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Abstract: Presently, 151 widely-diverse pyridinylimidazole-based compounds that show 

inhibitory activities at the TNF-α release were investigated. By using the distance 

comparison technique (DISCOtech), comparative molecular field analysis (CoMFA), and 

comparative molecular similarity index analysis (CoMSIA) methods, the pharmacophore 

models and the three-dimensional quantitative structure-activity relationships (3D-QSAR) 

of the compounds were explored. The proposed pharmacophore model, including two 

hydrophobic sites, two aromatic centers, two H-bond donor atoms, two H-bond acceptor 

atoms, and two H-bond donor sites characterizes the necessary structural features of  

TNF-α release inhibitors. Both the resultant CoMFA and CoMSIA models exhibited 

satisfactory predictability (with Q2 (cross-validated correlation coefficient) = 0.557,  

R2
ncv (non-cross-validated correlation coefficient) = 0.740, R2

pre (predicted correlation 

coefficient) = 0.749 and Q2 = 0.598, R2
ncv = 0.767, R2

pre = 0.860, respectively). Good 

consistency was observed between the 3D-QSAR models and the pharmacophore model  

that the hydrophobic interaction and hydrogen bonds play crucial roles in the mechanism  
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of actions. The corresponding contour maps generated by these models provide more diverse 

information about the key intermolecular interactions of inhibitors with the surrounding 

environment. All these models have extended the understanding of imidazole-based 

compounds in the structure-activity relationship, and are useful for rational design and  

screening of novel 2-thioimidazole-based TNF-α release inhibitors. 

Keywords: imidazoles; TNF-α; inhibitor; 3D-QSAR; CoMFA; CoMSIA; DISCOtech; 

pharmacophore 

 

1. Introduction 

Chronic inflammatory diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis, are highly 

debilitating sicknesses affecting a large segment of the population. Recently, it has become obvious that 

even metabolic diseases (such as type II diabetes) and cardiovascular disease (such as atherosclerosis) 

should also be considered to be inflammatory in nature [1]. Thus, it is not surprising that huge efforts 

are constantly focused on the development of anti-inflammatory drugs. The progress of chronic 

inflammation is driven by an amplified systemic occurrence of several proinflammatory cytokines,  

like tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), which are produced in response to 

infection and other cellular stresses [2]. Although an appropriate amount of TNF-α plays an important 

role in the host immune response, excess levels are thought to underlie a number of serious inflammatory 

diseases [3,4]. Recent clinical data, obtained with either chimeric TNF-α antibodies or soluble TNF-α 

receptor in the treatment of rheumatoid arthritis and Crohn’s disease, have confirmed the key role of 

TNF-α in these inflammatory disorders [5–9]. Antagonism of these proinflammatory cytokines has been 

recognized as an effective possibility for the treatment of inflammatory conditions [10]. 

Though the complete biochemical pathway for the production of TNF-α and IL-1β in response to 

inflammatory stimuli has not been elucidated yet, p38 mitogen-activated protein kinase (p38, p38 

MAPK) has been demonstrated to play a central role in the inflammatory process [1,11]. P38 MAP 

kinases, first identified and cloned by Han et al. in 1994 as an important moiety of the immune response 

machinery activated by cytokines [12,13], were triggered by multiple extracellular stimuli, including 

stress signals, such as lipopolysaccharide (LPS), osmotic or heat shock, and proinflammatory cytokines, 

such as TNF-α or IL-1β [14,15]. Research results have shown that after the activation of p38 MAPK, 

pro-inflammatory cytokines, such as TNF-α and IL-1β, raised in both production and release [15]. 

Inversely, p38 can also be phosphorylated upon TNF-α or IL-1β receptor binding and functions in  

the cell signaling network responsible for the up-regulation of these inflammatory mediators, both at  

the transcriptional and translational level, forming a vicious cycle in the development of inflammatory 

response [16,17]. Importantly, previous work has demonstrated that several small-molecular inhibitors 

of p38 MAP kinase, which compete with ATP for access to the catalytic site, have been shown to 

effectively block the activation of the pro-inflammatory transcription factor AP-1, which inhibits  

the transcriptional induction of TNF-α, IL-1β and other cytokines and then blocks the production and 

release of these pro-inflammatory cytokines [1,2,11]. Thus, the biological importance of p38 MAP 

kinase, related to the release of pro-inflammatory cytokines, has aroused many studies aiming at  
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the development of selective inhibitors of p38 MAP kinase for the treatment of inflammatory conditions 

resulting from excess cytokine production. 

Most of these small-molecular inhibitors of p38 MAP kinase are derived from the prototypical 

pyridin-4-ylimidazole SB203580, which definitely contributes to the identification and characterization 

of the p38 signaling pathway as a valid therapeutic target in inflammatory conditions [1,2,11].  

Presently, based on the pyridin-4-ylimidazole SB203580, Laufer et al. [2,10,18,19] have reported newer 

pyridinylimidazole inhibitors, which possess not only high p38α inhibitory activity, but also excellent 

inhibitory potency in suppression of the TNF-α release. In addition, these inhibitors have many other 

decisive advantages over prototype SB203580-like 2-arylimidazoles, e.g., higher selectivity, better 

kinetic and metabolic properties, and fewer interactions with metabolic enzymes like CYP450. 

