From Pre-Clinical Studies to Clinical Trials: Generation of Novel Therapies for Pregnancy Complications
Abstract
:1. Introduction
2. Physiology of Normal Pregnancy and Pathophysiology in Pregnancy Disorders
3. Use of Animal Models to Study Pregnancy Disorders
4. Experimental Approaches to Induce FGR
5. Genetic Mouse Models of FGR
6. Experimental Models of PE
7. Approaches Used to Develop Treatments for FGR and PE
8. Treatment Strategies Enhancing Nitric Oxide Bioavailability or Action
9. Significant Promise of Antioxidant Therapies in FGR and PE
10. Other Beneficial Interventions in Preclinical Models of FGR and PE
11. Future Strategies for Development of Pregnancy Treatments: Targeted Approaches
Treatment | Model | Effect (Reference) |
---|---|---|
l-arginine | Preclinical studies | |
Maternal nutrient restriction (FGR) | Increased fetal weight [36]. | |
Maternal hypoxia (FGR) | Increased fetal weight [37]. | |
sFlt-1 infused rat (PE) | Reduced blood pressure [23]. | |
Clinical trials | ||
PE | Reduced blood pressure [39,42]. | |
FGR | Increased fetal weight [40,41]. | |
Sildenafil | Preclinical studies | |
COMT−/− mouse (PE) | Improved blood flow, increased fetal weight [46]. | |
Igf2-P0 mouse (FGR) | Increased fetal weight [47]. | |
l-NAME infused rat (PE) | Increased fetal weight [49]. | |
Clinical Trials | ||
PE | Reduction in maternal blood pressures; non-significant increase in fetal weight [52]. | |
Early-onset FGR | Increased abdominal circumference [53]. | |
Severe early-onset FGR | Ongoing RCT, STRIDER [54]. | |
Tempol | Preclinical studies | |
eNOS−/− mouse (FGR) | Improved blood flow, increased fetal weight [17]. | |
BPH/5 mouse (PE) | Prevention of maternal hypertension and proteinuria, increased fetal weight [56]. | |
Clinical Trials | ||
No known clinical trials in pregnancy | ||
Resveratrol | Preclinical studies | |
eNOS−/− mouse (FGR) | Increased fetal weight [57]. | |
COMT−/− mouse (PE) | Improved blood flow, increased fetal weight [57]. | |
Clinical Trials | ||
No known clinical trials in pregnancy; some evidence of potential adverse effects in non-human primate [58] | ||
Melatonin | Preclinical studies | |
Maternal hypoxia (FGR) | Reduced oxidative damage and improved neurodevelopment [65]. | |
Maternal nutrient restriction (FGR) | Increased birth weight [66]. | |
Clinical Trials | ||
PE | Ongoing RCT [67]. | |
Early-onset FGR | Ongoing RCT [68]. | |
Aspirin | Preclinical studies | |
STOX-1 transgenic mouse (PE) | Reduced blood pressure/proteinuria [29]. | |
Clinical Trials | ||
Women at risk of PE | Systematic review of evidence to date indicates reduced risk of PE in women taking aspirin [72]. | |
Statins | Preclinical studies | |
RUPP model (PE) | Reduced maternal blood pressure, increased fetal weight [76]. | |
sFlt-1 over-expressing mouse (PE) | Reduced maternal blood pressure, proteinuria and increased fetal weight [26]. | |
Clinical Trials | ||
Severe PE | Ongoing RCT, StAmP trial; ISRCTN23410175. |
12. Conclusions and Future Avenues for Research
Acknowledgments
Conflicts of Interest
References
- Bamfo, J.E.; Odibo, A.O. Diagnosis and management of fetal growth restriction. J. Pregnancy 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Gardosi, J.; Madurasinghe, V.; Williams, M.; Malik, A.; Francis, A. Maternal and fetal risk factors for stillbirth: Population based study. BMJ 2013, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntire, D.D.; Bloom, S.L.; Casey, B.M.; Leveno, K.J. Birth weight in relation to morbidity and mortality among newborn infants. N. Engl. J. Med. 1999, 340, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, E.C.; Ozanne, S.E. Early life programming of obesity and metabolic disease. Physiol. Behav. 2008, 94, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef]
