Clinical Application of Targeted Next Generation Sequencing for Colorectal Cancers
Abstract
:1. Introduction
2. Next Generation Sequencing
3. Clinical Application of NGS to CRC Patients
3.1. Specimen Requirements
3.2. Gene Panels
3.3. Performance
3.4. Comparison with Other Methods
3.5. Turnaround Time (TAT)
3.6. Cost
4. Conclusions
Acknowledgments
Author contributions
Conflicts of Interest
References
- Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in europe: Estimates for 40 countries in 2012. Eur. J. Cancer 2013, 49, 1374–1403. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Cervantes, A.; Nordlinger, B.; Arnold, D. Metastatic colorectal cancer: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. Esmo consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. The History of Cancer. Available online: http://www.cancer.org/cancer/cancerbasics/thehistoryofcancer/the-history-of-cancer-cancer-treatment-chemo (accessed on 20 October 2016).
- Veale, D.; Ashcroft, T.; Marsh, C.; Gibson, G.J.; Harris, A.L. Epidermal growth factor receptors in non-small cell lung cancer. Br. J. Cancer 1987, 55, 513–516. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Targeted Cancer Therapies. Available online: http://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet (accessed on 20 October 2016).
- Ohhara, Y.; Fukuda, N.; Takeuchi, S.; Honma, R.; Shimizu, Y.; Kinoshita, I.; Dosaka-Akita, H. Role of targeted therapy in metastatic colorectal cancer. World J. Gastrointest. Oncol. 2016, 8, 642–655. [Google Scholar] [CrossRef] [PubMed]
- Lievre, A.; Bachet, J.B.; le Corre, D.; Boige, V.; Landi, B.; Emile, J.F.; Cote, J.F.; Tomasic, G.; Penna, C.; Ducreux, M.; et al. Kras mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006, 66, 3992–3995. [Google Scholar] [CrossRef] [PubMed]
- De Roock, W.; Claes, B.; Bernasconi, D.; de Schutter, J.; Biesmans, B.; Fountzilas, G.; Kalogeras, K.T.; Kotoula, V.; Papamichael, D.; Laurent-Puig, P.; et al. Effects of kras, braf, nras, and pik3ca mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol. 2010, 11, 753–762. [Google Scholar] [CrossRef]
- Sorich, M.J.; Wiese, M.D.; Rowland, A.; Kichenadasse, G.; McKinnon, R.A.; Karapetis, C.S. Extended ras mutations and anti-egfr monoclonal antibody survival benefit in metastatic colorectal cancer: A meta-analysis of randomized, controlled trials. Ann. Oncol. 2015, 26, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.; Kopetz, S.; Tie, J.; Gibbs, P.; Jiang, Z.Q.; Lieu, C.H.; Agarwal, A.; Maru, D.M.; Sieber, O.; Desai, J. Impact of braf mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer 2011, 117, 4623–4632. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, S.A.; Eide, P.W.; Nesbakken, A.; Guren, T.; Leithe, E.; Lothe, R.A. Portrait of the pi3k/akt pathway in colorectal cancer. Biochim. Biophys. Acta 2015, 1855, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Moorcraft, S.Y.; Gonzalez, D.; Walker, B.A. Understanding next generation sequencing in oncology: A guide for oncologists. Crit. Rev. Oncol. Hematol. 2015, 96, 463–474. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487, 330–337. [Google Scholar]
- Meldrum, C.; Doyle, M.A.; Tothill, R.W. Next-generation sequencing for cancer diagnostics: A practical perspective. Clin. Biochem. 2011, 32, 177–195. [Google Scholar]
- Hadd, A.G.; Houghton, J.; Choudhary, A.; Sah, S.; Chen, L.; Marko, A.C.; Sanford, T.; Buddavarapu, K.; Krosting, J.; Garmire, L.; et al. Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. J. Mol. Diagn. 2013, 15, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, C.E.; Al-Kateb, H.; Bredemeyer, A.J.; Duncavage, E.J.; Spencer, D.H.; Abel, H.J.; Lockwood, C.M.; Hagemann, I.S.; O’Guin, S.M.; Burcea, L.C.; et al. Validation of a next-generation sequencing assay for clinical molecular oncology. J. Mol. Diagn. 2014, 16, 89–105. [Google Scholar] [CrossRef] [PubMed]
- D’Haene, N.; Le Mercier, M.; de Neve, N.; Blanchard, O.; Delaunoy, M.; El Housni, H.; Dessars, B.; Heimann, P.; Remmelink, M.; Demetter, P.; et al. Clinical validation of targeted next generation sequencing for colon and lung cancers. PLoS ONE 2015, 10, e0138245. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Molecular Analysis for Therapy Choice Trial. Available online: http://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match (accessed on 20 October 2016).
