Transcriptome Sequencing of Lima Bean (Phaseolus lunatus) to Identify Putative Positive Selection in Phaseolus and Legumes
Abstract
:1. Introduction
2. Results
2.1. Transcriptome Sequencing and De Novo Assembly of the Lima Bean Transcriptome
Assembly | Statistics |
---|---|
Number of unigenes | 96,248 |
Large unigenes (≥1000 bp) | 29,556 |
Max unigene length (bp) | 20,020 |
Mean unigene length (bp) | 949 |
N50 length (bp) | 1795 |
Total bases (MB) | 87.12 |
OGs_ID | M1a vs. M2a | Sites a | M7 vs. M8 | Sites a | Protein Function | ||
---|---|---|---|---|---|---|---|
LRT | p (fdr) | LRT | p (fdr) | ||||
OG_9805 | 9.03 × 10−8 | 1.72 × 10−6 | 62N 89I 96L 128F 138Q | 6.00 × 10−12 | 1.49 × 10−10 | 62N 89I 96L 128F 138Q | Alanine-tRNA ligase |
OG_9947 | 4.66 × 10−4 | 0.004 | 320V 483Q | 1.62 × 10−4 | 0.0013 | 320V 480S 483Q | Ceramide synthase lag1 |
OG_10941 | 0.005 | 0.021 | 21G | 0.001 | 0.004 | 21G | Acyl-CoA N-acyltransferase-like protein |
OG_10618 | 0.011 | 0.035 | 75W 106F | 0.003 | 0.0074 | 75W 106F | Pollen Ole e 1 allergen and extension family protein |
OG_9713 | 0.006 | 0.021 | NS b | 2.28 × 10−4 | 0.0014 | 92I 177V | Mitochondrial inner membrane translocase, subunit tim44-related protein |
OG_10037 | 0.003 | 0.019 | NS | 7.34 × 10−4 | 0.0028 | 17P 127M | Bromodomain transcription factor |
OG_10186 | 0.022 | 0.058 | 379 A | 8.80 × 10−5 | 0.0011 | 310V 348K 379A 516S | 2,3-Bisphosphoglycerate-independent, phosphoglycerate mutase |
OG_10467 | 0.024 | 0.058 | 32 G | 0.01 | 0.016 | 32G | Uncharacterized protein |
OG_10095 | 0.212 | 0.287 | NS | 0.021 | 0.0298 | 100S | Hnh endonuclease |
OG_10235 | 0.030 | 0.062 | NS | 6.88 × 10−4 | 0.0028 | 243D 291H | Golgin candidate 2 |
OG_10350 | 0.054 | 0.085 | NS | 0.009 | 0.0155 | 180F | Pentatricopeptide repeat-containing protein |
OG_10623 | 0.270 | 0.342 | NS | 0.006 | 0.0112 | 98P | Dessication-induced 1voc-like protein |
OG_10631 | 1.000 | 1.000 | NS | 0.013 | 0.0191 | 323A | Endoribonuclease dicer-like 2 |
OG_10744 | 1.000 | 1.000 | NS | 0.004 | 0.008 | 489L | Transmembrane amino acid transporter family protein |
OG_9360 | 1.000 | 1.000 | NS | 0.005 | 0.0106 | 772N | Pseudouridine synthase family protein |
OG_9471 | 0.033 | 0.062 | NS | 0.002 | 0.004 | 28R | DnaJ domain-containing protein |
OG_9474 | 0.432 | 0.513 | NS | 0.026 | 0.0352 | 309I 327I | Cation calcium exchanger 5 |
OG_9589 | 0.042 | 0.073 | NS | 8.14 × 10−4 | 0.0028 | 797D | Histone-lysine N-methyltransferase, H3 lysine-9 specific SUVH4 |
OG_9889 | 0.100 | 0.147 | NS | 0.039 | 0.0492 | 53M | Uncharacterized protein |
2.2. Orthologous Groups among Legume Species and Evolutionary Analysis
Gene Class | GO ID | GO Term | FWER | p (Fisher’s Exact Test) | Frequency a in Test Set | Frequency in Reference Set |
---|---|---|---|---|---|---|
Positive OGs between Phaseolus | GO:0009579 | Thylakoid | 0.012326 | 0.001462 | 3/15 | 11/422 |
Positive OGs between Phaseolus | GO:0015979 | Photosynthesis | 0.174733 | 0.018151 | 2/15 | 10/422 |
Positive OGs between Phaseolus | GO:0006091 | Generation of precursor metabolites and energy | 0.272852 | 0.0280331 | 2/15 | 13/422 |
Positive OGs among legumes | GO:0016746 | Transferring acyl groups | 0.0350915 | 0.00329338 | 2/4 | 8/400 |
2.3. Functional Categories
3. Discussion
3.1. Transcriptome of Lima Bean
3.2. Candidate Adaptive Evolution Genes between Lima Bean and Common Bean
3.3. Candidate Adaptive Evolution Genes among Seven Legume Species
4. Materials and Methods
4.1. Sample Collection, cDNA Library Construction, and Illumina Sequencing
4.2. Identification of OGs and Alignment
4.3. Detection of Selection Analysis
4.4. Function Annotation
5. Conclusions
Supplementary Materials
Acknowledgments
Authors’ Contributions
Conflicts of Interest
