas, O.; Sevimli, C.; Bedir, E.; Vardar-Sukan, F. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Food Hum. Nutr. 2010, 65, 158–163. [Google Scholar]
- Johnson, J.J. Carnosol: A promising anti-cancer and anti-inflammatory agent. Cancer Lett. 2011, 305, 1–7. [Google Scholar]
- Bai, N.; He, K.; Roller, M.; Lai, C.; Shao, X.; Pan, M.; Ho, C. Flavonoids and phenolic compounds from Rosmarinus officinalis. J. Agric. Food Chem. 2010, 58, 5363–5367. [Google Scholar]
- Bicchi, C.; Binello, A.; Rubiolo, P. Determination of phenolic diterpene antioxidants in rosemary (Rosmarinus officinalis L.) with different methods of extraction and analysis. Phytochem. Anal. 2000, 11, 236–242. [Google Scholar]
- Del Baño, M.J.; Lorente, J.; Castillo, J.; Benavente-García, O.; Marín, M.P.; Del Río, J.A.; Ortuño, A.; Ibarra, I. Flavonoid distribution during the development of leaves, flowers, stems and roots of Rosmarinus officinalis. Postulation of a biosynthetic pathway. J. Agric. Food Chem. 2004, 52, 4987–4992. [Google Scholar]
- Weckesser, S.; Engel, K.; Simon-Haarhaus, B.; Wittmer, A.; Pelz, K.; Schempp, C.M. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine 2007, 14, 508–516. [Google Scholar]
- Poeckel, D.; Greiner, C.; Verhoff, M.; Rau, O.; Tausch, L.; Hörnig, C.; Steinhilber, D.; Schubert-Zsilavecz, M.; Werz, O. Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress pro-inflammatory responses of stimulated human polymorphonuclear leukocytes. Biochem. Pharmacol. 2008, 76, 91–97. [Google Scholar]
- Kim, S.; Kim, J.; Cho, H.; Lee, H.J.; Kim, S.Y.; Kim, S.; Lee, S.; Chun, H.S. Carnosol, a component of rosemary (Rosmarinus officinalis L.) protects nigral dopaminergic neuronal cells. Neuroreport 2006, 17, 1729–1733. [Google Scholar]
- Satoh, T.; Izumi, M.; Inukai, Y.; Tsutsumi, Y.; Nakayama, N.; Kosaka, K.; Shimojo, Y.; Kitajima, C.; Itoh, K.; Yokoi, T.; et al. Carnosic acid protects neuronal HT22 cells through activation of the antioxidant-responsive element in free carboxylic acid- and catechol hydroxyl moieties-dependent manners. Neurosci. Lett. 2008, 434, 260–265. [Google Scholar]
- Johnson, J.J.; Syed, D.N.; Suh, Y.; Heren, C.R.; Saleem, M.; Siddiqui, I.A.; Mukhtar, H. Disruption of androgen and estrogen receptor activity in prostate cancer by a novel dietary diterpene carnosol: Implications for chemoprevention. Cancer Prev. Res. 2010, 3, 1112–1123. [Google Scholar]
- Singletary, K.; MacDonald, C.; Wallig, M. Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a] anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA–DNA adduct formation. Cancer Lett. 1996, 104, 43–48. [Google Scholar]
- Laszczyk, M.N. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med. 2009, 75, 1549–1560. [Google Scholar]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar]
- Taamalli, A.; Arráez-Román, D.; Barrajón-Catalán, E.; Ruiz-Torres, V.; Pérez-Sánchez, A.; Herrero, M.; Ibañez, E.; Micol, V.; Zarrouk, M.; Segura-Carretero, A.; et al. Use of advanced techniques for the extraction of phenolic compounds from tunisian olive leaves: Phenolic composition and cytotoxicity against human breast cancer cells. Food Chem. Toxicol. 2012, 50, 1817–1825. [Google Scholar]
- Taamalli, A.; Arráez-Román, D.; Ibañez, E.; Zarrouk, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC–ESI-TOF-MS/IT–MS2. J. Agric. Food Chem. 2012, 60, 791–798. [Google Scholar]
- Proestos, C.; Komaitis, M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT-Food Sci. Technol. 2008, 41, 652–659. [Google Scholar]
- Huie, C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 2002, 373, 23–30. [Google Scholar]
- Tatke, P.; Jaiswal, Y. An overview of Microwave Assisted Extraction and its applications in herbal drug research. Res. J. Med. Plant 2011, 5, 21–31. [Google Scholar]
- Okoh, O.O.; Sadimenko, A.P.; Afolayan, A.J. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus Officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem. 2010, 120, 308–312. [Google Scholar]
- Cuvelier, M.; Richard, H.; Berset, C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. JAOCS 1996, 73, 645–652. [Google Scholar]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013, 136, 120–129. [Google Scholar]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, A.C. Characterization of phenolic composition in Lamiaceae spices by LC–ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar]
- Almela, L.; Sánchez-Muñoz, B.; Fernández-López, J.A.; Roca, M.J.; Rabe, V. Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J. Chromatogr. 2006, 1120, 221–229. [Google Scholar]
- Zhang, Y.; Smuts, J.P.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation study of carnosic acid, carnosol, rosmarinic acid and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar]
- Herrero, M.; Plaza, M.; Cifuentes, A.; Ibanez, E. Green processes for the extraction of bioactives from rosemary: Chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in vitro assays. J. Chromatogh. 2010, 1217, 2512–2520. [Google Scholar]
- Doolaege, E.H.A.; Raes, K.; Smet, K.; Andjelkovic, M.; van Poucke, C.; de Smet, S.; Verhé, R. Characterization of two unknown compounds in methanol extracts of rosemary oil. J. Agric. Food Chem. 2007, 55, 7283–7287. [Google Scholar]
