Human Leukocyte Antigen Class II Alleles Are Associated with Hepatitis C Virus Natural Susceptibility in the Chinese Population
Abstract
:1. Introduction
2. Results
2.1. Basic Characteristics
Variables | Group A (%) | Group B (%) | Group C (%) | p |
---|---|---|---|---|
n = 370 | n = 194 | n = 973 | ||
Age (mean ± SD) | 46.86 ± 13.05 | 47.03 ± 11.26 | 48.42 ± 13.72 | 0.10 a,# |
Gender | 0.86 b,# | |||
Male | 204 (55.1) | 110 (56.7) | 531 (54.6) | |
Female | 166 (44.9) | 84 (43.3) | 442 (45.4) | |
ALT (median (IQR), U/L) | 23.00 (34.00) | 19.00 (20.50) | 9.00 (9.00) | <0.001 c,† |
AST (median (IQR), U/L) | 30.00 (27.00) | 24.00 (15.50) | 16.00 (12.00) | <0.001 c,† |
Routes of infection | <0.001 b,† | |||
Drug use | 155 (41.9) | 36 (18.6) | 246 (25.3) | |
Hemodialysis | 74 (20.0) | 89 (45.9) | 551 (56.6) | |
Paid blood donation | 141 (38.1) | 69 (35.6) | 176 (18.1) | |
HCV genotypes | <0.001 b,† | |||
1 | 236 (63.8) | 114 (58.8) | – | |
Non-1 | 51 (13.8) | 53 (27.3) | – | |
Mixed | 83 (22.4) | 27 (13.9) | – |
2.2. Association Analysis of HLA Class II Gene Polymorphisms and Haplotype with Susceptibility and the Resolution of HCV Infection
SNPs (Genotype) | Group A | Group B | Group C | OR (95% CI) a | p a/p a′ | OR (95% CI) b | p b/p b′ | |
---|---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | The Outcome: HCV Susceptibility | The Outcome: HCV Clearance | ||||
rs3077 | ||||||||
CC | 143 (38.8) | 76 (39.4) | 406 (41.9) | 1.00 | – | 1.00 | – | |
TC | 173 (46.9) | 92 (47.7) | 445 (45.9) | 1.117 (0.888–1.406) | 0.345/0.345 | 0.964 (0.648–1.432) | 0.855/0.855 | |
TT | 53 (14.4) | 25 (13.0) | 119 (12.3) | 1.271 (0.906–1.783) | 0.165/0.165 | 1.227 (0.687–2.191) | 0.490/0.706 | |
Additive model | 1.125 (0.961–1.316) | 0.143/0.143 | 1.068 (0.817–1.396) | 0.631/0.826 | ||||
Dominant model | 1.149 (0.924–1.429) | 0.211/0.211 | 1.018 (0.700–1.482) | 0.924/0.956 | ||||
rs2395309 | ||||||||
GG | 140 (37.8) | 74 (38.3) | 401 (41.3) | 1.00 | – | 1.00 | – | |
AG | 176 (47.6) | 92 (47.7) | 451 (46.4) | 1.118 (0.888–1.408) | 0.342/0.345 | 0.953 (0.640–1.420) | 0.814/0.855 | |
AA | 54 (14.6) | 27 (14.0) | 120 (12.3) | 1.312 (0.937–1.835) | 0.113/0.165 | 1.116 (0.631–1.973) | 0.706/0.706 | |
Additive model | 1.138 (0.973–1.332) | 0.106/0.143 | 1.030 (0.789–1.345) | 0.826/0.826 | ||||
Dominant model | 1.158 (0.931–1.441) | 0.187/0.211 | 0.989 (0.679–1.442) | 0.956/0.956 | ||||
rs2856718 | ||||||||
TT | 108 (29.8) | 69 (36.1) | 255 (26.7) | 1.00 | – | 1.00 | – | |
TC | 179 (49.4) | 87 (45.5) | 502 (52.5) | 0.712 (0.554–0.914) | 0.008/0.024 | 1.094 (0.718–1.667) | 0.676/0.855 | |
CC | 75 (20.7) | 35 (18.3) | 199 (20.8) | 0.763 (0.559–1.040) | 0.087/0.165 | 1.177 (0.692–2.000) | 0.548/0.706 | |
Additive model | 0.856 (0.733–1.000) | 0.050/0.143 | 1.086 (0.837–1.410) | 0.536/0.826 | ||||
Dominant model | 0.726 (0.574–0.920) | 0.008/0.024 | 1.118 (0.753–1.659) | 0.581/0.956 |
Supgroups (Genotypes) | Group A n (%) | Group B n (%) | Group C n (%) | OR (95% CI) a | p a′ | OR (95% CI) b | p b | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TT | TC | CC | TT | TC | CC | TT | TC | CC | The outcome: HCV susceptibility | The outcome: HCV clearance | |||
Age | |||||||||||||
≤40 | 37 (27.6) | 75 (56.0) | 22 (16.4) | 20 (30.8) | 30 (46.2) | 15 (23.1) | 69 (24.0) | 153 (53.1) | 66 (22.9) | 0.886 (0.670–1.171) | 0.393 | 0.943 (0.604–1.474) | 0.798 |
