The Role of Matrix Metalloproteinase Polymorphisms in Ischemic Stroke
Abstract
:1. Introduction
2. Background on Matrix Metalloproteinases
3. Matrix Metalloproteinase-1
Clinical Role of MMP-1 Polymorphisms
4. Matrix Metalloproteinase-2
Clinical Role of MMP-2 Polymorphisms
5. Matrix Metalloproteinase-3
Clinical Role of MMP-3 Polymorphisms
6. Matrix Metalloproteinase-9
Clinical Role of MMP-9 Polymorphisms
7. Matrix Metalloproteinase-12
Clinical Role of MMP-12 Polymorphisms
8. Conclusions
9. Future Studies of Investigation
Author Contributions
Conflicts of Interest
References
- Murphy, S.L.; Xu, J.; Kochanek, K.D.; Bastian, B.A. Deaths: Final data for 2013. Natl. Vital Stat. Rep. 2016, 64, 1–119. [Google Scholar] [CrossRef]
- Wang, J.; Ruotsalainen, S.; Moilanen, L.; Lepisto, P.; Laakso, M.; Kuusisto, J. The metabolic syndrome predicts incident stroke: A 14-year follow-up study in elderly people in finland. Stroke 2008, 39, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Koren-Morag, N.; Goldbourt, U.; Tanne, D. Relation between the metabolic syndrome and ischemic stroke or transient ischemic attack: A prospective cohort study in patients with atherosclerotic cardiovascular disease. Stroke 2005, 36, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Norby, F.L.; Jensen, P.N.; Agarwal, S.K.; Soliman, E.Z.; Lip, G.Y.; Longstreth, W.T., Jr.; Alonso, A.; Heckbert, S.R.; Chen, L.Y. Association of smoking, alcohol, and obesity with cardiovascular death and ischemic stroke in atrial fibrillation: The atherosclerosis risk in communities (ARIC) study and cardiovascular health study (CHS). PLoS ONE 2016, 11, e0147065. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.J.; Chin, S.L.; Rangarajan, S.; Xavier, D.; Liu, L.; Zhang, H.; Rao-Melacini, P.; Zhang, X.; Pais, P.; Agapay, S.; et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (interstroke): A case-control study. Lancet 2016. [Google Scholar] [CrossRef]
- Kleindorfer, D.O.; Khoury, J.; Moomaw, C.J.; Alwell, K.; Woo, D.; Flaherty, M.L.; Khatri, P.; Adeoye, O.; Ferioli, S.; Broderick, J.P.; et al. Stroke incidence is decreasing in whites but not in blacks: A population-based estimate of temporal trends in stroke incidence from the greater cincinnati/northern kentucky stroke study. Stroke 2010, 41, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Boan, A.D.; Feng, W.W.; Ovbiagele, B.; Bachman, D.L.; Ellis, C.; Adams, R.J.; Kautz, S.A.; Lackland, D.T. Persistent racial disparity in stroke hospitalization and economic impact in young adults in the buckle of stroke belt. Stroke 2014, 45, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- Ellis, C.; Boan, A.D.; Turan, T.N.; Ozark, S.; Bachman, D.; Lackland, D.T. Racial differences in poststroke rehabilitation utilization and functional outcomes. Arch. Phys. Med. Rehabil. 2015, 96, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Howard, G.; Cushman, M.; Kissela, B.M.; Kleindorfer, D.O.; McClure, L.A.; Safford, M.M.; Rhodes, J.D.; Soliman, E.Z.; Moy, C.S.; Judd, S.E.; et al. Traditional risk factors as the underlying cause of racial disparities in stroke: Lessons from the half-full (empty?) glass. Stroke 2011, 42, 3369–3375. [Google Scholar] [CrossRef] [PubMed]
- Flossmann, E.; Schulz, U.G.; Rothwell, P.M. Systematic review of methods and results of studies of the genetic epidemiology of ischemic stroke. Stroke 2004, 35, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Gijsberts, C.M.; Groenewegen, K.A.; Hoefer, I.E.; Eijkemans, M.J.; Asselbergs, F.W.; Anderson, T.J.; Britton, A.R.; Dekker, J.M.; Engstrom, G.; Evans, G.W.; et al. Race/ethnic differences in the associations of the framingham risk factors with carotid imt and cardiovascular events. PLoS ONE 2015, 10, e0132321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tattersall, M.C.; Gassett, A.; Korcarz, C.E.; Gepner, A.D.; Kaufman, J.D.; Liu, K.J.; Astor, B.C.; Sheppard, L.; Kronmal, R.A.; Stein, J.H. Predictors of carotid thickness and plaque progression during a decade: The multi-ethnic study of atherosclerosis. Stroke 2014, 45, 3257–3262. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, S.V.; Tillin, T.; Chaturvedi, N.; Hughes, A.D. Ethnic differences in associations between blood pressure and stroke in south asian and european men. Hypertension 2015, 66, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Meschia, J.F.; Brott, T.G.; Brown, R.D., Jr. Genetics of cerebrovascular disorders. Mayo Clin. Proc. 2005, 80, 122–132. [Google Scholar] [CrossRef]
