Optimization of Catheter Ablation of Atrial Fibrillation: Insights Gained from Clinically-Derived Computer Models
Abstract
:1. Introduction
2. Generic 3D Computer Models
- (1)
- It renders us the detailed atrial anatomy for studying the anatomical features of atria, especially the anatomical bundle structure of the endocardial surface of the atria, as well as the linkage to its electrical preferential pathway during normal and abnormal conditions;
- (2)
- It includes quantitative atrial wall thickness and myofiber architecture across atrial chambers instead of previous qualitative studies by Wang et al. [33];
- (3)
- A family of atrial cellular models have been developed to fully capture atrial electrical properties under normal and diseased conditions [19].
3. Modeling Pulmonary Vein (PV) Isolations Using Clinically-Derived Computer Models
4. Modeling the Role of Fibrosis in Atrial Fibrillation (AF) Initiation, Maintenance and Termination
5. The Mechanisms of Rotors
6. Current Challenges
7. Future Direction and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brooks, A.G.; Stiles, M.K.; Laborderie, J.; Lau, D.H.; Kuklik, P.; Shipp, N.J.; Hsu, L.-F.; Sanders, P. Outcomes of long-standing persistent atrial fibrillation ablation: A systematic review. Heart Rhythm 2010, 7, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Santos, M. Heart failure and atrial fibrillation: From basic science to clinical practice. Int. J. Mol. Sci. 2015, 16, 3133–3147. [Google Scholar] [CrossRef] [PubMed]
- New Zealand Guidelines Group. The Management of People with Atrial Fibrillation and Flutter: Evidence-Based Best Practice Guideline. Available online: http://www.nzgg.org.nz (accessed on 4 January 2015).
- Nishida, K.; Nattel, S. Atrial fibrillation compendium historical context and detailed translational perspective on an important clinical problem. Circ. Res. 2014, 114, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Wang, T.J.; Leip, E.P.; Larson, M.G.; Levy, D.; Vasan, R.S.; D’Agostino, R.B.; Massaro, J.M.; Beiser, A.; Wolf, P.A. Lifetime risk for development of atrial fibrillation the framingham heart study. Circulation 2004, 110, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Kharche, S.R.; Stary, T.; Colman, M.A.; Biktasheva, I.V.; Workman, A.J.; Rankin, A.C.; Holden, A.V.; Zhang, H. Effects of human atrial ionic remodelling by β-blocker therapy on mechanisms of atrial fibrillation: A computer simulation. Europace 2014, 16, 1524–1533. [Google Scholar] [CrossRef]
- Woods, C.E.; Olgin, J. Atrial fibrillation therapy now and in the future drugs, biologicals, and ablation. Circ. Res. 2014, 114, 1532–1546. [Google Scholar] [CrossRef] [PubMed]
- Bunch, T.J.; Crandall, B.G.; Weiss, J.P.; May, H.T.; Bair, T.L.; Osborn, J.S.; Anderson, J.L.; Muhlestein, J.B.; Horne, B.D.; Lappe, D.L. Patients treated with catheter ablation for atrial fibrillation have long-term rates of death, stroke, and dementia similar to patients without atrial fibrillation. J. Cardiovasc. Electrophysiol. 2011, 22, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Natale, A. Atrial fibrillation in 2012: Advances in catheter-ablation treatment of AF. Nat. Rev. Cardiol. 2013, 10, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S.M.; Baykaner, T.; Clopton, P.; Schricker, A.; Lalani, G.G.; Krummen, D.E.; Shivkumar, K.; Miller, J.M. Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone: Extended follow-up of the confirm trial (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation). J. Am. Coll. Cardiol. 2014, 63, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- Zaman, J.A.; Peters, N.S. The rotor revolution conduction at the eye of the storm in atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2014, 7, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Haissaguerre, M.; Hocini, M.; Denis, A.; Shah, A.J.; Komatsu, Y.; Yamashita, S.; Daly, M.; Amraoui, S.; Zellerhoff, S.; Picat, M.