- Okamura, N.; Haraguchi, H.; Hashimoto, K.; Yagi, A. Flavonoids in Rosmarinus officinalis leaves. Phytochemistry 1994, 37, 1463–1466. [Google Scholar]
- Gómez-Romero, M.; Zurek, G.; Schneider, B.; Baessmann, C.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Automated identification of phenolics in plant-derived foods by using library search approach. Food Chem. 2011, 124, 379–386. [Google Scholar]
- Machado, D.G.; Bettio, L.E.B.; Cunha, M.P.; Capra, J.C.; Dalmarco, J.B.; Pizzolatti, M.G.; Rodrigues, A.L.S. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: Involvement of the monoaminergic system. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2009, 33, 642–650. [Google Scholar]
- Mahmoud, A.A.; Al-Shihry, S.S.; Son, B.W. Diterpenoid quinones from rosemary (Rosmarinus officinalis L.). Phytochemistry 2005, 66, 1685–1690. [Google Scholar]
- Collins, M.A.; Charles, H.P. Antimicrobial activity of carnosol and ursolic acid: Two anti-oxidant constituents of Rosmarinus officinalis L. Food Microbiol. 1987, 4, 311–315. [Google Scholar]
- De Felice, A.; Bader, A.; Leone, A.; Sosa, S.; Della Loggia, R.; Tubaro, A.; de Tommasi, N. New polyhydroxylated triterpenes and anti-inflammatory activity of Salvia Hierosolymitana. Planta Med. 2006, 72, 643–649. [Google Scholar]
- Babovic, N.; Djilas, S.; Jadranin, M.; Vajs, V.; Ivanovic, J.; Petrovic, S.; Zizovic, I. Supercritical carbon dioxide extraction of antioxidant fractions from selected Lamiaceae herbs and their antioxidant capacity. Innov. Food Sci. Emerg. 2010, 11, 98–107. [Google Scholar]
- Vrchovská, V.; Spilková, J.; Valentão, P.; Sousa, C.; Andrade, P.B.; Seabra, R.M. Antioxidative properties and phytochemical composition of Ballota nigra infusion. Food Chem. 2007, 105, 1396–1403. [Google Scholar]
- Fecka, I.; Turek, S. Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: Thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem. 2008, 108, 1039–1053. [Google Scholar]
- Zgórka, G.; Glowniak, K. Variation of free phenolic acids in medicinal plants belonging to the Lamiaceae family. J. Pharm. Biomed. Anal. 2001, 26, 79–87. [Google Scholar]
- Kasimu, R.; Tanaka, K.; Tezuka, Y.; Gong, Z.; Li, J.; Basnet, P.; Namba, T.; Kadota, S. Comparative study of seventeen salvia plants: Aldose reductase inhibitory activity of water and MeOH extracts and liquid chromatography–mass spectrometry (LC–MS) analysis of water extracts. Chem. Pharmac. Bull. 1998, 46, 500–504. [Google Scholar]
- Yoshida, M.; Fuchigami, M.; Nagao, T.; Okabe, H.; Matsunaga, K.; Takata, J.; Karube, Y.; Tsuchihashi, R.; Kinjo, J.; Mihashi, K.; et al. Antiproliferative constituents from Umbelliferae plants VII. Active triterpenes and rosmarinic acid from Centella asiatica. Biol. Pharm. Bull. 2005, 28, 173–175. [Google Scholar]
- Banno, N.; Akihisa, T.; Tokuda, H.; Yasukawa, K.; Higashihara, H.; Ukiya, M.; Watanabe, K.; Kimura, Y.; Hasegawa, J.; Nishino, H. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci. Biotechnol. Biochem. 2004, 68, 85–90. [Google Scholar]
- Chen, X.; Hu, L.; Su, X.; Kong, L.; Ye, M.; Zou, H. Separation and detection of compounds in honeysuckle by integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography–atmospheric pressure chemical ionization mass spectrometer and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. J. Pharm. Biomed. Anal. 2006, 40, 559–570. [Google Scholar]
- Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave assisted Extraction of curcumin by sample-solvent dual heating mechanism using taguchi L9 orthogonal design. J. Pharm. Biomed. Anal. 2008, 46, 322–327. [Google Scholar]
- Švarc-Gajic, J.; Stojanovic, Z.; Segura Carretero, A.; Arráez Román, D.; Borrás, I.; Vasiljevic, I. Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis. J. Food Eng. 2013, 119, 525–532. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrás-Linares, I.; Stojanović, Z.; Quirantes-Piné, R.; Arráez-Román, D.; Švarc-Gajić, J.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds. Int. J. Mol. Sci. 2014, 15, 20585-20606. https://doi.org/10.3390/ijms151120585
Borrás-Linares I, Stojanović Z, Quirantes-Piné R, Arráez-Román D, Švarc-Gajić J, Fernández-Gutiérrez A, Segura-Carretero A. Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds. International Journal of Molecular Sciences. 2014; 15(11):20585-20606. https://doi.org/10.3390/ijms151120585
Chicago/Turabian StyleBorrás-Linares, Isabel, Zorica Stojanović, Rosa Quirantes-Piné, David Arráez-Román, Jaroslava Švarc-Gajić, Alberto Fernández-Gutiérrez, and Antonio Segura-Carretero. 2014. "Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds" International Journal of Molecular Sciences 15, no. 11: 20585-20606. https://doi.org/10.3390/ijms151120585
APA StyleBorrás-Linares, I., Stojanović, Z., Quirantes-Piné, R., Arráez-Román, D., Švarc-Gajić, J., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2014). Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds. International Journal of Molecular Sciences, 15(11), 20585-20606. https://doi.org/10.3390/ijms151120585