- Dichgans, M. Genetics of ischaemic stroke. Lancet Neurol. 2007, 6, 149–161. [Google Scholar] [CrossRef]
- Munshi, A.; Kaul, S. Stroke genetics—Focus on PDE4D gene. Int. J. Stroke 2008, 3, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Munshi, A.; Aliya, N.; Jyothy, A.; Kaul, S.; Alladi, S.; Shafi, G. Prothombin gene G20210A mutation is not a risk factor for ischemic stroke in a south indian hyderabadi population. Thromb. Res. 2009, 124, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Munshi, A.; Sultana, S.; Kaul, S.; Reddy, B.P.; Alladi, S.; Jyothy, A. Angiotensin-converting enzyme insertion/deletion polymorphism and the risk of ischemic stroke in a South Indian population. J. Neurol. Sci. 2008, 272, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Munshi, A.; Babu, M.S.; Kaul, S.; Shafi, G.; Anila, A.N.; Alladi, S.; Jyothy, A. Phosphodiesterase 4D (PDE4D) gene variants and the risk of ischemic stroke in a South Indian population. J. Neurol. Sci. 2009, 285, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Munshi, A.; Rajeshwar, K.; Kaul, S.; Chandana, E.; Shafi, G.; Anila, A.N.; Balakrishna, N.; Alladi, S.; Jyothy, A. Vntr polymorphism in intron 4 of the enos gene and the risk of ischemic stroke in a South Indian population. Brain Res. Bull. 2010, 82, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Munshi, A.; Sharma, V.; Kaul, S.; Rajeshwar, K.; Babu, M.S.; Shafi, G.; Anila, A.N.; Balakrishna, N.; Alladi, S.; Jyothy, A. Association of the -344C/T aldosterone synthase (CYP11B2) gene variant with hypertension and stroke. J. Neurol. Sci. 2010, 296, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Abilleira, S.; Bevan, S.; Markus, H.S. The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis. J. Med. Genet. 2006, 43, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sun, J.; Li, G.; Gu, B.; Wang, X.; Chi, H.; Guo, F. Association between MMP-12-82A/G polymorphism and cancer risk: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 11896–11904. [Google Scholar] [PubMed]
- Jia, P.; Wu, N.; Zhang, X.; Jia, D. Association of matrix metalloproteinase-1-519A/G polymorphism with acute coronary syndrome: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 5675–5682. [Google Scholar] [PubMed]
- Zhang, Y.; Wang, M.; Zhang, S. Association of MMP-9 gene polymorphisms with glaucoma: A meta-analysis. Ophthalmic Res. 2016, 55, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Woessner, J.F., Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991, 5, 2145–2154. [Google Scholar] [PubMed]
- Matrisian, L.M. The matrix-degrading metalloproteinases. Bioessays 1992, 14, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Birkedal-Hansen, H.; Moore, W.G.; Bodden, M.K.; Windsor, L.J.; Birkedal-Hansen, B.; DeCarlo, A.; Engler, J.A. Matrix metalloproteinases: A review. Crit. Rev. Oral Biol. Med. 1993, 4, 197–250. [Google Scholar] [PubMed]
- Kapoor, C.; Vaidya, S.; Wadhwan, V.; Hitesh, Kaur G.; Pathak, A. Seesaw of matrix metalloproteinases (MMPS). J. Cancer Res. Ther. 2016, 12, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, G.I.; Wilhelm, S.M.; Kronberger, A.; Bauer, E.A.; Grant, G.A.; Eisen, A.Z. Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein. J. Biol. Chem. 1986, 261, 6600–6605. [Google Scholar] [PubMed]
- Hasty, K.A.; Pourmotabbed, T.F.; Goldberg, G.I.; Thompson, J.P.; Spinella, D.G.; Stevens, R.M.; Mainardi, C.L. Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases. J. Biol. Chem. 1990, 265, 11421–11424. [Google Scholar] [PubMed]
- Freije, J.M.; Diez-Itza, I.; Balbin, M.; Sanchez, L.M.; Blasco, R.; Tolivia, J.; Lopez-Otin, C. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J. Biol. Chem. 1994, 269, 16766–16773. [Google Scholar] [PubMed]
- Collier, I.E.; Wilhelm, S.M.; Eisen, A.Z.; Marmer, B.L.; Grant, G.A.; Seltzer, J.L.; Kronberger, A.; He, C.S.; Bauer, E.A.; Goldberg, G.I. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol. Chem. 1988, 263, 6579–6587. [Google Scholar] [PubMed]
- Wilhelm, S.M.; Collier, I.E.; Marmer, B.L.; Eisen, A.Z.; Grant, G.A.; Goldberg, G.I. SV40-transformed human lung fibroblasts secrete a 92-KDa type IV collagenase which is identical to that secreted by normal human macrophages. J. Biol. Chem. 1989, 264, 17213–17221. [Google Scholar] [PubMed]