Compared with the prototype SB203580, there are two major improvements in these newly-synthesized 

imidazole inhibitors: firstly, introduce additional substituents at the ortho position of the pyridin-4-yl 

moiety, which is sterically demanding or electronically shielding, and secondly, incorporate different 

substituents on the imidazole core, particularly the substituents at N1 and C2 positions of the imidazole, 

which might lead to improved physicochemical properties and reduced toxicity. 

During the past decades, numerous new p38 inhibitors have been synthesized and reported, and to 

explore the structure-activity relationships of the p38 inhibitors, several groups have done excellent work 

on the imidazole or pyridinylimidazole inhibitors [20–26]. However, to our best knowledge, almost no 

in silico studies on those imidazoles inhibitors involving the inhibitory activity of TNF-α release in  

the human whole blood model has been reported until now. As we know, in recent years 3D-QSAR 

methods, like comparative molecular field analysis (CoMFA) [27] and comparative molecular similarity 

indices analysis (CoMSIA) [28], have been increasingly employed in rational drug discovery processes 

to understand the drug-receptor interaction and to design new molecules [20], due to their outstanding 

advantages of time-saving, cost-reducing, as well as high efficiency in silico screening and prediction 

of candidate drugs [29–31]. 

In the present work, 151 newly-synthesized imidazoles derivatives reported [2,10,18,19] as potent 

and selective TNF-α release inhibitors were employed as a data set to carry out a series of QSAR studies 

using a combination of CoMFA, CoMSIA, and pharmacophore modeling computational methods.  

The obtained CoMFA and CoMSIA studies not only illustrate the conformation or spatial orientation of 

those imidazole derivatives, but also provide useful indicators for the design of new drug candidates  

for inflammation diseases. These results are applicable to the prediction of the activities of new TNF-α 

release inhibitors and would be of help in providing structural implications for designing potent and 

selective TNF-α release inhibitors. Furthermore, the pharmacophore model was established to understand 

the essential features required for p38 binding using DISCOtech, which could provide important 

information for understanding of the mechanism of p38 enzyme catalysis. Based on the molecular field 

information of 3D-QSAR tools and pharmacophore modeling protocols, a few strategies were proposed 

to design new molecules with improved activities. 
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2. Results and Discussion 

2.1. Split the Training and Test Sets 

In order to validate the predicting ability of the produced 3D-QSAR models, an available dataset 

should be split into the training and test sets [32]. For the prediction statistics to be reliable, the selection 

of training and test sets should satisfy the following three rules [33,34]: (1) at least five molecules must 

be included in the test set; (2) the whole molecule-points of the test set in the descriptor space should be 

close to those in the training set; and (3) the points of the training set should be distributed evenly in  

the whole space possessed by the available dataset. In the present work, the Kohonen’s self-organizing 

maps (SOM) was employed to divide the dataset. SOM, first developed by Kohonen in the 1980s, is a class 

of unsupervised neural networks widely employed in classification and similarity perception [35,36].  

It is a remarkable tool in exploring phase of data mining and has a special advantage of calculating 

various features with spatial organization to represent input signals and abstractions [37]. SOM 

generates a set of prototype vectors to represent the dataset and then maps these prototypes from the 

high-dimensional [37,38]. Taking advantage of clustering capability, SOM makes it possible that 

training and test sets are homogeneously distributed in the whole descriptor space and the representative 

molecules in both sets can describe the depth of distribution of the whole molecules [39]. 

In the present work, a total of 1664 molecular descriptors were calculated for each TNF-α  

release inhibitor by Dragon (version 5.4). Then, based on these descriptors as input vectors, a SOM with 

6 × 6 neurons was generated for the dataset. Figure 1 shows the SOM for TNF-α release inhibitors,  

in which the test set is labeled in red and the training set in black, respectively. It is clear that the entire 

distribution of the molecules in the map is satisfactory and both sets present a uniform spread in  

the whole chemical space. Furthermore, the representative points in the test set are close to those in  

the training set. The above results indicate that the division of the dataset is reliable and rational. 

 

Figure 1. Self-organizing map showing the distribution of the training and test sets. The test 

set is labeled in red and the training set in black, respectively. The number equals to the 

series number of the molecules of the TNF-α release inhibitors. 
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2.2. 3D-QSAR Statistical Results 

In the present work, the ligand-based alignment was employed to overlay the whole 151 compounds. 

All subsequent CoMFA and CoMSIA models were derived using the same training (118 molecules)  

and test (33 molecules) sets. In the present study, the most potent compound 3v was chosen as a template 

to fit the remaining compounds on the common substructure (Figure 2A, shown in bold) by using  

the “align database” command in Sybyl 6.9. Figure 2A also shows three important substituents of 

compound 3v, including the R1, R2, and R3 substituents. Figure 2B shows the resulting alignment model. 

 

Figure 2. Molecular alignment of all compounds in the data set. (A) Compound 3v was used 

as a template for alignment, with the common substructure shown in bold, and three important 

substituents including the R1, R2, and R3 substituents shown in the dashed red border; and  

(B) Ligand-based alignment model of all the compounds. Molecules are colored in white for 

common C, blue for N, red for O, yellow for S, cyan for H, and green for F, respectively. 

