Supplementary Information

(1) Synthesis and Characterization

Figure S1. ¹H-NMR of 3 (400 MHz; CDCl₃; rt).

Figure S2. ¹³C-NMR of 3 (100 MHz; CDCl₃; rt).

Figure S3. ¹H-NMR of **4** (400 MHz; THF-*d*₈; rt).

Figure S4. ¹³C-NMR of **4** (100 MHz; THF-*d*₈; rt).

Synthesis and Characterization of 5

0.90 g (4.00 mmol) 8-Bromooctanoic acid was dissolved in 30 mL ethanol. Then 3 mL sulfuric acid were added. The mixture was heated at reflux temperature for 12 h and allowed to cool down to rt. 50 mL Water was added and the product extracted with diethyl ether. The organic phase was washed with brine and dried with MgSO4. Evaporation of the solvent gave Ethyl 8-bromooctanoate. Yield: 0.96 g (3.80 mmol; 95%). ¹H-NMR (CDCl₃, 400 MHz, rt): δ [ppm] = 1.23 (t, ³*J* = 7.1 Hz, 3H, CH₃), 1.30 (m, 6H, CH₂), 1.60 (m, 2H, CH₂), 1.82 (m, 2H, CH₂), 2.26 (t, ³*J* = 7.4 Hz, 2H, C=OCH₂), 3.37 (t, ³*J* = 6.8 Hz, 2H, BrCH₂), 4.09 (q, ³*J* = 7.1 Hz, 2H, CH₃-CH₂); MS (MALDI; dhb): *m/z* = 251 [M]⁺.

A suspension of 1.00 g (3.98 mmol) Ethyl 8-bromooctanoate, 1.03 g (7.96 mmol) cyanuric acid and 0.59 mL (3.98 mmol) DBU in 30 mL dry DMF was heated at 70 °C under inert gas atmosphere for 20 h. After cooling, the yellow solution was poured into 100 mL cold water. The resulting white precipitate was extracted with 3 × 100 mL EtOAc. The organic phase was dried over MgSO4. Then, the raw product was adsorbed on silica and purified by flash column chromatography (SiO₂, cyclohexane/ethyl acetate 1:1). The desired compound was obtained as white solid. Yield: 0.94 g (2.79 mmol; 79%); ¹H-NMR (CDCl₃, 400 MHz, rt): δ [ppm] = 1.23 (t, ³*J* = 7.1 Hz, 3H, CH₃), 1.30 (m, 6H, CH₂), 1.59 (m, 4H, CH₂), 2.26 (t, ³*J* = 7.4 Hz, 2H, C=OCH₂), 3.81 (t, ³*J* = 6.8 Hz, 2H, CyAc-CH₂), 4.08 (q, ³*J* = 7.1 Hz, 2H, CH₃-CH₂), 9.14 (br, 2H, N-H). ¹³C-NMR (CDCl₃, 100 MHz, rt): δ [ppm] = 173.94 (1C, OC=O), 149.06 (1C, NHC=ONH), 147.97 (1C, NC=O), 60.26 (1C, CH₂CH₃), 41.97 (1C, CH₂), 34.27 (1C, CH₂), 28.90 (1C, CH₂), 28.76 (1C, CH₂), 27.64 (1C, CH₂), 26.34 (1C, CH₂), 24.79 (1C, CH₂), 14.22 (1C, CH₃); MS (MALDI, on): *m/z* = 299 [M]⁺; IR (ATR): $\tilde{\nu}_{max}$ [cm⁻¹] = 3204, 3083, 2931, 2861, 1764, 1729, 1681, 1465, 1415, 1373, 1176, 792, 761, 547.

(2) Supramolecular Coupling

(3) Surface Functionalization

BET analysis ZnO nanorods

Quantachrome NovaWin—Data Acquisition and Reduction for NOVA instruments ©1994–2007, Quantachrome Instruments—version 10.0

Analysis		Report			
Sample Desc	1	Comment	120 °C, 2 h		
Sample weight	0.185 g	Sample Volume	0 cc		
Outgas Time	2.0 h	Outgas Temp.	120.0 C		
Analysis gas	Nitrogen	Bath Temp.	77.3 K		
Press. Tolerance	0.100/0.100 (ads/des)	Equil time	60/60 s (ads/des)	Equil timeout	240/240 s (ads/des)
Analysis Time	92.2 mi	Cell ID	0		
Adsorbate	Nitrogen	Temperature	77.350 K		
Molec. Wt.	28.013 g	Cross Section	16.200 Å ²	Liquid Density	0.808 g/cc

Relative/Pressure (P/Po)	Volume @ STP (cc/g)	1/[W((Po/P) - 1)]
$4.97760 imes 10^{-2}$	3.1309	13.387
$1.17470 imes 10^{-1}$	4.2780	24.895
$1.76212 imes 10^{-1}$	4.9801	34.366
$2.38835 imes 10^{-1}$	5.5625	45.133
2.99066×10^{-1}	6.0434	56.488

BET Summ	ary
Slope = 171	.668
Intercept = 4	l.594
Correlation	coefficient, $r = 0.999635$
C constant =	38.370
Surface Are	$a = 19.758 \text{ m}^2/\text{g}$

TGA measurements of functionalized ZnO nanorods

Figure S6. TGA of [ZnO-HR], functionalized with different concentrations of HR 4. (TGA performed under N₂ and O₂ gas flow; heat rate 10 K/min).