- Pourmotabbed, T.; Solomon, T.L.; Hasty, K.A.; Mainardi, C.L. Characteristics of 92-KDa type IV collagenase/gelatinase produced by granulocytic leukemia cells: Structure, expression of cdna in E. coli and enzymic properties. Biochim. Biophys. Acta 1994, 1204, 97–107. [Google Scholar] [CrossRef]
- Whitham, S.E.; Murphy, G.; Angel, P.; Rahmsdorf, H.J.; Smith, B.J.; Lyons, A.; Harris, T.J.; Reynolds, J.J.; Herrlich, P.; Docherty, A.J. Comparison of human stromelysin and collagenase by cloning and sequence analysis. Biochem. J. 1986, 240, 913–916. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.; Quantin, B.; Gesnel, M.C.; Millon-Collard, R.; Abecassis, J.; Breathnach, R. The collagenase gene family in humans consists of at least four members. Biochem. J. 1988, 253, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.D.; Griffin, G.L.; Gilbert, D.J.; Jenkins, N.A.; Copeland, N.G.; Welgus, H.G.; Senior, R.M.; Ley, T.J. Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase. J. Biol. Chem. 1992, 267, 4664–4671. [Google Scholar] [PubMed]
- Shapiro, S.D.; Kobayashi, D.K.; Ley, T.J. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J. Biol. Chem. 1993, 268, 23824–23829. [Google Scholar] [PubMed]
- Sato, H.; Takino, T.; Okada, Y.; Cao, J.; Shinagawa, A.; Yamamoto, E.; Seiki, M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994, 370, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Takino, T.; Sato, H.; Shinagawa, A.; Seiki, M. Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J. Biol. Chem. 1995, 270, 23013–23020. [Google Scholar] [CrossRef] [PubMed]
- Will, H.; Hinzmann, B. cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment. Eur. J. Biochem. 1995, 231, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Puente, X.S.; Pendas, A.M.; Llano, E.; Velasco, G.; Lopez-Otin, C. Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res. 1996, 56, 944–949. [Google Scholar] [PubMed]
- Pei, D. Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. J. Biol. Chem. 1999, 274, 8925–8932. [Google Scholar] [CrossRef] [PubMed]
- Pei, D. Leukolysin/MMP25/MT6-MMP: A novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Res. 1999, 9, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Nagase, H.; Woessner, J.F., Jr. Matrix metalloproteinases. J. Biol. Chem. 1999, 274, 21491–21494. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y. Matrix-degrading metalloproteinases and their roles in joint destruction. Mod. Rheumatol. 2000, 10, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Parks, W.C. Matrix metalloproteinases in repair. Wound Repair Regen. 1999, 7, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Dunsmore, S.E.; Saarialho-Kere, U.K.; Roby, J.D.; Wilson, C.L.; Matrisian, L.M.; Welgus, H.G.; Parks, W.C. Matrilysin expression and function in airway epithelium. J. Clin. Investig. 1998, 102, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- McQuibban, G.A.; Gong, J.H.; Wong, J.P.; Wallace, J.L.; Clark-Lewis, I.; Overall, C.M. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 2002, 100, 1160–1167. [Google Scholar] [PubMed]
- Parks, W.C.; Wilson, C.L.; Lopez-Boado, Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 2004, 4, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.D.; Matrisian, L.M. The other side of mmps: Protective roles in tumor progression. Cancer Metastasis Rev. 2007, 26, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Nikkari, S.T.; O’Brien, K.D.; Ferguson, M.; Hatsukami, T.; Welgus, H.G.; Alpers, C.E.; Clowes, A.W. Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 1995, 92, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Corbin, Z.A.; Rost, N.S.; Lorenzano, S.; Kernan, W.N.; Parides, M.K.; Blumberg, J.B.; Milbury, P.E.; Arai, K.; Hartdegen, S.N.; Lo, E.H.; et al. White matter hyperintensity volume correlates with matrix metalloproteinase-2 in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2014, 23, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Inzitari, D.; Giusti, B.; Nencini, P.; Gori, A.M.; Nesi, M.; Palumbo, V.; Piccardi, B.; Armillis, A.; Pracucci, G.; Bono, G.; et al. MMP9 variation after thrombolysis is associated with hemorrhagic transformation of lesion and death. Stroke 2013, 44, 2901–2903. [Google Scholar] [CrossRef] [PubMed]