- Osol, G.; Mandala, M. Maternal uterine vascular remodeling during pregnancy. Physiology 2009, 24, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Chaddha, V.; Viero, S.; Huppertz, B.; Kingdom, J. Developmental biology of the placenta and the origins of placental insufficiency. Semin. Fetal Neonatal Med. 2004, 9, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Sibley, C.P.; Turner, M.A.; Cetin, I.; Ayuk, P.; Boyd, C.A.; D’Souza, S.W.; Glazier, J.D.; Greenwood, S.L.; Jansson, T.; Powell, T. Placental phenotypes of intrauterine growth. Pediatr. Res. 2005, 58, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Dilworth, M.R.; Sibley, C.P. Review: Transport across the placenta of mice and women. Placenta 2013, 34, S34–S39. [Google Scholar] [CrossRef] [PubMed]
- Swanson, A.M.; David, A.L. Animal models of fetal growth restriction: Considerations for translational medicine. Placenta 2015, 36, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Charalambous, M.; da Rocha, S.T.; Hernandez, A.; Ferguson-Smith, A.C. Perturbations to the IGF1 growth pathway and adult energy homeostasis following disruption of mouse chromosome 12 imprinting. Acta Physiol. 2014, 210, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Constancia, M.; Hemberger, M.; Hughes, J.; Dean, W.; Ferguson-Smith, A.; Fundele, R.; Stewart, F.; Kelsey, G.; Fowden, A.; Sibley, C.; et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002, 417, 945–948. [Google Scholar] [CrossRef] [PubMed]
- Kulandavelu, S.; Qu, D.; Adamson, S.L. Cardiovascular function in mice during normal pregnancy and in the absence of endothelial no synthase. Hypertension 2006, 47, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Kulandavelu, S.; Whiteley, K.J.; Bainbridge, S.A.; Qu, D.; Adamson, S.L. Endothelial no synthase augments fetoplacental blood flow, placental vascularization, and fetal growth in mice. Hypertension 2013, 61, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Kulandavelu, S.; Whiteley, K.J.; Qu, D.; Mu, J.; Bainbridge, S.A.; Adamson, S.L. Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice. Hypertension 2012, 60, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Kusinski, L.C.; Stanley, J.L.; Dilworth, M.R.; Hirt, C.J.; Andersson, I.J.; Renshall, L.J.; Baker, B.C.; Baker, P.N.; Sibley, C.P.; Wareing, M.; et al. Enos knockout mouse as a model of fetal growth restriction with an impaired uterine artery function and placental transport phenotype. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R86–R93. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J.L.; Andersson, I.J.; Hirt, C.J.; Moore, L.; Dilworth, M.R.; Chade, A.R.; Sibley, C.P.; Davidge, S.T.; Baker, P.N. Effect of the anti-oxidant tempol on fetal growth in a mouse model of fetal growth restriction. Biol. Reprod. 2012, 87, 25. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, F.P.; Kingdom, J.C.; Kenny, L.C.; Walsh, S.K. Animal models of preeclampsia; uses and limitations. Placenta 2011, 32, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.S.; Babcock, S.A.; Granger, J.P. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression. Hypertension 2007, 50, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Salas, S.P.; Altermatt, F.; Campos, M.; Giacaman, A.; Rosso, P. Effects of long-term nitric oxide synthesis inhibition on plasma volume expansion and fetal growth in the pregnant rat. Hypertension 1995, 26, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Molnar, M.; Suto, T.; Toth, T.; Hertelendy, F. Prolonged blockade of nitric oxide synthesis in gravid rats produces sustained hypertension, proteinuria, thrombocytopenia, and intrauterine growth retardation. Am. J. Obstet. Gynecol. 1994, 170, 1458–1466. [Google Scholar] [CrossRef]