-Q. Driver domains in persistent atrial fibrillation. Circulation 2014, 130, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Kumar, S.; Teh, A.; Madry, A.; Spence, S.; Larobina, M.; Goldblatt, J.; Brown, R.; Atkinson, V.; Moten, S. Epicardial wave mapping in human long-lasting persistent atrial fibrillation: Transient rotational circuits, complex wavefronts, and disorganized activity. Eur. Heart J. 2014, 35, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Verheule, S.; Eckstein, J.; Linz, D.; Maesen, B.; Bidar, E.; Gharaviri, A.; Schotten, U. Role of endo-epicardial dissociation of electrical activity and transmural conduction in the development of persistent atrial fibrillation. Prog. Biophys. Mol. Biol. 2014, 115, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Smaill, B.H.; Zhao, J.; Trew, M.L. Three-dimensional impulse propagation in myocardium arrhythmogenic mechanisms at the tissue level. Circ. Res. 2013, 112, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Trayanova, N.A. Mathematical approaches to understanding and imaging atrial fibrillation significance for mechanisms and management. Circ. Res. 2014, 114, 1516–1531. [Google Scholar] [CrossRef] [PubMed]
- Dössel, O.; Krueger, M.W.; Weber, F.M.; Wilhelms, M.; Seemann, G. Computational modeling of the human atrial anatomy and electrophysiology. Med. Biol. Eng. Comput. 2012, 50, 773–799. [Google Scholar] [CrossRef] [PubMed]
- Colman, M.A.; Castro, S.J.; Alday, E.A.P.; Hancox, J.C.; Garratt, C.; Zhang, H. Recent progress in multi-scale models of the human atria. Drug Dis. Today Dis. Models 2014. [Google Scholar] [CrossRef]
- Wilhelms, M.; Hettmann, H.; Maleckar, M.M.; Koivumäki, J.T.; Dössel, O.; Seemann, G. Benchmarking electrophysiological models of human atrial myocytes. Front. Physiol. 2012, 3. [Google Scholar] [CrossRef]
- Virag, N.; Jacquemet, V.; Kappenberger, L. Modeling of atrial fibrillation. In Cardiac Mapping, 4th ed.; Blackwell Publishing, Ltd.: Oxford, UK, 2012; pp. 131–139. [Google Scholar]
- Harrild, D.M.; Henriquez, C.S. A computer model of normal conduction in the human atria. Circ. Res. 2000, 87, e25–e36. [Google Scholar] [CrossRef] [PubMed]
- Seemann, G.; Höper, C.; Sachse, F.B.; Dössel, O.; Holden, A.V.; Zhang, H. Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos. Trans. R. Soc. A 2006, 364, 1465–1481. [Google Scholar] [CrossRef]
- Kharche, S.; Garratt, C.J.; Boyett, M.R.; Inada, S.; Holden, A.V.; Hancox, J.C.; Zhang, H. Atrial proarrhythmia due to increased inward rectifier current (IK1) arising from KCNJ2 mutation—A simulation study. Prog. Biophys. Mol. Biol. 2008, 98, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Butters, T.D.; Zhang, H.; Pullan, A.J.; LeGrice, I.J.; Sands, G.B.; Smaill, B.H. An image-based model of atrial muscular architecture effects of structural anisotropy on electrical activation. Circ. Arrhythm. Electrophysiol. 2012, 5, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Butters, T.D.; Zhang, H.; LeGrice, I.J.; Sands, G.B.; Smaill, B.H. Image-based model of atrial anatomy and electrical activation: A computational platform for investigating atrial arrhythmia. IEEE Trans. Med. Imaging 2013, 32, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Butters, T.D.; Aslanidi, O.V.; Zhao, J.; Smaill, B.; Zhang, H. A novel computational sheep atria model for the study of atrial fibrillation. Interface Focus 2013, 3, 20120067. [Google Scholar] [CrossRef] [PubMed]
- Aslanidi, O.V.; Colman, M.A.; Stott, J.; Dobrzynski, H.; Boyett, M.R.; Holden, A.V.; Zhang, H. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation. Prog. Biophys. Mol. Biol. 2011, 107, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Aslanidi, O.V.; Nikolaidou, T.; Zhao, J.; Smaill, B.H.; Gilbert, S.H.; Holden, A.V.; Lowe, T.; Withers, P.J.; Stephenson, R.S.; Jarvis, J.C. Application of micro-computed tomography with iodine staining to cardiac imaging, segmentation, and computational model development. IEEE Trans. Med. Imaging 2013, 32, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Aslanidi, O.V.; Colman, M.A.; Varela, M.; Zhao, J.; Smaill, B.H.; Hancox, J.C.; Boyett, M.R.; Zhang, H. Heterogeneous and anisotropic integrative model of pulmonary veins: Computational study of arrhythmogenic substrate for atrial fibrillation. Interface Focus 2013, 3, 20120069. [Google Scholar] [CrossRef] [PubMed]
- Colman, M.A.; Varela, M.; Hancox, J.C.; Zhang, H.; Aslanidi, O.V. Evolution and pharmacological modulation of the arrhythmogenic wave dynamics in canine pulmonary vein model. Europace 2014, 16, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Trew, M.L.; Legrice, I.J.; Smaill, B.H.; Pullan, A.J. A tissue-specific model of reentry in the right atrial appendage. J. Cardiovasc. Electrophysiol. 2009, 20, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Varela, M.; Zhao, J.; Aslanidi, O.V. Determination of atrial myofibre orientation using structure tensor analysis for biophysical modelling. In Functional Imaging and Modeling of the Heart; Springer: Berlin, Germany, 2013; pp. 425–432. [Google Scholar]