- Lenglet, S.; Mach, F.; Montecucco, F. Role of matrix metalloproteinase-8 in atherosclerosis. Mediat. Inflamm. 2013, 2013, 659282. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, E.; Rosell, A.; Penalba, A.; Slevin, M.; Alvarez-Sabin, J.; Ortega-Aznar, A.; Montaner, J. Vascular MMP-9/TIMP-2 and neuronal mmp-10 up-regulation in human brain after stroke: A combined laser microdissection and protein array study. J. Proteome Res. 2009, 8, 3191–3197. [Google Scholar] [CrossRef] [PubMed]
- Manka, S.W.; Carafoli, F.; Visse, R.; Bihan, D.; Raynal, N.; Farndale, R.W.; Murphy, G.; Enghild, J.J.; Hohenester, E.; Nagase, H. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc. Natl. Acad. Sci. USA 2012, 109, 12461–12466. [Google Scholar] [CrossRef] [PubMed]
- Conant, K.; St Hillaire, C.; Nagase, H.; Visse, R.; Gary, D.; Haughey, N.; Anderson, C.; Turchan, J.; Nath, A. Matrix metalloproteinase 1 interacts with neuronal integrins and stimulates dephosphorylation of Akt. J. Biol. Chem. 2004, 279, 8056–8062. [Google Scholar] [CrossRef] [PubMed]
- Rutter, J.L.; Mitchell, T.I.; Buttice, G.; Meyers, J.; Gusella, J.F.; Ozelius, L.J.; Brinckerhoff, C.E. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res. 1998, 58, 5321–5325. [Google Scholar] [PubMed]
- Chehaibi, K.; Hrira, M.Y.; Nouira, S.; Maatouk, F.; Ben Hamda, K.; Slimane, M.N. Matrix metalloproteinase-1 and matrix metalloproteinase-12 gene polymorphisms and the risk of ischemic stroke in a Tunisian population. J. Neurol. Sci. 2014, 342, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Ghilardi, G.; Biondi, M.L.; DeMonti, M.; Turri, O.; Guagnellini, E.; Scorza, R. Matrix metalloproteinase-1 and matrix metalloproteinase-3 gene promoter polymorphisms are associated with carotid artery stenosis. Stroke 2002, 33, 2408–2412. [Google Scholar] [CrossRef] [PubMed]
- Batra, A.; Latour, L.L.; Ruetzler, C.A.; Hallenbeck, J.M.; Spatz, M.; Warach, S.; Henning, E.C. Increased plasma and tissue MMP levels are associated with BCSFB and BBB disruption evident on post-contrast flair after experimental stroke. J. Cereb. Blood Flow Metab. 2010, 30, 1188–1199. [Google Scholar] [CrossRef] [PubMed]
- Nakaji, K.; Ihara, M.; Takahashi, C.; Itohara, S.; Noda, M.; Takahashi, R.; Tomimoto, H. Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents. Stroke 2006, 37, 2816–2823. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, G.A.; Sullivan, N.; Esiri, M.M. White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke 2001, 32, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Lucivero, V.; Prontera, M.; Mezzapesa, D.M.; Petruzzellis, M.; Sancilio, M.; Tinelli, A.; di Noia, D.; Ruggieri, M.; Federico, F. Different roles of matrix metalloproteinases-2 and -9 after human ischaemic stroke. Neurol. Sci. 2007, 28, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.W.; Krekoski, C.A.; Bou, S.S.; Chapman, K.R.; Edwards, D.R. Increased gelatinase a (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci. Lett. 1997, 238, 53–56. [Google Scholar] [CrossRef]
- Rosenberg, G.A.; Cunningham, L.A.; Wallace, J.; Alexander, S.; Estrada, E.Y.; Grossetete, M.; Razhagi, A.; Miller, K.; Gearing, A. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: Activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res. 2001, 893, 104–112. [Google Scholar] [CrossRef]
- Fatar, M.; Stroick, M.; Steffens, M.; Senn, E.; Reuter, B.; Bukow, S.; Griebe, M.; Alonso, A.; Lichtner, P.; Bugert, P.; et al. Single-nucleotide polymorphisms of MMP-2 gene in stroke subtypes. Cerebrovasc. Dis. 2008, 26, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Price, S.J.; Greaves, D.R.; Watkins, H. Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: Role of Sp1 in allele-specific transcriptional regulation. J. Biol. Chem. 2001, 276, 7549–7558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhu, W.; Yun, W.; Wang, Q.; Cheng, M.; Zhang, Z.; Liu, X.; Zhou, X.; Xu, G. Correlation of matrix metalloproteinase-2 single nucleotide polymorphisms with the risk of small vessel disease (SVD). J. Neurol. Sci. 2015, 356, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.W.; Wang, X.F.; Tang, Z.C. Correlations between MMP-2/MMP-9 promoter polymorphisms and ischemic stroke. Int. J. Clin. Exp. Med. 2014, 7, 400–404. [Google Scholar] [PubMed]