- Yallampalli, C.; Garfield, R.E. Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am. J. Obstet. Gynecol. 1993, 169, 1316–1320. [Google Scholar] [CrossRef]
- Murphy, S.R.; LaMarca, B.; Cockrell, K.; Arany, M.; Granger, J.P. l-arginine supplementation abolishes the blood pressure and endothelin response to chronic increases in plasma sFlt-1 in pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R259–R263. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.R.; LaMarca, B.B.; Cockrell, K.; Granger, J.P. Role of endothelin in mediating soluble fms-like tyrosine kinase 1-induced hypertension in pregnant rats. Hypertension 2010, 55, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Maynard, S.E.; Min, J.Y.; Merchan, J.; Lim, K.H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Kumasawa, K.; Ikawa, M.; Kidoya, H.; Hasuwa, H.; Saito-Fujita, T.; Morioka, Y.; Takakura, N.; Kimura, T.; Okabe, M. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc. Natl. Acad. Sci. USA 2011, 108, 1451–1455. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, W.; Dong, N.; Lou, J.; Srinivasan, D.K.; Cheng, W.; Huang, X.; Liu, M.; Fang, C.; Peng, J.; et al. Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature 2012, 484, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Kanasaki, K.; Palmsten, K.; Sugimoto, H.; Ahmad, S.; Hamano, Y.; Xie, L.; Parry, S.; Augustin, H.G.; Gattone, V.H.; Folkman, J.; et al. Deficiency in catechol-o-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature 2008, 453, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Doridot, L.; Passet, B.; Mehats, C.; Rigourd, V.; Barbaux, S.; Ducat, A.; Mondon, F.; Vilotte, M.; Castille, J.; Breuiller-Fouche, M.; et al. Preeclampsia-like symptoms induced in mice by fetoplacental expression of stox1 are reversed by aspirin treatment. Hypertension 2013, 61, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Davisson, R.L.; Hoffmann, D.S.; Butz, G.M.; Aldape, G.; Schlager, G.; Merrill, D.C.; Sethi, S.; Weiss, R.M.; Bates, J.N. Discovery of a spontaneous genetic mouse model of preeclampsia. Hypertension 2002, 39, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Dokras, A.; Hoffmann, D.S.; Eastvold, J.S.; Kienzle, M.F.; Gruman, L.M.; Kirby, P.A.; Weiss, R.M.; Davisson, R.L. Severe feto-placental abnormalities precede the onset of hypertension and proteinuria in a mouse model of preeclampsia. Biol. Reprod. 2006, 75, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Kublickiene, K.R.; Cockell, A.P.; Nisell, H.; Poston, L. Role of nitric oxide in the regulation of vascular tone in pressurized and perfused resistance myometrial arteries from term pregnant women. Am. J. Obstet. Gynecol. 1997, 177, 1263–1269. [Google Scholar] [CrossRef]
- Poston, L.; McCarthy, A.L.; Ritter, J.M. Control of vascular resistance in the maternal and feto-placental arterial beds. Pharmacol. Ther. 1995, 65, 215–239. [Google Scholar] [CrossRef]
- Schiessl, B.; Strasburger, C.; Bidlingmaier, M.; Mylonas, I.; Jeschke, U.; Kainer, F.; Friese, K. Plasma- and urine concentrations of nitrite/nitrate and cyclic guanosinemonophosphate in intrauterine growth restricted and preeclamptic pregnancies. Arch. Gynecol. Obstet. 2006, 274, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Krause, B.J.; Carrasco-Wong, I.; Caniuguir, A.; Carvajal, J.; Farias, M.; Casanello, P. Endothelial enos/arginase imbalance contributes to vascular dysfunction in iugr umbilical and placental vessels. Placenta 2013, 34, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Lassala, A.; Bazer, F.W.; Cudd, T.A.; Datta, S.; Keisler, D.H.; Satterfield, M.C.; Spencer, T.E.; Wu, G. Parenteral administration of l-arginine prevents fetal growth restriction in undernourished ewes. J. Nutr. 2010, 140, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Vosatka, R.J.; Hassoun, P.M.; Harvey-Wilkes, K.B. Dietary l-arginine prevents fetal growth restriction in rats. Am. J. Obstet. Gynecol. 1998, 178, 242–246. [Google Scholar] [CrossRef]