- Wang, K.; Ho, S.Y.; Gibson, D.G.; Anderson, R.H. Architecture of atrial musculature in humans. Br. Heart J. 1995, 73, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Krueger, M.W.; Schmidt, V.; Tobón, C.; Weber, F.M.; Lorenz, C.; Keller, D.U.; Barschdorf, H.; Burdumy, M.; Neher, P.; Plank, G. Modeling atrial fiber orientation in patient-specific geometries: A semi-automatic rule-based approach. In Functional Imaging and Modeling of the Heart; Springer: Berlin, Germany, 2011; pp. 223–232. [Google Scholar]
- Dang, L.; Virag, N.; Ihara, Z.; Jacquemet, V.; Vesin, J.-M.; Schlaepfer, J.; Ruchat, P.; Kappenberger, L. Evaluation of ablation patterns using a biophysical model of atrial fibrillation. Ann. Biomed. Eng. 2005, 33, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Ruchat, P.; Virag, N.; Dang, L.; Schlaepfer, J.; Pruvot, E.; Kappenberger, L. A biophysical model of atrial fibrillation ablation: What can a surgeon learn from a computer model? Europace 2007, 9, VI71–VI76. [Google Scholar] [CrossRef] [PubMed]
- Ruchat, P.; Dang, L.; Schlaepfer, J.; Virag, N.; von Segesser, L.K.; Kappenberger, L. Use of a biophysical model of atrial fibrillation in the interpretation of the outcome of surgical ablation procedures. Eur. J. Cardiothorac. Surg. 2007, 32, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Haissaguerre, M.; Lim, K.-T.; Jacquemet, V.; Rotter, M.; Dang, L.; Hocini, M.; Matsuo, S.; Knecht, S.; Jaïs, P.; Virag, N. Atrial fibrillatory cycle length: Computer simulation and potential clinical importance. Europace 2007, 9, VI64–VI70. [Google Scholar] [CrossRef] [PubMed]
- Rotter, M.; Dang, L.; Jacquemet, V.; Virag, N.; Kappenberger, L.; Haissaguerre, M. Impact of varying ablation patterns in a simulation model of persistent atrial fibrillation. Pacing Clin. Electrophysiol. 2007, 30, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Uldry, L.; Virag, N.; Vesin, J.-M.; Kappenberger, L. Studies of therapeutic strategies for atrial fibrillation based on a biophysical model of the human atria. In Patient-Specific Modeling of the Cardiovascular System; Springer: New York, NY, USA, 2010; pp. 63–79. [Google Scholar]
- Reumann, M.; Bohnert, J.; Seemann, G.; Osswald, B.; Dossel, O. Preventive ablation strategies in a biophysical model of atrial fibrillation based on realistic anatomical data. IEEE Trans. Biomed. Eng. 2008, 55, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.L.; Canavan, T.; Schuessler, R.; Cain, M.; Lindsay, B.; Stone, C.; Smith, P.; Corr, P.; Boineau, J. The surgical treatment of atrial fibrillation. II. Intraoperative electrophysiologic mapping and description of the electrophysiologic basis of atrial flutter and atrial fibrillation. J. Thorac. Cardiovasc. Surg. 1991, 101, 406–426. [Google Scholar]
- Hwang, M.; Kwon, S.-S.; Wi, J.; Park, M.; Lee, H.-S.; Park, J.-S.; Lee, Y.-S.; Shim, E.B.; Pak, H.-N. Virtual ablation for atrial fibrillation in personalized in-silico three-dimensional left atrial modeling: Comparison with clinical catheter ablation. Prog. Biophys. Mol. Biol. 2014, 116, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Bishop, M.; Rajani, R.; Plank, G.; Gaddum, N.; Carr-White, G.; Wright, M.; O’Neill, M.; Niederer, S. Three-dimensional atrial wall thickness maps to inform catheter ablation procedures for atrial fibrillation. Europace 2015. [Google Scholar] [CrossRef]
- Trayanova, N.A.; Boyle, P.M.; Arevalo, H.J.; Zahid, S. Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: A simulation approach. Front. Physiol. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Csepe, T.A.; Kalyanasundaram, A.; Hansen, B.J.; Zhao, J.; Fedorov, V.V. Fibrosis: A structural modulator of sinoatrial node physiology and dysfunction. Front. Physiol. 2015, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Kharche, S.R.; Biktasheva, I.V.; Seemann, G.; Zhang, H.; Biktashev, V.N. A computer simulation study of anatomy induced drift of spiral waves in the human atrium. BioMed Res. Int. 2015. Article ID 731386. [Google Scholar]