- Manso, H.; Krug, T.; Sobral, J.; Albergaria, I.; Gaspar, G.; Ferro, J.M.; Oliveira, S.A.; Vicente, A.M. Variants of the matrix metalloproteinase-2 but not the matrix metalloproteinase-9 genes significantly influence functional outcome after stroke. BMC Med. Genet. 2010. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, G.A. Matrix metalloproteinases in neuroinflammation. Glia 2002, 39, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2011, 41, 271–290. [Google Scholar] [CrossRef] [PubMed]
- Henney, A.M.; Wakeley, P.R.; Davies, M.J.; Foster, K.; Hembry, R.; Murphy, G.; Humphries, S. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc. Natl. Acad. Sci. USA 1991, 88, 8154–8158. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.K.; Rosenberg, G.A. Matrix metalloproteinases and free radicals in cerebral ischemia. Free. Radic. Biol. Med. 2005, 39, 71–80. [Google Scholar]
- Kim, S.K.; Kang, S.W.; Kim, D.H.; Yun, D.H.; Chung, J.H.; Ban, J.Y. Matrix metalloproteinase-3 gene polymorphisms are associated with ischemic stroke. J. Interf. Cytokine 2012, 32, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Rauramaa, R.; Vaisanen, S.B.; Luong, L.A.; Schmidt-Trucksass, A.; Penttila, I.M.; Bouchard, C.; Toyry, J.; Humphries, S.E. Stromelysin-1 and interleukin-6 gene promoter polymorphisms are determinants of asymptomatic carotid artery atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2657–2662. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Watts, G.F.; Mandalia, S.; Humphries, S.E.; Henney, A.M. Preliminary report: Genetic variation in the human stromelysin promoter is associated with progression of coronary atherosclerosis. Br. Heart J. 1995, 73, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Gnasso, A.; Motti, C.; Irace, C.; Carallo, C.; Liberatoscioli, L.; Bernardini, S.; Massoud, R.; Mattioli, P.L.; Federici, G.; Cortese, C. Genetic variation in human stromelysin gene promoter and common carotid geometry in healthy male subjects. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1600–1605. [Google Scholar] [CrossRef] [PubMed]
- Rundek, T.; Elkind, M.S.; Pittman, J.; Boden-Albala, B.; Martin, S.; Humphries, S.E.; Juo, S.H.; Sacco, R.L. Carotid intima-media thickness is associated with allelic variants of stromelysin-1, interleukin-6, and hepatic lipase genes: The Northern Manhattan prospective cohort study. Stroke 2002, 33, 1420–1423. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.C.; Smith, N.L.; Zucker, S.; Heckbert, S.R.; Rice, K.; Psaty, B.M. Matrix metalloproteinase-3 (MMP3) and MMP9 genes and risk of myocardial infarction, ischemic stroke, and hemorrhagic stroke. Atherosclerosis 2008, 201, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Flex, A.; Gaetani, E.; Papaleo, P.; Straface, G.; Proia, A.S.; Pecorini, G.; Tondi, P.; Pola, P.; Pola, R. Proinflammatory genetic profiles in subjects with history of ischemic stroke. Stroke 2004, 35, 2270–2275. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Eriksson, P.; Hamsten, A.; Kurkinen, M.; Humphries, S.E.; Henney, A.M. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J. Biol. Chem. 1996, 271, 13055–13060. [Google Scholar] [PubMed]
- Munshi, A.; Rajeshwar, K.; Kaul, S.; Al-Hazzani, A.; Alshatwi, A.A.; Shafi, G.; Balakrishna, N.; Jyothy, A. Association of tumor necrosis factor-α and matrix metalloproteinase-3 gene variants with stroke. Eur. J. Neurol. 2011, 18, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Sherva, R.; Ford, C.E.; Eckfeldt, J.H.; Davis, B.R.; Boerwinkle, E.; Arnett, D.K. Pharmacogenetic effect of the stromelysin (MMP3) polymorphism on stroke risk in relation to antihypertensive treatment: The genetics of hypertension associated treatment study. Stroke 2011, 42, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Matarin, M.; Brown, W.M.; Dena, H.; Britton, A.; De Vrieze, F.W.; Brott, T.G.; Brown, R.D., Jr.; Worrall, B.B.; Case, L.D.; Chanock, S.J.; et al. Candidate gene polymorphisms for ischemic stroke. Stroke 2009, 40, 3436–3442. [Google Scholar] [CrossRef] [PubMed]