>40 | 71 (31.1) | 104 (45.6) | 53 (23.2) | 49 (38.9) | 57 (45.2) | 20 (15.9) | 186 (27.8) | 349 (52.2) | 133 (19.9) | 0.858 (0.710–1.037) | 0.112 | 1.188 (0.859–1.644) | 0.297 |
Gender | |||||||||||||
Male | 64 (31.8) | 102 (50.7) | 35 (17.4) | 39 (35.8) | 49 (45.0) | 21 (19.3) | 135 (25.9) | 286 (54.8) | 101 (19.3) | 0.778 (0.627–0.966) | 0.023 | 0.958 (0.678–1.354) | 0.807 |
Female | 44 (27.3) | 77 (47.8) | 40 (24.8) | 30 (36.6) | 38 (46.3) | 14 (17.1) | 120 (27.6) | 216 (49.8) | 98 (22.6) | 0.945 (0.754–1.184) | 0.621 | 1.295 (0.860–1.950) | 0.216 |
Routes of infection | |||||||||||||
Drug use | 36 (24.3) | 76 (51.4) | 36 (24.3) | 12 (35.3) | 15 (44.1) | 7 (20.6) | 62 (25.9) | 125 (52.3) | 52 (21.8) | 1.021 (0.773–1.348) | 0.883 | 1.363 (0.792–2.347) | 0.264 |
Hemodialysis | 32 (43.8) | 26 (35.6) | 15 (20.5) | 35 (39.8) | 37 (42.0) | 16 (18.2) | 144 (26.5) | 283 (52.1) | 116 (21.4) | 0.713 (0.552–0.921) | 0.010 | 1.046 (0.682–1.605) | 0.836 |
PDD | 40 (28.4) | 77 (54.6) | 24 (17.0) | 22 (31.9) | 35 (50.7) | 12 (17.4) | 49 (28.2) | 94 (54.0) | 31 (17.8) | 0.988 (0.726–1.343) | 0.937 | 1.031 (0.657–1.620) | 0.894 |
HCV genotypes | |||||||||||||
1 | 69 (29.9) | 120 (51.9) | 42 (18.2) | 45 (40.2) | 49 (43.8) | 18 (16.1) | – | – | – | – | – | 1.192 (0.847–1.678) | 0.314 |
Non-1 | 14 (27.5) | 22 (43.1) | 15 (29.4) | 13 (25.0) | 25 (48.1) | 14 (26.9) | – | – | – | – | – | 0.980 (0.558–1.721) | 0.943 |
Mixed | 25 (31.3) | 37 (46.3) | 18 (22.5) | 11 (40.7) | 13 (48.1) | 3 (11.1) | – | – | – | – | – | 1.292 (0.656–2.545) | 0.459 |
3. Discussions
4. Experimental Section
4.1. Ethic Statement
4.2. Subjects
4.3. HCV Serological Test and Genotyping
4.4. HLA SNPs Selection and Genotyping
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
HCV | hepatitis C virus |
CHC | chronic hepatitis C |
HCC | hepatocellular carcinoma |
HLA | human leukocyte antigen |
MHC | major histocompatibility complex |
Th1 (2, 17, 19) | helper T cell 1 (2, 17, 19) |
SVR | sustained virological response |
IFN-α | interferon-alpha |
SNP | single nucleotide polymorphism |
HD | hemodialysis |
MAF | minor allele frequency |
ELISA | enzyme-linked immunosorbent assay |
HWE | Hardy-Weinberg equilibrium |
LD | linkage disequilibrium |
ANOVA | analysis of variance |
OR | odds ratio |
CI | confidence interval |
SD | standard deviations |
ALT | alanine transaminase |
UTR | untranslated region |
GWAS | genome-wide association study |
TFBS | transcription factor binding site |
References
- World Health Organization. Guidelines for the Screening, Care and Treatment of Persons with Hepatitis C Infection; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Tarantino, G.; Conca, P.; Sorrentino, P.; Ariello, M. Metabolic factors involved in the therapeutic response of patients with hepatitis C virus-related chronic hepatitis. J. Gastroenterol. Hepatol. 2006, 21, 1266–1268. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.J.; DeMars, R.; Trowbridge, I.S.; Bach, F.H. Detection of a novel human class II HLA antigen. Nature 1983, 304, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Chapman, S.J.; Hill, A.V. Human genetic susceptibility to infectious disease. Nat. Rev. Genet. 2012, 13, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Bowen, D.G.; Walker, C.M. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 2005, 436, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.Y.; Fugger, L.; Strominger, J.L.; Siebold, C. MHC class II proteins and disease: A structural perspective. Nat. Rev. Immunol. 2006, 6, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.H.; Jardetzky, T.S.; Gorga, J.C.; Stern, L.J.; Urban, R.G.; Strominger, J.L.; Wiley, D.C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993, 364, 33–33. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Yu, R.-B.; Sun, N.-X.; Wang, B.; Xu, Y.-C.; Wu, G.-L. Human leukocyte antigen class II DQB1*0301, DRB1*1101 alleles and spontaneous clearance of hepatitis C virus infection: A meta-analysis. World J. Gastroenterol. 2005, 11, 7302. [Google Scholar]
- Yu, R.B.; Hong, X.; Ding, W.L.; Tan, Y.F.; Zhang, Y.X.; Sun, N.X.; Wu, G.L.; Zhan, S.W.; Ge, D.F. The association between the genetic polymorphism of HLA-DQA1, DQB1, and DRB1 and serum alanine aminotransferase levels in chronic hepatitis C in the Chinese population. J. Gastroenterol. Hepatol. 2008, 23, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Kuzushita, N.; Hayashi, N.; Moribe, T.; Katayama, K.; Kanto, T.; Nakatani, S.; Kaneshige, T.; Tatsumi, T.; Ito, A.; Mochizuki, K. Influence of HLA haplotypes on the clinical courses of individuals infected with hepatitis C virus. Hepatology 1998, 27, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y.; Kamikawaji, N.; Suko, H.; Ando, M. Analysis of HLA alleles in Japanese patients with cirrhosis due to chronic hepatitis C. J. Gastroenterol. Hepatol. 1996, 11, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, K.; Ota, M.; Saito, S.; Maruyama, A.; Yamaura, T.; Rokuhara, A.; Orii, K.; Ichijo, T.; Matsumoto, A.; Tanaka, E. Long-term follow-up of hepatitis C virus infection: HLA class II loci influences the natural history of the disease. Tissue Antigens 2003, 61, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kaul, R.; Kaul, A.; Khan, K. A comparative review of HLA associations with hepatitis B and C viral infections across global populations. World J. Gastroenterol. 2007, 13, 1770. [Google Scholar] [CrossRef]
- Duggal, P.; Thio, C.L.; Wojcik, G.L.; Goedert, J.J.; Mangia, A.; Latanich, R.; Kim, A.Y.; Lauer, G.M.; Chung, R.T.; Peters, M.G. Genome-wide association study of spontaneous resolution of hepatitis C virus infection: Data from multiple cohorts. Ann. Intern. Med. 2013, 158, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Tamori, A.; Kawada, N. HLA class II associated with outcomes of hepatitis B and C infections. World J. Gastroenterol. 2013, 19, 5395. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Zhang, Y.-X.; Su, J.; Chen, X.; Ding, K.; Lei, N.; Liu, Y.; Li, J.; Zhang, Y.; Yu, R.-B. Genetic variation in IL28RA is associated with the outcomes of HCV infection in a high-risk Chinese population. Infect. Genet. Evol. 2011, 11, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Díaz, G.; Amicosante, M.; Jaraquemada, D.; Butler, R.H.; Guillén, M.V.; Sánchez, M.; Nombela, C.; Arroyo, J. Functional analysis of HLA-DP polymorphism: A crucial role for DPβ residues 9, 11, 35, 55, 56, 69 and 84–87 in T cell allorecognition and peptide binding. Int. Immunol. 