- Tanaka, K.; Zlochiver, S.; Vikstrom, K.L.; Yamazaki, M.; Moreno, J.; Klos, M.; Zaitsev, A.V.; Vaidyanathan, R.; Auerbach, D.S.; Landas, S. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ. Res. 2007, 101, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Stephenson, R.S.; Sands, G.B.; LeGrice, I.J.; Zhang, H.; Jarvis, J.C.; Smaill, B.H. Atrial fibrosis and atrial fibrillation: A computer simulation in the posterior left atrium. In Functional Imaging and Modeling of the Heart; Springer: Berlin, Germany, 2013; pp. 400–408. [Google Scholar]
- Gonzales, M.J.; Sturgeon, G.; Krishnamurthy, A.; Hake, J.; Jonas, R.; Stark, P.; Rappel, W.-J.; Narayan, S.M.; Zhang, Y.; Segars, W.P. A three-dimensional finite element model of human atrial anatomy: New methods for cubic hermite meshes with extraordinary vertices. Med. Image Anal. 2013, 17, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, M.J.; Vincent, K.P.; Rappel, W.-J.; Narayan, S.M.; McCulloch, A.D. Structural contributions to fibrillatory rotors in a patient-derived computational model of the atria. Europace 2014, 16, IV3–IV10. [Google Scholar] [CrossRef] [PubMed]
- McDowell, K.S.; Vadakkumpadan, F.; Blake, R.; Blauer, J.; Plank, G.; MacLeod, R.S.; Trayanova, N.A. Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation. J. Electrocardiol. 2012, 45, 640–645. [Google Scholar] [CrossRef] [PubMed]
- McDowell, K.S.; Vadakkumpadan, F.; Blake, R.; Blauer, J.; Plank, G.; MacLeod, R.S.; Trayanova, N.A. Mechanistic inquiry into the role of tissue remodeling in fibrotic lesions in human atrial fibrillation. Biophys. J. 2013, 104, 2764–2773. [Google Scholar] [CrossRef] [PubMed]
- McDowell, K.S.; Zahid, S.; Vadakkumpadan, F.; Blauer, J.; MacLeod, R.S.; Trayanova, N.A. Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling. PLoS ONE 2015, 10, e0117110. [Google Scholar] [CrossRef] [PubMed]
- Kohl, P.; Gourdie, R.G. Fibroblast–myocyte electrotonic coupling: Does it occur in native cardiac tissue? J. Mol. Cell. Cardiol. 2014, 70, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Akoum, N.; Wilber, D.; Hindricks, G.; Jais, P.; Cates, J.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L. MRI assessment of ablation-induced scarring in atrial fibrillation: Analysis from the decaaf study. J. Cardiovasc. Electrophysiol. 2015. [Google Scholar] [CrossRef]
- Ranjan, R.; Kato, R.; Zviman, M.M.; Dickfeld, T.M.; Roguin, A.; Berger, R.D.; Tomaselli, G.F.; Halperin, H.R. Gaps in the ablation line as a potential cause of recovery from electrical isolation and their visualization using MRI. Circ. Arrhythm. Electrophysiol. 2011, 4, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Krueger, M.W.; Schulze, W.H.; Rhode, K.S.; Razavi, R.; Seemann, G.; Dössel, O. Towards personalized clinical in-silico modeling of atrial anatomy and electrophysiology. Med. Biol. Eng. Comput. 2013, 51, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Krueger, M.W.; Rhode, K.S.; O’Neill, M.D.; Rinaldi, C.A.; Gill, J.; Razavi, R.; Seemann, G.; Doessel, O. Patient-specific modeling of atrial fibrosis increases the accuracy of sinus rhythm simulations and may explain maintenance of atrial fibrillation. J. Electrocardiol. 2014, 47, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Barr, R.C.; Ramsey, M.; Spach, M.S. Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans. Biomed. Eng. 1977, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cuculich, P.S.; Wang, Y.; Lindsay, B.D.; Faddis, M.N.; Schuessler, R.B.; Damiano, R.J.; Li, L.; Rudy, Y. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation 2010, 122, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yao, Y.; Shi, R.; Huang, W.; Smaill, B.H.; Lever, N.A. Progressive modification of rotors in persistent atrial fibrillation by stepwise linear ablation. HeartRhythm Case Rep. 2015, 1, 22–26. [Google Scholar] [CrossRef]
- Rodrigo, M.; Guillem, M.S.; Climent, A.M.; Pedrón-Torrecilla, J.; Liberos, A.; Millet, J.; Fernández-Avilés, F.; Atienza, F.; Berenfeld, O. Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm 2014, 11, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Krueger, M.W.; Seemann, G.; Meng, S.; Zhang, H.; Dossel, O.; LeGrice, I.J.; Smaill, B.H. Myofiber orientation and electrical activation in human and sheep atrial models. In Proceedings of the 2012 Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 6365–6368.