- Satterfield, M.C.; Dunlap, K.A.; Keisler, D.H.; Bazer, F.W.; Wu, G. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 2013, 45, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Rytlewski, K.; Olszanecki, R.; Korbut, R.; Zdebski, Z. Effects of prolonged oral supplementation with l-arginine on blood pressure and nitric oxide synthesis in preeclampsia. Eur. J. Clin. Investig. 2005, 35, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Sieroszewski, P.; Suzin, J.; Karowicz-Bilinska, A. Ultrasound evaluation of intrauterine growth restriction therapy by a nitric oxide donor (l-arginine). J. Matern. Fetal Neona 2004, 15, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.M.; Li, L.P. l-arginine treatment for asymmetric fetal growth restriction. Int. J. Gynaecol. Obstet. 2005, 88, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, F.; Longo, M.; Piccinini, F.; Neri, I.; Volpe, A. l-arginine infusion reduces blood pressure in preeclamptic women through nitric oxide release. J. Soc. Gynecol. Investig. 1999, 6, 202–207. [Google Scholar] [CrossRef]
- De Pace, V.; Chiossi, G.; Facchinetti, F. Clinical use of nitric oxide donors and l-arginine in obstetrics. J. Matern. Fetal Neona 2007, 20, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Garcia, D.; Mota-Rojas, D.; Hernandez-Gonzalez, R.; Sanchez-Aparicio, P.; Alonso-Spilsbury, M.; Trujillo-Ortega, M.E.; Necoechea, R.R.; Nava-Ocampo, A.A. A systematic review of experimental and clinical studies of sildenafil citrate for intrauterine growth restriction and pre-term labour. J. Obstet. Gynaecol. 2007, 27, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Wareing, M.; Myers, J.E.; O’Hara, M.; Baker, P.N. Sildenafil citrate (viagra) enhances vasodilatation in fetal growth restriction. J. Clin. Endocrinol. Metab. 2005, 90, 2550–2555. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J.L.; Andersson, I.J.; Poudel, R.; Rueda-Clausen, C.F.; Sibley, C.P.; Davidge, S.T.; Baker, P.N. Sildenafil citrate rescues fetal growth in the catechol-O-methyl transferase knockout mouse model. Hypertension 2012, 59, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Dilworth, M.R.; Andersson, I.; Renshall, L.J.; Cowley, E.; Baker, P.; Greenwood, S.; Sibley, C.P.; Wareing, M. Sildenafil citrate increases fetal weight in a mouse model of fetal growth restriction with a normal vascular phenotype. PLoS ONE 2013, 8, e77748. [Google Scholar] [CrossRef] [PubMed]
- Ramesar, S.V.; Mackraj, I.; Gathiram, P.; Moodley, J. Sildenafil citrate decreases sFlt-1 and seng in pregnant l-name treated sprague-dawley rats. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 157, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, S.; Pellicer, B.; Serra, V.; Cauli, O.; Cortijo, J.; Felipo, V.; Pellicer, A. Sildenafil citrate improves perinatal outcome in fetuses from pre-eclamptic rats. BJOG 2012, 119, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Lacassie, H.J.; Germain, A.M.; Valdes, G.; Fernandez, M.S.; Allamand, F.; Lopez, H. Management of eisenmenger syndrome in pregnancy with sildenafil and l-arginine. Obstet. Gynecol. 2004, 103, 1118–1120. [Google Scholar] [CrossRef] [PubMed]
- Molelekwa, V.; Akhter, P.; McKenna, P.; Bowen, M.; Walsh, K. Eisenmenger’s syndrome in a 27 week pregnancy—management with bosentan and sildenafil. Ir. Med. J. 2005, 98, 87–88. [Google Scholar] [PubMed]