References
- Kosiol, C.; Vinar, T.; da Fonseca, R.; Hubisz, M.; Bustamante, C.; Schierup, M.H. Patterns of positive selection in six mammalian genomes. PLoS Genet. 2008, 4, e1000144. [Google Scholar] [CrossRef] [PubMed]
- Künstner, A.; Wolf, J.B.; Backström, N.; Whitney, O.; Balakrishnan, C.N.; Day, L.; Edwards, S.V.; Janes, D.E.; Schlinger, B.A.; Wilson, R.K. Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Mol. Ecol. 2010, 19, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, N.; Ma, P.F.; Liu, Q.; Li, D.Z.; Guo, Z.H. Phylogenomic analyses of nuclear genes reveal the evolutionary relationships within the BEP clade and the evidence of positive selection in Poaceae. PLoS ONE 2013, 8, e64642. [Google Scholar] [CrossRef] [PubMed]
- Swanson, W.J.; Wong, A.; Wolfner, M.F.; Aquadro, C.F. Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics 2004, 168, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Studer, R.A.; Robinson-Rechavi, M. Large-scale analyses of positive selection using codon models. In Evolutionary Biology; Springer Berlin Heidelberg: Berlin, Germany, 2009; pp. 217–235. [Google Scholar]
- Backström, N.; Zhang, Q.; Edwards, S.V. Evidence from a house finch (Haemorhous mexicanus) spleen transcriptome for adaptive evolution and biased gene conversion in passerine birds. Mol. Biol. Evol. 2013, 30, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Roth, C.; Liberles, D.A. A systematic search for positive selection in higher plants (Embryophytes). BMC Plant Biol. 2006, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Hurst, L.D. The ka/ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef]
- Yang, Z.; Bielawski, J.P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 2000, 15, 496–503. [Google Scholar] [CrossRef]
- Xia, E.H.; Jiang, J.J.; Huang, H.; Zhang, L.P.; Zhang, H.B.; Gao, L.Z. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism. PLoS ONE 2014, 9, e104150. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.K.; Cibrian-Jaramillo, A.; Kolokotronis, S.-O.; Katari, M.S.; Stamatakis, A.; Ott, M.; Chiu, J.C.; Little, D.P.; Stevenson, D.W.; McCombie, W.R. A functional phylogenomic view of the seed plants. PLoS Genet. 2011, 7, e1002411. [Google Scholar] [CrossRef] [PubMed]
- Buschiazzo, E.; Ritland, C.; Bohlmann, J.; Ritland, K. Slow but not low: Genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol. Biol. 2012, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dai, X.; Liu, T.; Zhao, P.X. LegumeIP: An integrative database for comparative genomics and transcriptomics of model legumes. Nucleic Acids Res. 2012, 40, D1221–D1229. [Google Scholar] [CrossRef] [PubMed]
- Young, N.D.; Debellé, F.; Oldroyd, G.E.; Geurts, R.; Cannon, S.B.; Udvardi, M.K.; Benedito, V.A.; Mayer, K.F.; Gouzy, J.; Schoof, H. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011, 480, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Nakamura, Y.; Kaneko, T.; Asamizu, E.; Kato, T.; Nakao, M.; Sasamoto, S.; Watanabe, A.; Ono, A.; Kawashima, K. Genome structure of the legume, Lotus japonicus. DNA Res. 2008, 15, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, J.; McClean, P.E.; Mamidi, S.; Wu, G.A.; Cannon, S.B.; Grimwood, J.; Jenkins, J.; Shu, S.; Song, Q.; Chavarro, C. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 2014, 46, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Chen, W.; Li, Y.; Bharti, A.K.; Saxena, R.K.; Schlueter, J.A.; Donoghue, M.T.; Azam, S.; Fan, G.; Whaley, A.M. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 2012, 30, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’an, B. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonifácio, E.M.; Fonsêca, A.; Almeida, C.; dos Santos, K.G.; Pedrosa-Harand, A. Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.). Theor. Appl. Genet. 2012, 124, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, L.; Lynch, T.F. Phaseolus (fabaceae) in archaeology: AMS. Econ. Bot. 1999, 53, 261–272. [Google Scholar] [CrossRef]