- Fenhalls, G.; Geyp, M.; Dent, D.M.; Parker, M.I. Breast tumour cell-induced down-regulation of type I collagen mrna in fibroblasts. Br. J. Cancer 1999, 81, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Buraczynska, K.; Kurzepa, J.; Ksiazek, A.; Buraczynska, M.; Rejdak, K. Matrix metalloproteinase-9 (MMP-9) gene polymorphism in stroke patients. Neuromol. Med. 2015, 17, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Candelario-Jalil, E.; Thompson, J.F.; Cuadrado, E.; Estrada, E.Y.; Rosell, A.; Montaner, J.; Rosenberg, G.A. Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. J. Neurochem. 2010, 112, 134–149. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.W.; Poddar, R.; Thompson, J.F.; Rosenberg, G.A.; Yang, Y. Intranuclear matrix metalloproteinases promote DNA damage and apoptosis induced by oxygen-glucose deprivation in neurons. Neuroscience 2012, 220, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Barr, T.L.; Latour, L.L.; Lee, K.Y.; Schaewe, T.J.; Luby, M.; Chang, G.S.; El-Zammar, Z.; Alam, S.; Hallenbeck, J.M.; Kidwell, C.S.; et al. Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke 2010, 41, e123–e128. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Battey, T.W.; Pham, L.; Lorenzano, S.; Furie, K.L.; Sheth, K.N.; Kimberly, W.T. Fluid-attenuated inversion recovery hyperintensity correlates with matrix metalloproteinase-9 level and hemorrhagic transformation in acute ischemic stroke. Stroke 2014, 45, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- Montaner, J.; Molina, C.A.; Monasterio, J.; Abilleira, S.; Arenillas, J.F.; Ribo, M.; Quintana, M.; Alvarez-Sabin, J. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 2003, 107, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Zalba, G.; Fortuno, A.; Orbe, J.; San Jose, G.; Moreno, M.U.; Belzunce, M.; Rodriguez, J.A.; Beloqui, O.; Paramo, J.A.; Diez, J. Phagocytic nadph oxidase-dependent superoxide production stimulates matrix metalloproteinase-9: Implications for human atherosclerosis. Arterioscle. Thromb. Vasc. Biol. 2007, 27, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.H.; Cho, C.H.; Kim, H.O.; Jo, Y.H.; Yoon, K.S.; Lee, J.H.; Park, J.C.; Park, K.C.; Ahn, T.B.; Chung, K.C.; et al. Plaque rupture is a determinant of vascular events in carotid artery atherosclerotic disease: Involvement of matrix metalloproteinases 2 and 9. J. Clin. Neurol. 2011, 7, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, G.; Ragni, M.; Cirillo, P.; Petrillo, G.; Loffredo, F.; Chiariello, M.; Gresele, P.; Falcinelli, E.; Golino, P. C-reactive protein induces expression of matrix metalloproteinase-9: A possible link between inflammation and plaque rupture. Int. J. Cardiol. 2013, 168, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, T.; Komiyama, N.; Nishimura, S. In-vivo higher plasma levels of platelet-derived growth factor and matrix metalloproteinase-9 in coronary artery at the very onset of myocardial infarction with ST-segment elevation. Ann. Vasc. Dis. 2015, 8, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.H.; Kansal, V.; Stoupa, S.; Agrawal, D.K. MMP-1 and MMP-9 regulate epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells. Physiol. Rep. 2014, 2, e00224. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Yoneda, M.; Inaguma, S.; Watanabe, D.; Banno, S.; Yoshikawa, K.; Mizutani, K.; Iwaki, M.; Zako, M. Infliximab counteracts tumor necrosis factor-alpha-enhanced induction of matrix metalloproteinases that degrade claudin and occludin in non-pigmented ciliary epithelium. Biochem. Pharmacol. 2013, 85, 1770–1782. [Google Scholar] [CrossRef] [PubMed]
- Montaner, J.; Alvarez-Sabin, J.; Molina, C.A.; Angles, A.; Abilleira, S.; Arenillas, J.; Monasterio, J. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 2001, 32, 2762–2767. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.A.; Chan, R.W.; Chan, D.Y.; Chan, C.P.; Wong, L.K.; Rainer, T.H. Matrix metalloproteinase 9 mRNA: An early prognostic marker for patients with acute stroke. Clin. Biochem. 2012, 45, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.T.; Chen, C.H.; Tsai, P.C.; Ho, B.L.; Juo, S.H.; Lin, H.F. Sex-specific effect of matrix metalloproteinase-9 functional promoter polymorphism on carotid artery stiffness. Atherosclerosis 2012, 223, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, C.; Abilleira, S.; Sitzer, M.; Markus, H.S.; Bevan, S. Polymorphisms in MMP family and TIMP genes and carotid artery intima-media thickness. Stroke 2007, 38, 2895–2899. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Zhan, Q.; Duan, X.; Song, B.; Zeng, S.; Chen, X.; Yang, Q.; Xia, J. A functional polymorphism at miR-491-5p binding site in the 3’-UTR of MMP-9 gene confers increased risk for atherosclerotic cerebral infarction in a chinese population. Atherosclerosis 2013, 226, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Ning, M.; Furie, K.L.; Koroshetz, W.J.; Lee, H.; Barron, M.; Lederer, M.; Wang, X.; Zhu, M.; Sorensen, A.G.; Lo, E.H.; et al. Association between tPA therapy and raised early matrix metalloproteinase-9 in acute stroke. Neurology 2006, 66, 1550–1555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cao, X.; Xu, X.; Li, A.; Xu, Y. Correlation between the -1562c/t polymorphism in the matrix metalloproteinase-9 gene and hemorrhagic transformation of ischemic stroke. Exp. Ther. Med. 2015, 9, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Montaner, J.; Fernandez-Cadenas, I.; Molina, C.A.; Monasterio, J.; Arenillas, J.F.; Ribo, M.; Quintana, M.; Chacon, P.; Andreu, A.L.; Alvarez-Sabin, J. Safety profile of tissue plasminogen activator treatment among stroke patients carrying a common polymorphism (C-1562T) in the promoter region of the matrix metalloproteinase-9 gene. Stroke 2003, 34, 2851–2855. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Fernandez, M.; Bellolio, M.F.; Stead, L.G. Matrix metalloproteinase-9 as a marker for acute ischemic stroke: A systematic review. J. Stroke Cerebrovasc. Dis. 2011, 20, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Chandler, S.; Cossins, J.; Lury, J.; Wells, G. Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochem. Biophys. Res. Commun. 1996, 228, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Gronski, T.J., Jr.; Martin, R.L.; Kobayashi, D.K.; Walsh, B.C.; Holman, M.C.; Huber, M.; van Wart, H.E.; Shapiro, S.D. Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J. Biol. Chem. 1997, 272, 12189–12194. [Google Scholar] [CrossRef] [PubMed]
- Fulcher, Y.G.; van Doren, S.R. Remote exosites of the catalytic domain of matrix metalloproteinase-12 enhance elastin degradation. Biochemistry 2011, 50, 9488–9499. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Kobayashi, T.; Katoh, M.; Saito, S.; Ikeda, Y.; Kobori, M.; Masuho, Y.; Watanabe, T. Expression and localization of matrix metalloproteinase-12 in the aorta of cholesterol-fed rabbits: Relationship to lesion development. Am. J. Pathol. 1998, 153, 109–119. [Google Scholar] [CrossRef]
- Traylor, M.; Makela, K.M.; Kilarski, L.L.; Holliday, E.G.; Devan, W.J.; Nalls, M.A.; Wiggins, K.L.; Zhao, W.; Cheng, Y.C.; Achterberg, S.; et al. A novel MMP12 locus is associated with large artery atherosclerotic stroke using a genome-wide age-at-onset informed approach. PLoS Genet. 2014, 10, e1004469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jormsjo, S.; Ye, S.; Moritz, J.; Walter, D.H.; Dimmeler, S.; Zeiher, A.M.; Henney, A.; Hamsten, A.; Eriksson, P. Allele-specific regulation of matrix metalloproteinase-12 gene activity is associated with coronary artery luminal dimensions in diabetic patients with manifest coronary artery disease. Circ. Res. 2000, 86, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Joos, L.; He, J.Q.; Shepherdson, M.B.; Connett, J.E.; Anthonisen, N.R.; Pare, P.D.; Sandford, A.J. The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum. Mol. Genet. 2002, 11, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.J.; Emanuel, B.A.; Mack, W.J.; Tsivgoulis, G.; Alexandrov, A.V. Matrix metalloproteinase-9: Dual role and temporal profile in intracerebral hemorrhage. J. Stroke Cerebrovasc. Dis. 2014, 23, 2498–2505. [Google Scholar] [CrossRef] [PubMed]
MMP Studied | Polymorphism Studied | Gene Region | Population and/or Location | Findings | Transcriptional Activity | Reference |
---|---|---|---|---|---|---|
MMP-1 | -1607 (1G/2G) | Promoter | Tunisian | No difference | Increased with 2G-allele | [62] |
MMP-3 | 5A/6A | Promoter | Tunisian | 6A-allele associated with ICA atherosclerosis * | Decreased with 6A-allele | [62] |
MMP-3 | 5A/6A | Promoter | Unknown | 6A-allele associated with ICA atherosclerosis ± | Decreased with 6A-allele | [81] |
MMP-3 | -1612 (5A/ 6A) | Promoter | Hispanic, Black, and White | 6A/6A genotype associated with greater carotid atherosclerosis ± | Decreased with 6A-allele | [82] |