To determine the reliability of these models, all crucial statistical parameters were analyzed here, 

including the cross-validated correlation coefficient (Q2), non-cross-validated correlation coefficient 

(R2
ncv), standard error of estimate (SEE), F-statistic values, the optimum number of components (OPN),  

as well as the predicted correlation coefficient (R2
pre). ClogP (calculated logarithm) and hydrophobic 

fields are both important parameters describing the hydrophobic property of a molecule and the ClogP 

parameter always plays a crucial role in building appropriate 3D-QSAR models, which has been 

confirmed by many earlier studies [26,40–43]. In all of these studies, the inclusion of ClogP as an 

additional descriptor added to the QSAR models led to significantly improved statistical results of the 

in silico models. Therefore, in the present study, a 3D-QSAR analysis including ClogP as an 

additional descriptor has been carried out. Table 1 summarizes the statistical results of the CoMFA 

and CoMSIA analyses. 

Table 1. Summary of CoMFA and CoMSIA results. 

PLS Statistics 
Model A Model B 

CoMFA CoMSIA CoMFA CoMSIA 

Q2 0.524 0.593 0.557 0.598 

R2
ncv 0.856 0.778 0.740 0.767 

SEE 0.323 0.399 0.432 0.409 
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Table 1. Cont. 

PLS Statistics 
Model A Model B 

CoMFA CoMSIA CoMFA CoMSIA 

F 133.655 99.117 80.388 93.091 

R2
pre 0.730 0.876 0.748 0.860 

SEP 0.588 0.541 0.564 0.538 

OPN 5 4 4 4 

Contribution 

S 0.574 0.121 0.492 0.135 

E 0.426 0.294 0.373 0.279 

H - 0.195 - 0.158 

D - 0.208 - 0.195 

A - 0.181 - 0.146 

ClogP - - 0.135 0.086 

Q2, cross-validated correlation coefficient; R2
ncv, non-cross-validated correlation coefficient; SEE, standard 

error of estimate; F, F-test value; R2
pre, predicted correlation coefficient; SEP, smallest predicted error;  

OPN, optimum number of components; S, steric hindrance; E, electric charge; H, hydrogen bond;  

D, hydrogen-bond donor; A, hydrogen bond acceptor; ClogP, calculated logarithm. 

2.2.1. CoMFA Details 

For CoMFA analysis, the steric, electrostatic, and ClogP field descriptors were fitted together in every 

possible form to build appropriate CoMFA mathematical models. Finally, the optimal model (model A), 

employing both the steric and electrostatic field descriptors, obtains a LOO cross-validated Q2 of 0.524 

with five components, indicating a proper internal predictive capacity of the model. A high correlation 

coefficient (R2
ncv) of 0.856 for the final non-cross-validated model shows self-consistency. In addition, 

other statistical results including SEE value of 0.323, and an F-test value of 133.655 all suggest that  

the CoMFA model is a reliable predictor. While a more statistically significant model (model B) was 

obtained, including ClogP as a third parameter, which has a higher cross-validated Q2 of 0.557 with four 

optimum components, a non-cross-validated R2
ncv of 0.740, a standard error of estimation of 0.432, and 

F ratio of 80.388, proving the reliability of the model. In terms of the relative contributions in model A, 

the steric and electrostatic fields account for 0.574 and 0.426, respectively. In model B, the steric and 

electrostatic fields contribute 0.492 and 0.373, respectively, while the ClogP field contributes 0.135, 

indicating that the steric property contributes a majority to the antagonist activity. 

2.2.2. CoMSIA Details 

Combined with ClogP, a total of six parameters (steric, electrostatic, hydrophobic, H-Bond donor, 

H–Bond acceptor, and ClogP) were fitted together in every possible form to build appropriate CoMSIA 

models. Using the same training set as in the CoMFA method, two superior models, out of all the CoMSIA 

models established, were obtained with high Q2 values using all the five fields (steric, electrostatic, 

hydrophobic, H-bond donor, and H-Bond acceptor field) (Table 1). The optimal CoMSIA model (model B), 

employing the ClogP descriptor in statistical results, showed Q2 = 0.598, R2
ncv = 0.767, SEE = 0.409, 

and F = 93.091 with four optimum components. However, another superior model without a ClogP 
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index (model A) has a Q2 value of 0.593 with four optimum components, an R2
ncv value of 0.778, a SEE 

value of 0.399, and an F value of 99.117. The optimal CoMSIA model reveals that steric, electrostatic, 

hydrophobic, hydrogen bond-donor, and hydrogen bond-acceptor fields all have major influences in  

the inhibitory activity of imidazole derivatives. The corresponding field contributions of steric, electrostatic, 

hydrophobic, hydrogen bond-donor, and hydrogen bond-acceptor fields in model A were 0.121, 0.294, 

0.195, 0.208, and 0.181, respectively, and in model B were 0.135, 0.279, 0.158, 0.195, and 0.146, 

respectively. Once again, the steric and electrostatic fields are demonstrated to contribute a lot to model B 

(with a sum of about 0.414 contribution). However, at this time, the hydrogen bond (H-Bond) descriptors, 

especially the H-bond fields, outstand their roles for correlation with the inhibitory activity, where the donor 

field possesses about 0.195 and the acceptor field occupies about 0.146 of relative contributions. 