- Maquet, A.; Vekemans, X.; Baudoin, J.P. Phylogenetic study on wild allies of Lima bean, Phaseolus lunatus (Fabaceae), and implications on its origin. Plant Syst. Evol. 1999, 218, 43–54. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 2000, 17, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yan, H.-F.; Wu, W.; Yu, H.; Ge, X.-J. Comparative transcriptome analysis and marker development of two closely related Primrose species (Primula poissonii and Primula wilsonii). BMC Genomics 2013, 14, 329. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.L.; Duan, X.H.; Liang, C.; Shu, C.L.; Song, F.P.; Zhang, J. Mining tissue-specific contigs from Peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing. Plant Cell Physiol. 2014, 55, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; Zhao, Q.Y.; Luan, J.B.; Wang, Y.J.; Yan, G.H.; Liu, S.S. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species. BMC Genomics 2012, 13, 529. [Google Scholar] [CrossRef] [PubMed]
- Berkey, R.; Bendigeri, D.; Xiao, S. Sphingolipids and plant defense/disease: The “death” connection and beyond. Front. Plant Sci. 2012, 3, 60. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fang, B.; Chen, J.; Zhang, X.; Luo, Z.; Huang, L.; Chen, X.; Li, Y. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics 2010, 11, 726. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Yamamoto, H.; Shikanai, T. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochim. Biophys. Acta 2011, 1807, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Huseynova, I.M.; Suleymanov, S.Y.; Aliyev, J.A. Structural-functional state of thylakoid membranes of wheat genotypes under water stress. Biochim. Biophys. Acta 2007, 1767, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Coate, J.E.; Schlueter, J.A.; Whaley, A.M.; Doyle, J.J. Comparative evolution of photosynthetic genes in response to polyploid and nonpolyploid duplication. Plant Physiol. 2011, 155, 2081–2095. [Google Scholar] [CrossRef] [PubMed]
- Smartt, J. Evolution of grain legumes. IV. Pulses in the genus phaseolus. Exp. Agric. 1985, 21, 193–207. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.; Zhu, J.K. Gene regulation during cold acclimation in plants. Physiol. Plant. 2006, 126, 52–61. [Google Scholar] [CrossRef]
- Büschges, R.; Hollricher, K.; Panstruga, R.; Simons, G.; Wolter, M.; Frijters, A.; van Daelen, R.; van der Lee, T.; Diergaarde, P.; Groenendijk, J. The barley MLO gene: A novel control element of plant pathogen resistance. Cell 1997, 88, 695–705. [Google Scholar] [CrossRef]
- Piffanelli, P.; Zhou, F.; Casais, C.; Orme, J.; Jarosch, B.; Schaffrath, U.; Collins, N.C.; Panstruga, R.; Schulze-Lefert, P. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol. 2002, 129, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.S.; Yang, Z.; Goldman, N.; Nielsen, R. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 2004, 168, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.Y.; Li, C.M.; Wang, L.F.; Bai, H.; Li, Y.P.; Yu, W.X.; Xia, D.A.; Liu, C.C. In silico identification and characterization of N-terminal acetyltransferase genes of poplar (Populus trichocarpa). Int. J. Mol. Sci. 2014, 15, 1852–1864. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Zhu, H.Y.; Dong, X.M.; Ning, D.L.; Wang, H.X.; Li, W.H.; Yang, C.P.; Wang, B.C. Identification and analysis of the acetylated status of poplar proteins reveals analogous N-terminal protein processing mechanisms with other eukaryotes. PLoS ONE 2013, 8, e58681. [Google Scholar] [CrossRef] [PubMed]