2003, 15, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- An, P.; Winkler, C.; Guan, L.; OʼBrien, S.J.; Zeng, Z. A common HLA–DPA1 variant is a major determinant of hepatitis B virus clearance in Han Chinese. J. Infect. Dis. 2011, 203, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, Y.; Li, J.; Ma, J.; Wei, Z.; Tan, W.; OʼBrien, S.J. Strong influence of human leukocyte antigen (HLA)-DP gene variants on development of persistent chronic hepatitis B virus carriers in the Han Chinese population. Hepatology 2011, 53, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Tan, S.; Dan, Y.; Sun, X.; Deng, G.; Wang, Y. Relationship between HLA-DP gene polymorphisms and clearance of chronic hepatitis B virus infections: Case-control study and meta-analysis. Infect. Genet. Evol. 2012, 12, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.K.-H.; Watanabe, T.; Tanaka, Y.; Seto, W.-K.; Lee, C.-K.; Fung, J.; Lin, C.-K.; Huang, F.-Y.; Lai, C.-L.; Yuen, M.-F. Role of HLA-DP polymorphisms on chronicity and disease activity of hepatitis B infection in Southern Chinese. PLoS ONE 2013, 8, e66920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Zhai, X.; Liu, J.; Chu, M.; Pan, S.; Jiang, J.; Zhang, Y.; Wang, H.; Chen, J.; Shen, H. Genetic variants in human leukocyte antigen/DP-DQ influence both hepatitis B virus clearance and hepatocellular carcinoma development. Hepatology 2012, 55, 1426–1431. [Google Scholar] [CrossRef] [PubMed]
- Nishida, N.; Sawai, H.; Matsuura, K.; Sugiyama, M.; Ahn, S.H.; Park, J.Y.; Hige, S.; Kang, J.-H.; Suzuki, K.; Kurosaki, M. Genome-wide association study confirming association of HLA-DP with protection against chronic hepatitis B and viral clearance in Japanese and Korean. PLoS ONE 2012, 7, e39175. [Google Scholar] [CrossRef] [PubMed]
- Posuwan, N.; Payungporn, S.; Tangkijvanich, P.; Ogawa, S.; Murakami, S.; Iijima, S.; Matsuura, K.; Shinkai, N.; Watanabe, T.; Poovorawan, Y. Genetic association of human leukocyte antigens with chronicity or resolution of hepatitis B infection in thai population. PLoS ONE 2014, 9, e86007. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, D.; He, Y.; Wang, M.; Wen, Z.; Liu, L.; Yao, J.; Matsuda, K.; Nakamura, Y.; Yu, J. Associations of HLA-DP variants with hepatitis B virus infection in southern and northern Han Chinese populations: a multicenter case-control study. PLoS ONE 2011, 6, e24221. [Google Scholar] [CrossRef] [PubMed]
- O’brien, T.; Kohaar, I.; Pfeiffer, R.; Maeder, D.; Yeager, M.; Schadt, E.; Prokunina-Olsson, L. Risk alleles for chronic hepatitis B are associated with decreased mRNA expression of HLA-DPA1 and HLA-DPB1 in normal human liver. Genes Immun. 2011, 12, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Cheng, L.; Badner, J.A.; Chen, C.; Chen, Q.; Luo, W.; Craig, D.W.; Redman, M.; Gershon, E.S.; Liu, C. Genetic control of individual differences in gene-specific methylation in human brain. Am. J. Hum. Genet. 2010, 86, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Kong, B.; Luo, X.; Xu, Y.; Dai, M.; Jiang, S. Study on the association between maternal-infantile vertical transmission of hepatitis B virus and human leukocyte antigen DR gene domain. Zhonghua Fu Chan Ke Za Zhi 2003, 38, 599–603. [Google Scholar] [PubMed]
- Martinetti, M.; Pacati, I.; Cuccia, M.; Badulli, C.; Pasi, A.; Salvaneschi, L.; Minola, E.; de Silvestri, A.; Iannone, A.; Maccabruni, A. Hierarchy of baby-linked immunogenetic risk factors in the vertical transmission of hepatitis C virus. Int. J. Immunopathol. Pharmacol. 2005, 19, 369–378. [Google Scholar]