Moreover, the contribution of the hydrophobic field is found to be about 0.158, while ClogP demonstrates 

a slight contribution of 0.086, suggesting a good correlation between the hydrophobic descriptor and their 

TNF-α release inhibitory activities. All of these conclusions can be verified in other studies on the p38 

MAPK complexes that the effect of hydrogen bonding, steric and hydrophobic fields could be important 

for the inhibitory activity of imidazole and quinazoline functionalized inhibitors [21,26,44]. 

According to the above analysis, the predictive ability of both 3D-QSAR models for A are not good 

enough when compared with that of model B. Hence, the models including the ClogP parameter were 

selected as the optimal models and were utilized for further discussion. 

2.2.3. Validation of the 3D QSAR Models 

To test the predictive ability of the models, the most appropriate method is to predict the activities of 

molecules excluded from the training set. For this purpose, the test set (33 molecules) which accounts 

for 28% of the training set, was used here to validate the accuracy of models A and B. We should identify 

possible outliers first before the final validation by the test set. Outliers from a QSAR are compounds 

that do not fit the model or are poorly predicted [45]. QSAR models that have very few or no outliers 

are known as good models. On the other hand, those QSAR models that have a large number of outliers 

are bad models. Many reasons may account for the presence of outliers in the dataset used for in silico 

modeling, including unique structural differences, different binding conformation, or a higher residual 

between the observed and predicted biological activity of an inhibitor [46,47]. 

However, the removal of outliers will be allowed for the development of stronger and more significant 

models and the outlier test is, therefore, reasonable and necessary in the derived models. There are  

a variety of methods to highlight outliers, including identifying those compounds with significantly high 

residuals from regression-based techniques. At present, the proposed models (CoMFA and CoMSIA) 

are checked to identify possible outliers. It can be observed that no residuals in both training and test 

sets are more than 1.5 log units, illustrating that the CoMFA and CoMSIA models are both robust and 

predictive. Thus, it is reasonable to consider that there are no outliers in the present models. 

After outlier testing, both CoMFA and CoMSIA models in model B exhibit good prediction ability, 

yielding R2
pre of 0.748 for CoMFA and 0.860 for CoMSIA, respectively. The plot of actual versus predicted 

activities of all compounds for the optimal CoMFA and CoMSIA models is depicted in Figure 3A,B, 

respectively, where the data points are rather uniformly distributed around the regression line, indicating 

the reasonability of the obtained models. 
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Figure 3. The correlation plots of the predicted pIC50 values versus the observed pIC50 

values using the training set and the test set based on (A) CoMFA model and (B) CoMSIA 

model. The solid lines are the regression lines for the fitted and predicted bioactivities of 

training and test compounds, respectively. (more detail in Table S1). 

2.3. Interpretation of 3D-QSAR Contour Maps 

After consideration of both the internal and external predictive powers of all the derived models,  

the best CoMFA and CoMSIA models are selected to construct the standard deviation  coefficient 

(StDev*Coeff) contour maps to view the field effects on the target features. All contour maps obtained 

from the models are illustrated together with the most potent compound 3v (Figure 4A). In order to 

select appropriate contour levels for each feature, the resulting histograms of actual field values were 

analyzed, and a contour level was chosen interactively as those that produce the best interpretable 

contour plot. 

 

Figure 4. CoMFA StDev*Coeff contour plots. (A) Steric (green/yellow) contour map in 

combination with compound 3v in ball and stick. Green contours indicate regions where 

bulky groups increase the activity; yellow contours indicate regions where bulky groups 

decrease the activity; and (B) Electrostatic contour map (red/blue) in combination with 

compound 3v. Red contours indicate regions where negative charges increase the activity; 

blue contours indicate regions where positive charges increase the activity. 
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Figure 4A depicts the CoMFA steric contour map of the optimal model with compound 3v overlaid. 

In this map, the green (sterically-favorable) and yellow (sterically-unfavorable) contours represent 80% 

and 20% level contributions, respectively. The green contour region around ring C (R1 substituent) 

indicates that a bulky substituent is preferred in this position to produce higher inhibitory activity. 

Compounds with high potency such as 30h, 3v, and 3w have sterically-favoured groups at the R1 position 

occupying the big green contour. However, due to the absence of such groups in the sterically-favoured 

green areas, compounds 5k, 5i, and 5f show much lower activity. There are large yellow contours near 

the green contour region, which suggests that substitution of too bulky a group at R1 substituent would 

lead to a decrease in activity, such as compounds 22j and 46 (with C11H16 and C14H20O at the R1 

substituent position, respectively). In addition, a medium-sized yellow contour is seen in the vicinity of 

the OH (R3 substituent), which suggests that occupancy of this sterically-unfavorable region with bulky 

substituent would have a detrimental effect on the inhibitory activity. This discovery is well illustrated 

by the example that compound 1b with –CH(COOCH2CH3)2, 1e with –CH2CH2CH2COOCH3, and 1f 

with –CH2COOCH3 at the R3 substituent have much lower activity than any other compound with 

smaller substituent at the same location, like 1a with –CH2CH(OH)CH2OH, 1c with –CH2CH2CH2OH, 

and 1d with –CH2CH2OH. 