- Malapelle, U.; Pisapia, P.; Sgariglia, R.; Vigliar, E.; Biglietto, M.; Carlomagno, C.; Giuffre, G.; Bellevicine, C.; Troncone, G. Less frequently mutated genes in colorectal cancer: Evidences from next-generation sequencing of 653 routine cases. J. Clin. Pathol. 2016, 69, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Jesinghaus, M.; Pfarr, N.; Endris, V.; Kloor, M.; Volckmar, A.L.; Brandt, R.; Herpel, E.; Muckenhuber, A.; Lasitschka, F.; Schirmacher, P.; et al. Genotyping of colorectal cancer for cancer precision medicine: Results from the iph center for molecular pathology. Genes Chromosome Cancer 2016, 55, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wu, H.; Wang, L.; Zhang, H.; Duan, H.; Lu, J.; Liang, Z. Validation of targeted next-generation sequencing for ras mutation detection in ffpe colorectal cancer tissues: Comparison with sanger sequencing and arms-scorpion real-time pcr. BMJ Open 2016, 6, e009532. [Google Scholar] [CrossRef] [PubMed]
- Fontanges, Q.; le Mercier, M.; de Neve, N.; Blanchard, O.; Delos, M.; Dehou Marie, F.; Maris, C.; Nagy, N.; Rousseau, E.; Vandenhove, J.; et al. O-018clinical application of targeted next generation sequencing for colorectal cancer patients: A multicentric belgian experience. Ann. Oncol. 2016, 27, 124–125. [Google Scholar]
- Tops, B.; Normanno, N.; Kurth, H.; Amato, E.; Mafficini, A.; Rieber, N.; le Corre, D.; Rachiglio, A.; Reiman, A.; Sheils, O.; et al. Development of a semi-conductor sequencing-based panel for genotyping of colon and lung cancer by the onconetwork consortium. BMC Cancer 2015, 15, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belardinilli, F.; Capalbo, C.; Buffone, A.; Petroni, M.; Colicchia, V.; Ferraro, S.; Zani, M.; Nicolussi, A.; D’Inzeo, S.; Coppa, A.; et al. Validation of the ion torrent pgm sequencing for the prospective routine molecular diagnostic of colorectal cancer. Clin. Biochem. 2015, 48, 908–910. [Google Scholar] [CrossRef] [PubMed]
- Haley, L.; Tseng, L.H.; Zheng, G.; Dudley, J.; Anderson, D.A.; Azad, N.S.; Gocke, C.D.; Eshleman, J.R.; Lin, M.T. Performance characteristics of next-generation sequencing in clinical mutation detection of colorectal cancers. Mod. Pathol. 2015, 28, 1390–1399. [Google Scholar] [CrossRef] [PubMed]
- Malapelle, U.; Vigliar, E.; Sgariglia, R.; Bellevicine, C.; Colarossi, L.; Vitale, D.; Pallante, P.; Troncone, G. Ion torrent next-generation sequencing for routine identification of clinically relevant mutations in colorectal cancer patients. J. Clin. Pathol. 2014, 68, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, L.; Sah, S.; Latham, G.J.; Patel, R.; Song, Q.; Koeppen, H.; Tam, R.; Schleifman, E.; Mashhedi, H.; et al. Profiling cancer gene mutations in clinical formalin-fixed, paraffin-embedded colorectal tumor specimens using targeted next-generation sequencing. Oncologist 2014, 19, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Froyen, G.; Broekmans, A.; Hillen, F.; Pat, K.; Achten, R.; Mebis, J.; Rummens, J.L.; Willemse, J.; Maes, B. Validation and application of a custom-designed targeted next-generation sequencing panel for the diagnostic mutational profiling of solid tumors. PLoS ONE 2016, 11, e0154038. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.Q.; Fellowes, A.; Doig, K.; Ellul, J.; Bosma, T.J.; Irwin, D.; Vedururu, R.; Tan, A.Y.; Weiss, J.; Chan, K.S.; et al. Assessing the clinical value of targeted massively parallel sequencing in a longitudinal, prospective population-based study of cancer patients. Br. J. Cancer 2015, 112, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Chevrier, S.; Arnould, L.; Ghiringhelli, F.; Coudert, B.; Fumoleau, P.; Boidot, R. Next-generation sequencing analysis of lung and colon carcinomas reveals a variety of genetic alterations. Int. J. Oncol. 2014, 45, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Han, S.W.; Kim, H.P.; Shin, J.Y.; Jeong, E.G.; Lee, W.C.; Lee, K.H.; Won, J.K.; Kim, T.Y.; Oh, D.Y.; Im, S.A.; et al. Targeted sequencing of cancer-related genes in colorectal cancer using next-generation sequencing. PLoS ONE 2013, 8, e64271. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Brusco, L.; Shaw, K.; Horombe, C.; Kopetz, S.; Davies, M.A.; Routbort, M.; Piha-Paul, S.A.; Janku, F.; Ueno, N.; et al. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J. Clin. Oncol. 2015, 33, 2753–2762. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.A.; Gonzalez, D.; Salto-Tellez, M.; Butler, R.; Diaz-Cano, S.J.; Ilyas, M.; Newman, W.; Shaw, E.; Taniere, P.; Walsh, S.V. Ras testing of colorectal carcinoma-a guidance document from the association of clinical pathologists molecular pathology and diagnostics group. J. Clin. Pathol. 2014, 67, 751–757. [Google Scholar] [CrossRef] [PubMed]
- D’Haene, N.; Le Mercier, M.; Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium. Personal communication, 2016.
Article | NGS Platform | Panel | Number of Analysed Genes | Number of Amplicons | Types of Specimen | Number of CRC Samples (Types of Samples) | DNA Quantity | Success Rate | Limit of Detection | Minimum Mean Coverage | Minimum Amplicon Coverage | Concordance with Orthogonal Methods | Cost | TAT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Malapelle et al., 2016 [20] | Ion Torrent PGM | AmpliSeq Colon and Lung Cancer Panel (CLP) V1 | 22 (hotspots) | 90 | FFPE | 653 NM | 10 ng (8 samples with < 10 ng) | 100% | 5% | NM | 100× | NM | NM | NM |
Jesinghaus et al., 2016 [21] | Ion Torrent PGM | Custom panel | 30 (hotspots) | 180 | FFPE | 202 Surgical resections: 68% Biopsies: 33% | 10 ng Min: 6 ng | 97% | NM | NM | NM | NM | NM | From sample entry to reporting Mean: 6 days (3–11 days) |
Gao et al., 2016 [22] | Ion Torrent PGM | Ion AmpliSeq Cancer Hospot Panel V2 | 50 (hotspots) | 207 | FFPE | 51 Surgical resections: 36 Biopsies: 15 | 10 ng | 100% | 1% | NM | 200× | 100% * | NM | NM |
Fontanges et al., 2016 [23] | Ion Torrent PGM | AmpliSeq Colon and Lung Cancer Panel (V1 and V2) | 22 (hotspots) | CLP v1: 90 CLP v2: 92 | FFPE | 741 Surgical resections: 390 Biopsies: 311 Cytoblock: 7 Not recorded: 33 | 10 ng | 98.1% | 4% | 500× | 250× | NM | NM | From reception of the sample to report release Mean: 8 calendar days |
Froyen et al., 2015 [29] | MiSeq | Custom Panel | 24 (hotspots) | 120 | FFPE | 40 Surgical resections: ± 50% Biopsies: ± 50% | 10–250 ng | 90% | 5% | 300× | 300× | 100% | NM | From DNA isolation to results: 3 days |