Table S1. Calculation of grafting densities of [ZnO-HR] from TGA data: grafting density = $\left(\frac{\text{wt}}{100-\text{wt}}\right) \left(\frac{6.022 \times 10^{23}}{M\text{w} \times \text{SSA}}\right)$. wt: weight loss from TGA (%); *M*w of **4**; SSA: 19.76 m²/g.

Concentration (mM)	Organic Mass Loss (TGA) (%)	Grafting Density (molecules/nm ²)
0.10	1.37	0.608
0.25	1.91	0.839
0.50	2.21	0.967
0.75	2.47	1.082
1.00	2.55	1.118
1.50	2.62	1.151

Table S2. Theoretical grafting density of adsorbates on ZnO nanorods (calculated for wet-chemical functionalization in MeOH-density = 0.8 g/mL and with SSA = $19.76 \text{ m}^2/\text{g}$).

Grafting Density (molecules/nm ²)	1	2	3	4	5	6	7
molecules needed for full coverage (E+18)	0 5028	1 1 9 5 6	1 7794	2 2712	2 0640	2 5 5 6 9	4 1 4 0 6
(per 25 mL of 0.15 wt% – solution)	0.3928	1.1650	1.//04	2.3/12	2.9040	5.5508	4.1490

Concentration (mM)	Molecules Employed for Functionalization (E+18)	Concentration (mM)	Molecules Employed for Functionalization (E+18)
0.025	0.3764	1.00	15.055
0.05	0.7528	1.50	22.583
0.10	1.5055	2.00	30.111
0.20	3.0111	3.00	45.166
0.25	3.7638	6.00	90.332
0.30	4.5166	12.00	180.66
0.60	9.0332	25.00	376.38

Table S3. Calculation of amount of employed molecules for wet-chemical surface functionalization.

Interpretation of UV-Vis data:

The grafting density was calculated from UV-vis by employing the following formula:

$$\theta = \left(\frac{\left(Abs_{302nm} - Abs_{302nm}(ZnO)\right) \times V}{\varepsilon \times d}\right) \times \left(\frac{6.022 \times 10^{23}}{SA}\right)$$

Abs_{302nm}: measured absorption; Abs_{302nm}(ZnO): bandgap absorption of ZnO; E: extinction coefficient of Hamilton receptor 4 at 302 nm: 54,861 L·mol⁻¹·cm⁻¹; D: diameter UVvis cuvette: 1 cm; V: volume in UVvis cuvette: 2 mL; SA: surface area of ZnO nanorods in 2 mL UV-solution (~2.4 μ g·rods): 47.42 × 10¹² nm².

Calculation of Langmuir Adsorption isotherm

Formula Langmuir isotherm:

$$\theta = \frac{c \times \theta \max}{K(des) + c}$$

Linear form Langmuir isotherm:

Figure S6. Linear plot of experimental results with corresponding equation.

Calculation of maximum monolayer grafting density:

$$\theta$$
 (max) = $\frac{1}{0.877}$ = 1.14025

Calculation of the adsorption constant for the grafting of ZnO nanorods with catechol 4 in methanol:

$$K(ads) = 1/(7.6274 \times 10^{-5} \times \theta max) = 11,498$$

Insertion of K(ads) and n(max) leads to calculated Langmuir isotherm:

Figure S7. Calculated Langmuir isotherm.

(4) Hybrid formation

Table S4. DLS-measurements of ZnO, ZnO-HR and ZnO-HR-CA.

Sample	Hydrodynamic Diameter	Standard Deviation		
(Measured in Chloroform)	(from DLS) (in nm)	(in nm)		
[ZnO]	141.9	4.9		
[ZnO-HR]	158.5	5.0		
[ZnO-HR-CA]	167.0	3.8		

Figure S8. DLS-measurement of [ZnO-HR] after centrifugation and drying (80 °C) for 24 h.

Figure S9. IR spectra of ZnO, ZnO-HR and ZnO-HR-CA.

Figure S10. IR spectra ZnO-HR and ZnO-HR-CA; magnified region displays broadening of the NH-IR-vibrations upon H-bond formation.