The CoMFA electrostatic contour map is shown in Figure 4B. The blue (electropositive groups are 

favorable) and red (electronegative groups are favorable) contours represent 80% and 20% level 

contributions, respectively. The blue contour around the 2-position of ring C (R1 and R2 substituents) 

indicates that substitutions with positively-charged groups are favored for inhibitory activity. This is in 

agreement with the experimental findings, such as the order of activity for those compounds: 22b 

(C9H13N) > 5g (C6H7N) > 33b (C9H12O). Compound 1d has a higher activity when compared to 1e, 

explaining why a large blue contour exists near the 2-position of ring A. In addition, some red contours are 

observed around ring A, ring B, and ring C, which indicates that electronegative groups would be favorable. 

The electrostatic contour map of the CoMSIA model is displayed in Figure 5B. The blue (electropositive 

groups are favorable) and red (electronegative groups are favorable) contours represent 80% and 20% 

level contributions, respectively. A red region is observed near the 2-position of ring A (R3 substituent), 

suggesting that substitution with negatively-charged group would increase the inhibitory activity.  

Due to the presence of electronegative groups (–CH2CH2OH) at the 2-position of ring A, compounds 

3v, 3w, and 3u show dramatic increases in activity, which implies that there may exist important 

hydrogen bond interactions with those groups. In addition, a large red contour near the R2 substituent 

indicates substitution with a negatively-charged group is favored for inhibitory activity. This discovery is  

well-illustrated by the example that compound 1d has a higher activity than 1c. The location of blue 

contours is similar to the previous CoMFA model, which is thus not specified here. 

The CoMSIA contour map of hydrophobic contribution is described in Figure 5C. In this figure,  

the yellow (hydrophobic groups are favorable) and white (hydrophobic groups are unfavorable) contours 

represent 80% and 20% level contributions, respectively. A big yellow contour is observed around  

the 2-position of ring C (R1 substituent), suggesting this region’s taste for hydrophobic substituents.  

The fact that compounds with high activity, like 22f, 22g, 28l, 35b, and 35d, all have bulky hydrophobic 

substituents at R1 position (occupying the yellow contours) well illustrates this conclusion. Whereas,  

a medium-sized white contour at the 2-position of ring C (R2 substituent) and another two at the left of 

R1 substituent indicate hydrophilic substituents groups (like hydroxy or amido) are favorable for activity. 
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Hence, substitution of bulky hydrophobic moieties with small polar groups on the left extended to  

the large yellow and medium-sized white regions resulting in a higher inhibitory activity, which can be 

exemplified by the higher activity of chemical 30 (with C12H16O2), 20 (with C11H14O2), 31 (with 

C10H12O2), and 5 (with C9H10O2) than their analog compound 18 (with C11H14O). 

 

Figure 5. CoMSIA StDev*Coeff (A) steric; (B) electrostatic; (C) hydrophobic; (D) H-bond 

donor and (E) H-bond acceptor contour maps. The color code is as follows: (A) green and 

yellow contours indicate favorable and unfavorable bulky groups, respectively; (B) blue and 

red contours indicate favorable and unfavorable electropositive groups, respectively; (C) 

yellow and white contours indicate favorable and unfavorable hydrophobic groups, respectively; 

(D) cyan and purple contours indicate favorable and unfavorable H-bond donor groups, 

respectively; (E) magenta and red contours indicate favorable and unfavorable H-bond acceptor 

groups, respectively. The compound 3v in ball and stick is displayed as a reference. 

The CoMSIA contour map of H-bond donor contribution is described in Figure 5D. In this figure,  

the cyan (H-bond donor groups are favorable) and purple (H-bond donor groups are unfavorable) 

contours represent 80% and 20% level contributions, respectively. A small cyan contour map near  

the R1 substituent suggests that the presence of strong electropositive H-bond donors in these regions is 

favorable for the biological activity. There is a large purple contour map observed around ring C, 

suggesting its unfavorable effect on the H-bond donor groups. There is another purple contour observed 

near the R3 substituent suggesting an H-bond donor moiety located near these regions will result in 

impaired biological activity. 
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The H-bond acceptor contour map of the CoMSIA model is displayed in Figure 5E. The magenta  

(H-bond acceptor groups are favorable) and red (H-bond acceptor groups are unfavorable) contours 

represent 80% and 20% level contributions, respectively. A large magenta contour is seen in the vicinity 

of the OH, which suggests that substitution with a H-bond acceptor group would increase the inhibitory 

activity. Furthermore, a medium-sized magenta contour map appears near the R1 substituent, which is 

consistent with the findings revealed by the H-bond donor contour map. A relatively larger red contour 

map near the 2-position of ring A implies that H-bond donor groups could have a positive influence on 

the inhibitory activity. 