D’Haene et al., 2015 [18] | Ion Torrent PGM | AmpliSeq Colon and Lung Cancer Panel | 22 (hotspots) | 90 | FFPE | 51 Surgical resections: 44 Biopsies: 7 | 10 ng (12 cases from 0.1 to 1.5 ng) | 100% | 4% | 500× | 250× | 100% | NM | NM |
Tops et al., 2015 [24] | Ion Torrent PGM | Ampliseq Colon and Lung Cancer Panel V1 | 22 (hotspots) | 87–91 | FFPE | 59 Biopsies: up to 80% | 10 ng | 98.3% | 4% Hotspots: 2% | 500× | 500× | 100% | 130–175 euros/sample | From DNA isolation to results: 48–72 h |
Belardinilli et al., 2015 [25] | Ion Torrent PGM | Ion AmpliSeq Colon and Lung Panel (V1 and V2) Custom panel | CLP v1–v2: 22 Custom: 5 (hotspots) | CLP v1: 90 CLP v2: 92 Custom: 16 | FFPE | 66 NM | 10 ng | 100% | NM | NM | NM | 100% | 158–199 euros/sample | 4–5 working days |
Haley et al., 2015 [26] | Ion Torrent PGM | Ion AmpliSeq Cancer Hotspot Panel V2 | 50 (hotspots) | 207 | FFPE | 310 Biopsies: 49 Surgical resections: 258 FNA: 3 | 0.8–30 ng | 99.4% | 2% | NM | 150–500× | NM | NM | NM |
Wong et al., 2015 [30] | MiSeq device | TruSeq Cancer Panel (Illumina) | 48 (hotspots) | 212 | FFPE | 101 | 50 ng | 78% | 8% | 750× | 100× | 97.8% | NM | NM |
Malapelle et al., 2015 [27] | Ion Torrent PGM | AmpliSeq Colon and Lung Cancer Panel V1 | 22 (hotspots) | 90 | FFPE | 114 Surgical resections: 99 Biopsies: 15 | 10 ng | 95.6% | 5% | NM | NM | 100% * | 187.23 euros/sample | From sample entry to results: Mean: 13 working days (7–14 days) |
Chevrier et al., 2014 [31] | MiSeq | TruSeq Cancer Panel (Illumina) | 48 (hotspots) | 212 | FFPE | 10 NM | >400 ng | 100% | NM | NM | NM | 100% * | NM | NM |
Zhang et al., 2014 [28] | Ion Torrent PGM | Ion AmpliSeq Cancer Panel V1 | 46 (hotspots) | 190 | FFPE | 22 NM | 10 ng | 100% | 5% | NM | 2× | 67% | NM | NM |
Han et al., 2013 [32] | Illumina Genome Analyser IIx | Custom panel | 183 (all exons) | NM | Fresh frozen primary tumour | 60 NM | 3 µg | 100% | NM | NM | NM | 100% | NM | Sequencing results were reported within 3 weeks |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontanges, Q.; De Mendonca, R.; Salmon, I.; Le Mercier, M.; D’Haene, N. Clinical Application of Targeted Next Generation Sequencing for Colorectal Cancers. Int. J. Mol. Sci. 2016, 17, 2117. https://doi.org/10.3390/ijms17122117
Fontanges Q, De Mendonca R, Salmon I, Le Mercier M, D’Haene N. Clinical Application of Targeted Next Generation Sequencing for Colorectal Cancers. International Journal of Molecular Sciences. 2016; 17(12):2117. https://doi.org/10.3390/ijms17122117
Chicago/Turabian StyleFontanges, Quitterie, Ricardo De Mendonca, Isabelle Salmon, Marie Le Mercier, and Nicky D’Haene. 2016. "Clinical Application of Targeted Next Generation Sequencing for Colorectal Cancers" International Journal of Molecular Sciences 17, no. 12: 2117. https://doi.org/10.3390/ijms17122117
APA StyleFontanges, Q., De Mendonca, R., Salmon, I., Le Mercier, M., & D’Haene, N. (2016). Clinical Application of Targeted Next Generation Sequencing for Colorectal Cancers. International Journal of Molecular Sciences, 17(12), 2117. https://doi.org/10.3390/ijms17122117