- Bosi, I.; Ancora, G.; Mantovani, W.; Miniero, R.; Verucchi, G.; Attard, L.; Venturi, V.; Papa, I.; Sandri, F.; Dallacasa, P. HLA DR13 and HCV vertical infection. Pediatr. Res. 2002, 51, 746–749. [Google Scholar] [CrossRef] [PubMed]
- Mbarek, H.; Ochi, H.; Urabe, Y.; Kumar, V.; Kubo, M.; Hosono, N.; Takahashi, A.; Kamatani, Y.; Miki, D.; Abe, H. A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum. Mol. Genet. 2011, 20, 3884–3892. [Google Scholar] [CrossRef] [PubMed]
- Al-Qahtani, A.A.; Al-Anazi, M.R.; Abdo, A.A.; Sanai, F.M.; Al-Hamoudi, W.; Alswat, K.A.; Al-Ashgar, H.I.; Khalaf, N.Z.; Eldali, A.M.; Viswan, N.A. Association between HLA variations and chronic hepatitis B virus infection in Saudi Arabian patients. PLoS ONE 2014, 9, e80445. [Google Scholar]
- Zhang, X.; Jia, J.; Dong, J.; Yu, F.; Ma, N.; Li, M.; Liu, X.; Liu, W.; Li, T.; Liu, D. HLA-DQ polymorphisms with HBV infection: Different outcomes upon infection and prognosis to lamivudine therapy. J. Viral Hepat. 2014, 21, 491–498. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191. [Google Scholar]
- Puoti, C.; Guarisco, R.; Bellis, L.; Spilabotti, L. Diagnosis, management, and treatment of hepatitis C. Hepatology 2009, 50, 322–322. [Google Scholar] [CrossRef] [PubMed]
- Bellentani, S.; Pozzato, G.; Saccoccio, G.; Crovatto, M.; Croce, L.; Mazzoran, L.; Masutti, F.; Cristianini, G.; Tiribelli, C. Clinical course and risk factors of hepatitis C virus related liver disease in the general population: report from the Dionysos study. Gut 1999, 44, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Bhattacherjee, V.; Prescott, L.; Pike, I.; Rodgers, B.; Bell, H.; El-Zayadi, A.; Kew, M.; Conradie, J.; Lin, C.; Marsden, H. Use of NS-4 peptides to identify type-specific antibody to hepatitis C virus genotypes 1, 2, 3, 4, 5 and 6. J. Gen. Virol. 1995, 76, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, M.; Xu, K.; Wu, M.-P.; Han, Y.-P.; Huang, P.; Peng, Z.-H.; Wang, J.; Su, J.; Yu, R.-B.; Li, J.; et al. Human Leukocyte Antigen Class II Alleles Are Associated with Hepatitis C Virus Natural Susceptibility in the Chinese Population. Int. J. Mol. Sci. 2015, 16, 16792-16805. https://doi.org/10.3390/ijms160816792
Yue M, Xu K, Wu M-P, Han Y-P, Huang P, Peng Z-H, Wang J, Su J, Yu R-B, Li J, et al. Human Leukocyte Antigen Class II Alleles Are Associated with Hepatitis C Virus Natural Susceptibility in the Chinese Population. International Journal of Molecular Sciences. 2015; 16(8):16792-16805. https://doi.org/10.3390/ijms160816792
Chicago/Turabian StyleYue, Ming, Ke Xu, Meng-Ping Wu, Ya-Ping Han, Peng Huang, Zhi-Hang Peng, Jie Wang, Jing Su, Rong-Bin Yu, Jun Li, and et al. 2015. "Human Leukocyte Antigen Class II Alleles Are Associated with Hepatitis C Virus Natural Susceptibility in the Chinese Population" International Journal of Molecular Sciences 16, no. 8: 16792-16805. https://doi.org/10.3390/ijms160816792
APA StyleYue, M., Xu, K., Wu, M. -P., Han, Y. -P., Huang, P., Peng, Z. -H., Wang, J., Su, J., Yu, R. -B., Li, J., & Zhang, Y. (2015). Human Leukocyte Antigen Class II Alleles Are Associated with Hepatitis C Virus Natural Susceptibility in the Chinese Population. International Journal of Molecular Sciences, 16(8), 16792-16805. https://doi.org/10.3390/ijms160816792