2.4. Pharmacophore Modeling 

Presently, 100 highly active compounds participated in the establishment of the pharmacophore 

model in order to identify the features required for TNF-α release inhibitors because of their structural 
diversity and high activity. The most active compound, 3v, was selected as the reference molecule for 

the pharmacophore model. The maximum number of conformers generated for each compound was 50, 

and seven conformers were then selected. In total, eight models were generated using the most active 

100 antagonists, and the statistic results of pharmacophore modeling by Distance Comparisons technique 

(DISCOtech) are listed in Table 2. Ten features were searched for all eight obtained models, and all 

molecules matched with the obtained models. In general, the DISCOtech pharmacophore model with  

a relatively high score, more useful features, and moderate pairwise tolerance would be selected as  

the best model. As depicted in Figure 6A,B, Model_006 was selected as the best model for subsequent 

studies because of its highest score value (4.1075) and useful features of a higher diversity compared 

with others. 

Table 2. Number of models obtained along with the pharmacophoric features and tolerance 

values for each of the DISCO pharmacophoric. 

Model Size a Hits b Score c Tolerance d Dmean e 

MODEL_006 10 100 4.1075 0.25 4.5615 
MODEL_003 10 100 4.1015 0.50 4.5264 
MODEL_008 10 100 4.1015 0.50 4.5263 
MODEL_007 10 100 3.4537 0.50 3.7971 
MODEL_005 10 100 3.4526 0.25 3.7925 
MODEL_001 10 100 3.4517 0.25 3.789 
MODEL_004 10 100 3.4517 0.25 3.789 
MODEL_002 10 100 3.4516 0.25 3.7885 

a, SIZE, number of features in the model; b, HITS, number of molecules that matched during the research;  
c, SCORE, an overall measure of fit and of overlap for the entire collection of structure; d, TOLERANCE,  

initial tolerance setting (from 0.25 to 2.5); e, DMEAN, average inter-point distance. 

The DISCOtech model with the alignment of 100 molecules is presented in Figure 6B. All aligned 

conformers represent stochastic conformations of the molecules and the final alignment shows a satisfactory 

superimposition of the pharmacophoric points. Figure 6A shows the features arrangement of the optimal 

pharmacophore model (model_006) obtained with a highest score of 4.1075 and tolerance distance of 

0.25 Å. Clearly, the model consists of ten essential features required for high receptor binding affinity, 
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defined as two hydrophobic sites (HP1 and HP2), two aromatic centers (AR1 and AR2), two H-bond 

donor atoms (DA1 and DA1), two H-bond acceptor atoms (AA1 and AA2), and two H-bond donor sites 

(DS1 and DS2). 

 

Figure 6. Pharmacophore model of DISCOtech. (A) Model_006 with ten features generated 

presented in template molecule 3v (B) Alignment of 100 molecules. AR represents aromatic 

center; HP refers to hydrophobic center; DA and AA are short for H-bond donor and acceptor 

atom, respectively; DS and AS refer to H-bond donor site and H-bond acceptor site, respectively. 

Molecules are colored in yellow and white for common C, blue for N, red for O, cyan for H, 

and green for F, respectively. 

The pharmacophoric feature points and the distances between pharmacophore features are presented 

in Figure 7 and Table 3, respectively. The distance between HP1&AR1 in ring A and HP2&AR2 in ring 

C is 5.05 ± 0.25 Å, and the hydrophobic ring centers or aromatic centers revealed by this model indicate 

that hydrophobic interaction has important roles in the action mechanism between inhibitors and the 

TNF-α release inhibitory activity. Moreover, the nitrogen atom at the 3-position of ring A corresponds 

to the DA1 and AA1 features of the model, with the DS1 representing its counterpart on the putative 

receptor. Similarly, the nitrogen atom at the 1-position of ring C also corresponds to the DA2 and AA2 

features, with the DS2 representing its counterpart on the putative receptor. The distance between those 

features are: 12.16 ± 0.25 Å (DS1 and DS2), 3.00 ± 0.25 Å (DS1 and DA1&AA1), 9.20 ± 0.25 Å (DS1 

and DA2&AA2), 16.41 ± 0.25 Å (DA1&AA1 and DA2&AA2), 9.41 ± 0.25 Å (DA1&AA1 and DS2), 

3.00 ± 0.25 Å (DA2&AA2 and DS2). Those important hydrogen bond-donor and hydrogen bond-acceptor 

features corresponding to H-bond interactions also play an important role in the improvements of the activity 

of TNF-α release inhibitors. Closer inspection of the pharmacophore model reveals that the hydrogen 

bond-donor and hydrogen bond-acceptor results are in agreement with the results from the previously 

reported study results that three important H-bonds were formed with N atom of imidazole (ring A) and 

4-pyridyl (ring C): H-bonds (1) between Lys53 and imidazole N3; (2) between the 4-pyridyl N (ring C) 

and Met109N; and (3) between the 4-pyridyl N (ring C) and Gly110N [26]. All of the features are 
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mapped perfectly for the highly active compounds, whereas the features of inactive compounds are not 

mapped well. In conclusion, our pharmacophore results reveal that hydrophobic interaction and 

hydrogen bonds are the crucial factors acting on TNF-α release inhibitory activity, which is also 

consistent with the 3D-QSAR models. 