MMP-9 | -1562 (T/C) | Promoter | Chinese, post-menopausal women | T-allele associated with stiffer arteries ± | Increased with C-allele | [104] |
MMP-9 | R279Q (R/Q) | Coding | German | R/R genotype associated with greater mean carotid intima-media thickness * | n/a | [105] |
MMP-12 | -rs660599 | Coding | Unknown | SNP overexpressed in patients with carotid plaques * | n/a | [115] |
MMP Studied | Polymorphism Studied | Gene Region | Population and/or Location | Finding | Transcriptional Activity | Reference |
---|---|---|---|---|---|---|
MMP-1 | -1607 (1G/2G) | Promoter | Tunisian | No difference | Increased with 2G-allele | [61] |
MMP-2 | -1306 (C/T) | Promoter | Chinese | C-allele associated with leukoaraiosis * | Increased with C-allele | [71] |
MMP-2 | -1306 (C/T) | Promoter | Chinese | No difference | Increased with C-allele | [72] |
MMP-2 | -735 (C/T) | Promoter | Chinese | C-allele associated with greater incidence of IS * | Increased with C-allele | [72] |
MMP-3 | -1171 (5A/6A) | Promoter | Italian | 5A-allele associated with greater incidence of IS * | Increased with 5A-allele | [84] |
MMP-3 | -5A/6A | Promoter | Multi-racial | 6A/6A genotype associated with greater incidence of IS in patients taking lisinopril | Increased with 5A-allele | [87] |
MMP-3 | -rs520540 (G/A) | Coding | Korean | G-allele associated with greater incidence of IS | n/a | [78] |
MMP-3 | -rs520540 (G/A) | Coding | Unknown | No difference | n/a | [88] |
MMP-3 | -rs3025058 (5A/6A) | Coding | Korean | G/G and G/A genotype associated with greater incidence of IS | n/a | [78] |
MMP-3 | -rs3025058 (5A/6A) | Coding | Unknown | No difference | n/a | [88] |
MMP-3 | -rs679620 (G/A) | Coding | Korean | G-allele associated with greater incidence of IS in women only | n/a | [78] |
MMP-3 | -rs679620 (G/A) | Coding | Unknown | No difference | n/a | [88] |
MMP-3 | -rs602128 (C/T) | Coding | Korean | C-allele associated with greater incidence of IS | n/a | [78] |
MMP-9 | -rs1056628 (A/C) | Coding | Chinese | C/C genotype associated with greater incidence of IS | n/a | [106] |
MMP-9 | -1562 (C/T) | Promoter | Chinese | T/T genotype associated with greater incidence of IS * | Increased with T-allele | [72] |
MMP-12 | -rs2276109 [82] (A/G) | Promoter | Tunisian | A/A genotype associated with greater incidence of IS * | Increased with A-allele | [61] |
MMP-12 | -rs652438 [1082] (A/G) | Promoter | Tunisian | A/A genotype associated with greater incidence of IS * | Increased with A-allele | [61] |
MMP-12 | -rs660599 | Coding | Unknown | Replication of SNP associated with greater incidence of IS with large-artery mechanism * | n/a | [115] |
MMP Studied | Polymorphism Studied | Gene Region | Population and/or Location | Finding | Transcriptional Activity | Reference |
---|---|---|---|---|---|---|
MMP-2 | -rs2241145 (G/C) | Intronic | Portuguese | G-allele associated with improved clinical outcome * | n/a | [73] |
MMP-2 | -rs1992116 (G/A) | Intronic | Portuguese | G-allele associated with improved clinical outcome * | n/a | [73] |
MMP Studied | Polymorphism Studied | Gene Region | Population and/or Location | Finding | Transcriptional Activity | Reference |
---|---|---|---|---|---|---|
MMP-9 | -1562 C/T | Promoter | Chinese | C-allele associated with higher rate of HT | Increased with C-allele | [108] |
MMP-9 | -1562 C/T | Promoter | Mediterranean | No difference | Increased with C-allele | [109] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.J.; Stanfill, A.; Pourmotabbed, T. The Role of Matrix Metalloproteinase Polymorphisms in Ischemic Stroke. Int. J. Mol. Sci. 2016, 17, 1323. https://doi.org/10.3390/ijms17081323
Chang JJ, Stanfill A, Pourmotabbed T. The Role of Matrix Metalloproteinase Polymorphisms in Ischemic Stroke. International Journal of Molecular Sciences. 2016; 17(8):1323. https://doi.org/10.3390/ijms17081323
Chicago/Turabian StyleChang, Jason J., Ansley Stanfill, and Tayebeh Pourmotabbed. 2016. "The Role of Matrix Metalloproteinase Polymorphisms in Ischemic Stroke" International Journal of Molecular Sciences 17, no. 8: 1323. https://doi.org/10.3390/ijms17081323
APA StyleChang, J. J., Stanfill, A., & Pourmotabbed, T. (2016). The Role of Matrix Metalloproteinase Polymorphisms in Ischemic Stroke. International Journal of Molecular Sciences, 17(8), 1323. https://doi.org/10.3390/ijms17081323