- Samangaya, R.A.; Mires, G.; Shennan, A.; Skillern, L.; Howe, D.; McLeod, A.; Baker, P.N. A randomised, double-blinded, placebo-controlled study of the phosphodiesterase type 5 inhibitor sildenafil for the treatment of preeclampsia. Hypertens. Pregnancy 2009, 28, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Von Dadelszen, P.; Dwinnell, S.; Magee, L.A.; Carleton, B.C.; Gruslin, A.; Lee, B.; Lim, K.I.; Liston, R.M.; Miller, S.P.; Rurak, D.; et al. Sildenafil citrate therapy for severe early-onset intrauterine growth restriction. BJOG 2011, 118, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Ganzevoort, W.; Alfirevic, Z.; von Dadelszen, P.; Kenny, L.; Papageorghiou, A.; Gluud, C.; van Wassenaer-Leemhuis, A.; Mol, B.W.; Baker, P.N. Strider: Sildenafil therapy in dismal prognosis early-onset intrauterine growth restriction—A protocol for a systematic review with individual participant data and aggregate data meta-analysis and trial sequential analysis. Syst. Rev. 2014, 3. [Google Scholar] [CrossRef] [PubMed]
- Myatt, L. Placental adaptive responses and fetal programming. J. Physiol. 2006, 572, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, D.S.; Weydert, C.J.; Lazartigues, E.; Kutschke, W.J.; Kienzle, M.F.; Leach, J.E.; Sharma, J.A.; Sharma, R.V.; Davisson, R.L. Chronic tempol prevents hypertension, proteinuria, and poor feto-placental outcomes in bph/5 mouse model of preeclampsia. Hypertension 2008, 51, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Poudel, R.; Stanley, J.L.; Rueda-Clausen, C.F.; Andersson, I.J.; Sibley, C.P.; Davidge, S.T.; Baker, P.N. Effects of resveratrol in pregnancy using murine models with reduced blood supply to the uterus. PLoS ONE 2013, 8, e64401. [Google Scholar] [CrossRef] [PubMed]
- Roberts, V.H.; Pound, L.D.; Thorn, S.R.; Gillingham, M.B.; Thornburg, K.L.; Friedman, J.E.; Frias, A.E.; Grove, K.L. Beneficial and cautionary outcomes of resveratrol supplementation in pregnant nonhuman primates. FASEB J. 2014, 28, 2466–2477. [Google Scholar] [CrossRef] [PubMed]
- Thakor, A.S.; Herrera, E.A.; Seron-Ferre, M.; Giussani, D.A. Melatonin and vitamin c increase umbilical blood flow via nitric oxide-dependent mechanisms. J. Pineal Res. 2010, 49, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Herrera, E.A.; Evans, R.D.; Giussani, D.A. Antioxidant treatment improves neonatal survival and prevents impaired cardiac function at adulthood following neonatal glucocorticoid therapy. J. Physiol. 2013, 591, 5083–5093. [Google Scholar] [CrossRef] [PubMed]
- Chappell, L.C.; Seed, P.T.; Briley, A.L.; Kelly, F.J.; Lee, R.; Hunt, B.J.; Parmar, K.; Bewley, S.J.; Shennan, A.H.; Steer, P.J.; et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: A randomised trial. Lancet 1999, 354, 810–816. [Google Scholar] [CrossRef]
- Chappell, L.C.; Seed, P.T.; Kelly, F.J.; Briley, A.; Hunt, B.J.; Charnock-Jones, D.S.; Mallet, A.; Poston, L. Vitamin c and e supplementation in women at risk of preeclampsia is associated with changes in indices of oxidative stress and placental function. Am. J. Obstet. Gynecol. 2002, 187, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Poston, L.; Briley, A.L.; Seed, P.T.; Kelly, F.J.; Shennan, A.H. Vitamin c and vitamin e in pregnant women at risk for pre-eclampsia (vip trial): Randomised placebo-controlled trial. Lancet 2006, 367, 1145–1154. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X. Melatonin: A novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc. Res. 2003, 58, 10–19. [Google Scholar] [CrossRef]