 

Figure 7. Pharmacophoric features and their distance relation generated by DISCOtech 

module, AR represents aromatic center; HP refers to hydrophobic center; DA and AA are 

short for H-bond donor and acceptor atom, respectively; DS and AS refer to H-bond donor 

site and H-bond acceptor site, respectively. 

Table 3. Relative intramolecular distances between pharmacophoric feature points for model_006 (Å). 

Domain DS1 DA1/AA1 HP1/AR1 HP2/AR2 AA2/DA2 

DA1/AA1 3.00 ± 0.25 – – – – 
HP1/AR1 4.12 ± 0.25 1.12 ± 0.25 – – – 
HP2/AR2 7.87 ± 0.25 5.05 ± 0.25 4.05 ± 0.25 – – 
AA2/DA2 9.20 ± 0.25 6.41 ± 0.25 5.41 ± 0.25 1.37 ± 0.25 – 

DS2 12.16 ± 0.25 9.41 ± 0.25 8.41 ± 0.25 4.37 ± 0.25 3.00 ± 0.25 

AR represents aromatic center; HP refers to hydrophobic center; DA and AA are short for H-bond donor and 

acceptor atom, respectively; DS and AS refer to H-bond donor site and H-bond acceptor site, respectively. 

3. Experimental Section 

3.1. Dataset and Biological Activity 

A total of 151 2-thioimidazoles were used as the data set to derive the 3D-QSAR models in this work, 

with a wide spectrum of activity values against TNF-α release collected from the work of Stefan A. Laufer 

and co-workers [2,10,18,19]. The in vitro biological activities of these compounds were converted into 

the corresponding pIC50 (−log IC50) values, which were used as dependent variables in the in silico 

analyses. All the structures and biological activities of the data set are listed in Table S2. In an 

approximate ratio of 4:1 the whole data set was divided into training (118) and test (33 molecules) sets 

by using Kohonen’s self-organizing maps (SOM). In order to classify the dataset, a neural network 

mapped all the points in a high-dimensional space into a two dimensional space. In this two dimensional 

Kohonen map, the same neurons or neurons near to each other were occupied by data with similar input. 
   



Int. J. Mol. Sci. 2015, 16 20131 

 

 

3.2. Molecular Modeling and Alignment Procedure 

All molecular modeling and 3D-QSAR studies were performed using the Sybyl 6.9 molecular 

modeling software package (Tripos Associates, St. Louis, MO, USA). Partial atomic charges were 

calculated by the Gasteiger-Huckel method [48], while energy minimization and conformational search 

were performed using Tripos molecular mechanics force field [49] by conjugating method with a convergence 

criterion of 0.001 kcal/mol. The energy gradient limit was set at 0.05 kcal/mol·Å to obtain the most 

stable conformation. The predicting ability of the produced models can be done by applying the statistical 

tests for the continuous QSAR models[50,51]. 

The structural alignment of the compounds is one of the most important and challenging steps in  

the development of a successful 3D-QSAR model [52]. Since all the compounds share a common scaffold, 

it was assumed that each molecule binds into the integrin active site in a similar mode [53]. In the present 

study, the most potent compound, 3v, was chosen as a template to fit the remaining compounds on the common 

substructure by using the “align database” command in Sybyl 6.9 (Tripos Associates, St Louis, MO,USA). 

3.3. CoMFA and CoMSIA 

Several approaches have been developed for the 3D-QSAR study and CoMFA and CoMSIA are two of 

the most popular methods. CoMFA/CoMSIA were anticipated by MTD/Minimal Topological Difference 

methods [54,55]. These two methods were recently reported in modeling degenerative diseases [56–58]. 

In order to obtain the CoMFA and CoMSIA descriptor fields, a 3D cubic lattice intersection of  

a regularly-spaced grid of 2.0 Å was generated to encompass the aligned molecules. The grid box dimensions 

were determined automatically in such a way that region boundaries were extended beyond 4 Å in each 

direction from coordinates of each molecule. In CoMFA, the steric and electrostatic fields were calculated 

separately for each molecule using a sp3 carbon atom probe with a charge of +1.0 and energy cut-off values 

of 30 kcal/mol for both steric and electrostatic fields. The probe atom was placed at each lattice point, 

and the steric and electrostatic interactions with each atom in the molecule were computed using  

the CoMFA standard scaling. 

The same grid was used for the CoMSIA field calculation as that constructed for the CoMFA field 

calculation. Five descriptors (steric, electrostatic, hydrophobic, hydrogen-bond donor and acceptor) were 

evaluated using a common probe atom with a radius of 1.0 Å, a +1 charge, hydrophobicity of +1.0, and 

H-bond donor and acceptor properties of +1.0. The contributions from these descriptors were truncated 

at 0.3 kcal/mol. Validation of the CoMSIA analysis was performed as described for CoMFA. Due to  

the different shape of the Gaussian function, CoMSIA similarity indices (AF) for molecule j with atom i 

at grid point q are calculated by Equation (1): 

Aி,
 ሺ݆ሻ ൌ െω୮୰୭ୠୣ,୩ω୧୩݁

ିఈ
మ

 (1)

where k represents the steric, electrostatic, hydrophobic, or H-bond donor or acceptor descriptor. ωprobe,k 

is the probe atom with radius 1.0 Å, charge +1, hydrophobicity +1, H-Bond donating +1, H-bond accepting 

+1; ωik is the actual value of the physicochemical property k of atom i; riq is the mutual distance between  

the probe atom at grid point q and atom i of the test molecule. The attenuation factor α was set to 0.3. 
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3.4. Partial Least Square Analysis and Statistical Validation 

To quantify the relationship between the structural parameters (CoMFA/CoMSIA interaction 

energies) and the biological activities, the Partial Least Squares (PLS) algorithm [59,60] was used.  