- Hole, K.; van Damme, P.; Dalva, M.; Aksnes, H.; Glomnes, N.; Varhaug, J.E.; Lillehaug, J.R.; Gevaert, K.; Arnesen, T. The human N-α-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PLoS ONE 2011, 6, e24713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabbagh, A.; Marin, J.; Veyssière, C.; Lecompte, E.; Boukouvala, S.; Poloni, E.S.; Darlu, P.; Crouau-Roy, B. Rapid birth-and-death evolution of the xenobiotic metabolizing NAT gene family in vertebrates with evidence of adaptive selection. BMC Evol. Biol. 2013, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Tiffin, P.; Moeller, D.A. Molecular evolution of plant immune system genes. Trends Genet. 2006, 22, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Swairjo, M.A.; Schimmel, P. Abstracts: Albany 2005, The 14th Conversation. J. Biomol. Struct. Dyn. 2005, 22, 755–874. [Google Scholar]
- Engelberth, J.; Koch, T.; Schuler, G.; Bachmann, N.; Rechtenbach, J.; Boland, W. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol. 2001, 125, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Arimura, G.; Tashiro, K.; Kuhara, S.; Nishioka, T.; Ozawa, R.; Takabayashi, J. Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem. Biophys. Res. Commun. 2000, 277, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Mackey, A.J.; Stoeckert, C.J.; Roos, D.S. OrthoMCL-DB: Querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006, 34, D363–D368. [Google Scholar] [CrossRef] [PubMed]
- Ebersberger, I.; Strauss, S.; von Haeseler, A. HaMStR: Profile hidden markov model based search for orthologs in ESTs. BMC Evol. Biol. 2009, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.T.; Li, J.T.; Zhang, X.F.; Sun, X.W. Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio). BMC Genomics 2012, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Kent, W.J. BLAT—The BLAST-like alignment tool. Genome Res. 2002, 12, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 1998, 15, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar]
- Yang, Z.; Wong, W.S.; Nielsen, R. Bayes empirical Bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 2005, 22, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Fang, L.; Zheng, H.; Zhang, Y.; Chen, J.; Zhang, Z.; Wang, J.; Li, S.; Li, R.; Bolund, L. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res. 2006, 34, W293–W297. [Google Scholar] [CrossRef] [PubMed]
- Blüthgen, N.; Brand, K.; Cajavec, B.; Swat, M.; Herzel, H.; Beule, D. Biological profiling of gene groups utilizing Gene Ontology. Genome Inform. 2005, 16, 106–115. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Cao, D.; Liu, Y.; Yang, T.; Wang, G. Transcriptome Sequencing of Lima Bean (Phaseolus lunatus) to Identify Putative Positive Selection in Phaseolus and Legumes. Int. J. Mol. Sci. 2015, 16, 15172-15187. https://doi.org/10.3390/ijms160715172
Li F, Cao D, Liu Y, Yang T, Wang G. Transcriptome Sequencing of Lima Bean (Phaseolus lunatus) to Identify Putative Positive Selection in Phaseolus and Legumes. International Journal of Molecular Sciences. 2015; 16(7):15172-15187. https://doi.org/10.3390/ijms160715172
Chicago/Turabian StyleLi, Fengqi, Depan Cao, Yang Liu, Ting Yang, and Guirong Wang. 2015. "Transcriptome Sequencing of Lima Bean (Phaseolus lunatus) to Identify Putative Positive Selection in Phaseolus and Legumes" International Journal of Molecular Sciences 16, no. 7: 15172-15187. https://doi.org/10.3390/ijms160715172
APA StyleLi, F., Cao, D., Liu, Y., Yang, T., & Wang, G. (2015). Transcriptome Sequencing of Lima Bean (Phaseolus lunatus) to Identify Putative Positive Selection in Phaseolus and Legumes. International Journal of Molecular Sciences, 16(7), 15172-15187. https://doi.org/10.3390/ijms160715172