- Miller, S.L.; Yawno, T.; Alers, N.O.; Castillo-Melendez, M.; Supramaniam, V.G.; VanZyl, N.; Sabaretnam, T.; Loose, J.M.; Drummond, G.R.; Walker, D.W.; et al. Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction. J. Pineal Res. 2014, 56, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Richter, H.G.; Hansell, J.A.; Raut, S.; Giussani, D.A. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J. Pineal Res. 2009, 46, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Hobson, S.R.; Lim, R.; Gardiner, E.E.; Alers, N.O.; Wallace, E.M. Phase i pilot clinical trial of antenatal maternally administered melatonin to decrease the level of oxidative stress in human pregnancies affected by pre-eclampsia (pampr): Study protocol. BMJ Open 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Alers, N.O.; Jenkin, G.; Miller, S.L.; Wallace, E.M. Antenatal melatonin as an antioxidant in human pregnancies complicated by fetal growth restriction—A phase i pilot clinical trial: Study protocol. BMJ Open 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Hypponen, E.; Cavadino, A.; Williams, D.; Fraser, A.; Vereczkey, A.; Fraser, W.D.; Banhidy, F.; Lawlor, D.; Czeizel, A.E. Vitamin d and pre-eclampsia: Original data, systematic review and meta-analysis. Ann. Nutr. Metab. 2013, 63, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Fu, L.; Hao, J.H.; Yu, Z.; Zhu, P.; Wang, H.; Xu, Y.Y.; Zhang, C.; Tao, F.B.; Xu, D.X. Maternal vitamin d deficiency during pregnancy elevates the risks of small for gestational age and low birth weight infants in chinese population. J. Clin. Endocrinol. Metab. 2015, 100, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.C.; Holroyd, C.; Ntani, G.; Javaid, K.; Cooper, P.; Moon, R.; Cole, Z.; Tinati, T.; Godfrey, K.; Dennison, E.; et al. Vitamin d supplementation in pregnancy: A systematic review. Health Technol. Assess. 2014, 18, 1–190. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.T.; Whitlock, E.P.; O’Conner, E.; Senger, C.A.; Thompson, J.H.; Rowland, M.G. Low-Dose Aspirin for the Prevention of Morbidity and Mortality from Preeclampsia: A Systematic Evidence Review for the U.S. Preventive Services Task Force; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2014. [Google Scholar]
- Ludman, A.; Venugopal, V.; Yellon, D.M.; Hausenloy, D.J. Statins and cardioprotection—More than just lipid lowering? Pharmacol. Ther. 2009, 122, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Costantine, M.M.; Tamayo, E.; Lu, F.; Bytautiene, E.; Longo, M.; Hankins, G.D.; Saade, G.R. Using pravastatin to improve the vascular reactivity in a mouse model of soluble fms-like tyrosine kinase-1-induced preeclampsia. Obstet. Gynecol. 2010, 116, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.F.; Kechichian, T.; Yin, H.; Sbrana, E.; Longo, M.; Wen, M.; Tamayo, E.; Hankins, G.D.; Saade, G.R.; Costantine, M.M. Effects of pravastatin on angiogenic and placental hypoxic imbalance in a mouse model of preeclampsia. Reprod. Sci. 2014, 21, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.J.; Banek, C.T.; Needham, K.; Gillham, H.; Capoccia, S.; Regal, J.F.; Gilbert, J.S. Pravastatin attenuates hypertension, oxidative stress, and angiogenic imbalance in rat model of placental ischemia-induced hypertension. Hypertension 2013, 61, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Forbes, K.; Hurst, L.M.; Aplin, J.D.; Westwood, M.; Gibson, J.M. Statins are detrimental to human placental development and function; use of statins during early pregnancy is inadvisable. J. Cell. Mol. Med. 2008, 12, 2295–2296. [Google Scholar] [CrossRef] [PubMed]