The CoMFA/CoMSIA descriptors were used as independent variables, and pIC50 values as dependent 

variables in partial least square regression analysis. PLS is a statistical approach that generalizes and 

combines features from principal component analysis (PCA) and multiple regressions. It is particularly 

useful to predict a set of dependent variables from a large set of independent variables when the matrix 

of predictors has more variables than observations (multicollinearity). 

To evaluate the reliability of the models and determine the optimal number of components for further 

non-cross-validated analysis, cross-validations were carried out using the “leave-one-out” option (LOO), 

wherein one compound was moved away from the dataset and its activity was predicted by using  

the model derived from the rest of the dataset. A cross-validated coefficient, Q2, was subsequently obtained 

and provided as a statistical index of predictive power. The highest Q2, corresponding to the smallest 

predicted error (SEP) and the optimal number of component, was used to obtain the final QSAR model. 

Then, the non-cross-validated models were evaluated by the Pearson coefficient (R2
ncv), standard error 

of estimate (SEE), and F test ratio. Finally, the CoMFA/CoMSIA results were graphically represented 

by field contour maps, where the coefficients were generated using the field type “StDev*Coeff”. 

In order to evaluate the real predictive ability of the best models generated by the CoMFA/CoMSIA 

analyses using the same training set, the pIC50 values of test compounds are treated as the external 

validation set. The predictive ability of the model was evaluated by defining R2
pre, which was then 

obtained with the following formula: 

ܴଶ୮୰ୣ ൌ ඥሺܵܦ െ ሻܵܵܧܴܲ ⁄ܦܵ  (2)

where SD denotes the sum of squared deviation between the biological activities of the test set molecule 

and the mean activity of the training set molecules, PRESS represents the sum of squared deviations 

between the experimental and predicted activities of the test molecules. 

3.5. DISCOtech Analysis 

To identify the general pharmacophoric features the dataset was studied, at first, by the Distance 

Comparisons technique, a distance constraint pharmacophore building method. DISCOtech,  

a well-established module for designing pharmacophoric maps and frequently used in the process of 

virtual screening to discover new leads, is an enhanced, faster version of DISCO (DIStance 

Comparison) [61]. DISCOtech identifies features that could be elements in a pharmacophore model 

from a set of molecules that are related by their ability to bind to a common binding site [62]. DISCOtech, 

operating in distance space, can carry out clique detection to generate pharmacophore hypotheses for up 

to 300 conformers per molecule [63–65]. Elements considered in developing the pharmacophore model 

include hydrogen bond donor atoms, hydrogen bond acceptor atoms, hydrogen donor and acceptor site, 

charge centers, centers of mass of hydrophobic rings, aromatic rings, and positive NA (numerical 

aperture) stochastic search method was run to generate a maximum of 50 conformers for each molecule 

on the basis of maximum diversity to cover as many probable conformers as possible, and seven 
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conformers were then selected. Min 4 and Max 16 features were allowed to be found during the analysis. 

Tanimoto threshold was set as 0.85. All other parameters were retained as default values. 

4. Conclusions 

In the present work, a series of CoMFA, CoMSIA, and pharmacophore studies were performed on 

151 imidazole-based TNF-α release inhibitors (see Figure 8). Both the reliability and predictivity of  

the resultant optimal CoMFA and CoMSIA models (with Q2 = 0.557, R2
ncv = 0.740, R2

pre = 0.748 and  

Q2 = 0.598, R2
ncv = 0.767, R2

pre = 0.860, respectively) were validated by their high Q2, R2
ncv, and R2

pre values. 

The corresponding contour maps generated by these models provide more diverse information about  

the key intermolecular interactions of inhibitors with the surrounding environment. A good consistency 

was also observed between the QSAR models and pharmacophore modeling studies. To sum up,  

our findings are: 

1. Bulky substituents at R1 position may improve the inhibitory activity. 

2. Hydrophobic groups around R1 substituent are helpful to enhance the potency of the inhibitors. 

3. Electropositive groups at R3 position are beneficial to improve the biological activity of inhibitors. 

4. H-bond donor groups around ring C and acceptor groups at R3 substituent promote the inhibitory 

activity, respectively. 

5. Hydrophobic interaction and hydrogen bonds were the crucial factors acting on the inhibitory 

activity of TNF-α release. 

 

Figure 8. The interaction features of compound 3v impacting the antagonistic activity 

obtained from our present work. 

We do hope the results of the present study may provide further support to the design of imidazoles 

as potential inhibitors of TNF-α release. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1422-0067/16/09/20118/s1. 
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