- Kharche, S.; Castro, S.; Thomas, B.; Colman, M.; Jarvis, J.; Smaill, B.; Zhang, H.; Stephenson, R.; Zhao, J. Role of fiber orientation in atrial arrythmogenesis. In Proceedings of the Computing in Cardiology Conference (CinC), Cambridge, MA, USA, 7–10 September 2014.
- Zhao, J.; Jin, Y.; Ma, L.; Corless, R.M. A highly efficient and accurate algorithm for solving the partial differential equation in cardiac tissue models. WSEAS Trans. Biol. Biomed. 2006, 3, 63. [Google Scholar]
- Hunter, P.; Bradley, C.; Britten, R.; Brooks, D.; Carotenuto, L.; Christie, R.; Frangi, A.; Garny, A.; Ladd, D.; Little, C. The VPH-physiome project: Standards, tools and databases for multi-scale physiological modelling. In Modeling of Physiological Flows; Springer: Milan, Italy, 2012; pp. 205–250. [Google Scholar]
- Rutherford, S.L.; Trew, M.L.; Sands, G.B.; LeGrice, I.J.; Smaill, B.H. High-resolution 3-dimensional reconstruction of the infarct border zone impact of structural remodeling on electrical activation. Circ. Res. 2012, 111, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Kottkamp, H.; Bender, R.; Berg, J. Catheter ablation of atrial fibrillation: How to modify the substrate? J. Am. Coll. Cardiol. 2015, 65, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.; Zhao, J.; Csepe, T.; Jayne, L.; Moore, B.; Li, N.; Jayne, L.; Kalyanasundaram, A.; Lim, P.; Bratasz, A.; et al. Atrial fibrillation driven by microanatomic intramural reentry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur. Heart J. 2015, in press. [Google Scholar]
- Csepe, T.; Zhao, J.; Hansen, B.; Li, N.; Jayne, L.; Moore, B.; Lim, P.; Bratasz, A.; Powell, K.; Simonetti, O.; et al. Human atrial fibrillation terminated by targeted ablation of localized reentrant drivers guided by dual-sided simultaneous epicardial and endocardial optical mapping. Heart Rhythm 2014, 11, 2131–2132. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Kharche, S.R.; Hansen, B.J.; Csepe, T.A.; Wang, Y.; Stiles, M.K.; Fedorov, V.V. Optimization of Catheter Ablation of Atrial Fibrillation: Insights Gained from Clinically-Derived Computer Models. Int. J. Mol. Sci. 2015, 16, 10834-10854. https://doi.org/10.3390/ijms160510834
Zhao J, Kharche SR, Hansen BJ, Csepe TA, Wang Y, Stiles MK, Fedorov VV. Optimization of Catheter Ablation of Atrial Fibrillation: Insights Gained from Clinically-Derived Computer Models. International Journal of Molecular Sciences. 2015; 16(5):10834-10854. https://doi.org/10.3390/ijms160510834
Chicago/Turabian StyleZhao, Jichao, Sanjay R. Kharche, Brian J. Hansen, Thomas A. Csepe, Yufeng Wang, Martin K. Stiles, and Vadim V. Fedorov. 2015. "Optimization of Catheter Ablation of Atrial Fibrillation: Insights Gained from Clinically-Derived Computer Models" International Journal of Molecular Sciences 16, no. 5: 10834-10854. https://doi.org/10.3390/ijms160510834
APA StyleZhao, J., Kharche, S. R., Hansen, B. J., Csepe, T. A., Wang, Y., Stiles, M. K., & Fedorov, V. V. (2015). Optimization of Catheter Ablation of Atrial Fibrillation: Insights Gained from Clinically-Derived Computer Models. International Journal of Molecular Sciences, 16(5), 10834-10854. https://doi.org/10.3390/ijms160510834