- Forbes, K.; Shah, V.K.; Siddals, K.; Gibson, J.M.; Aplin, J.D.; Westwood, M. Statins inhibit insulin-like growth factor action in first trimester placenta by altering insulin-like growth factor 1 receptor glycosylation. Mol. Hum. Reprod. 2015, 21, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Kapil, V.; Weitzberg, E.; Lundberg, J.O.; Ahluwalia, A. Clinical evidence demonstrating the utility of inorganic nitrate in cardiovascular health. Nitric Oxide 2014, 38, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, E.; Garrod, A.; Wareing, M.; Dilworth, M.; Finn-Sell, S.; Greenwood, S.; Baker, P.; Sibley, C. Supplementation with inorganic nitrate during pregnancy improves maternal uterine artery function and placental efficiency in mice. Placenta 2014, 35, A21. [Google Scholar] [CrossRef]
- Cottrell, E.; Garrod, A.; Finn-Sell, S.; Wareing, M.; Cowley, E.; Greenwood, S.; Baker, P.N.; Sibley, C. Maternal supplementation with dietary inorganic nitrate improves uteroplacental vascular function in enos(−/−) mice. Reprod. Sci. 2015, 22, 182A. [Google Scholar]
- Matsui, D. Adherence with drug therapy in pregnancy. Obstet. Gynecol. Int. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- David, A.L.; Torondel, B.; Zachary, I.; Wigley, V.; Abi-Nader, K.; Mehta, V.; Buckley, S.M.; Cook, T.; Boyd, M.; Rodeck, C.H.; et al. Local delivery of vegf adenovirus to the uterine artery increases vasorelaxation and uterine blood flow in the pregnant sheep. Gene Ther. 2008, 15, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.; Abi-Nader, K.N.; Shangaris, P.; Shaw, S.W.; Filippi, E.; Benjamin, E.; Boyd, M.; Peebles, D.M.; Martin, J.; Zachary, I.; et al. Local over-expression of VEGF-ddeltandeltac in the uterine arteries of pregnant sheep results in long-term changes in uterine artery contractility and angiogenesis. PLoS ONE 2014, 9, e100021. [Google Scholar] [CrossRef] [PubMed]
- Carr, D.J.; Wallace, J.M.; Aitken, R.P.; Milne, J.S.; Mehta, V.; Martin, J.F.; Zachary, I.C.; Peebles, D.M.; David, A.L. Uteroplacental adenovirus vascular endothelial growth factor gene therapy increases fetal growth velocity in growth-restricted sheep pregnancies. Hum. Gene Ther. 2014, 25, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.; Kotamraju, R.; Teesalu, T.; Ruoslahti, E. Identification of novel placental homing peptides. Placenta 2012, 33, A44. [Google Scholar]
- King, A.; Tirelli, N.; Aplin, J.; Harris, L. Targeted delivery of insulin-like growth factor-II to the placenta using homing peptide-decorated liposomes increases placental weight. Placenta 2014, 35, A9. [Google Scholar] [CrossRef]
- Cureton, N.; Cellesi, F.; Aplin, J.; Harris, L. Homing peptide-mediated targeting of liposomes to term villous explants: Novel nanocarriers for targeted drug delivery. Placenta 2013, 34, A37. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cottrell, E.C.; Sibley, C.P. From Pre-Clinical Studies to Clinical Trials: Generation of Novel Therapies for Pregnancy Complications. Int. J. Mol. Sci. 2015, 16, 12907-12924. https://doi.org/10.3390/ijms160612907
Cottrell EC, Sibley CP. From Pre-Clinical Studies to Clinical Trials: Generation of Novel Therapies for Pregnancy Complications. International Journal of Molecular Sciences. 2015; 16(6):12907-12924. https://doi.org/10.3390/ijms160612907
Chicago/Turabian StyleCottrell, Elizabeth C., and Colin P. Sibley. 2015. "From Pre-Clinical Studies to Clinical Trials: Generation of Novel Therapies for Pregnancy Complications" International Journal of Molecular Sciences 16, no. 6: 12907-12924. https://doi.org/10.3390/ijms160612907
APA StyleCottrell, E. C., & Sibley, C. P. (2015). From Pre-Clinical Studies to Clinical Trials: Generation of Novel Therapies for Pregnancy Complications. International Journal of Molecular Sciences, 16(6), 12907-12924. https://doi.org/10.3390/ijms160612907