Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines
Abstract
:1. Introduction
2. Expression, Distribution and Role of AQPs in the Stomach of Humans and Murine Rodents
2.1. Normal Physiological Conditions
2.1.1. Human Stomach
2.1.2. Murine Stomach
2.2. Pathological States
2.2.1. Chronic Gastritis
2.2.2. Gastric Cancer
3. Expression, Distribution and Role of AQPs in the Intestines of Humans and Murine Rodents
3.1. Normal Physiological States
3.1.1. Human Small Intestine
3.1.2. Murine Small Intestine
3.1.3. Human Large Intestine
3.1.4. Murine Large Intestine
3.2. Pathological States
3.2.1. Enteritis
3.2.2. Diarrhea
3.2.3. Colon Cancer and Rectal Cancer
4. Expression and Distributions of AQPs in the Stomach and Intestines of Domestic Animals
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ma, T.; Verkman, A.S. Aquaporin water channels in gastrointestinal physiology. J. Physiol. 1999, 517, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Tradtrantip, L.; Tajima, M.; Li, L.; Verkman, A.S. Aquaporin water channels in transepithelial fluid transport. J. Med. Investig. 2009, 56, 179–184. [Google Scholar] [CrossRef]
- Laforenza, U. Water channel proteins in the gastrointestinal tract. Mol. Asp. Med. 2012, 33, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Mollajew, R.; Zocher, F.; Horner, A.; Wiesner, B.; Klussmann, E.; Pohl, P. Routes of epithelial water flow: Aquaporins versus cotransporters. Biophys. J. 2010, 99, 3647–3656. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.M.; Loo, D.D. Coupling between Na+, sugar, and water transport across the intestine. Ann. N. Y. Acad. Sci. 2000, 915, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Worman, H.J.; Field, M. Osmotic water permeability of small intestinal brush-border membranes. J. Membr. Biol. 1985, 87, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Barrett, K.E. New ways of thinking about (and teaching about) intestinal epithelial function. Adv. Physiol. Educ. 2008, 32, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Stenling, R.; Rubio, C.; Lindblom, A. Differential expression of aquaporin 8 in human colonic epithelial cells and colorectal tumors. BMC Physiol. 2001, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Day, R.E.; Kitchen, P.; Owen, D.S.; Bland, C.; Marshall, L.; Conner, A.C.; Bill, R.M.; Conner, M.T. Human aquaporins: Regulators of transcellular water flow. Biochim. Biophys. Acta 2014, 1840, 1492–1506. [Google Scholar] [CrossRef] [PubMed]
- Kunzelmann, K.; Mall, M. Electrolyte transport in the mammalian colon: Mechanisms and implications for disease. Physiol. Rev. 2002, 82, 245–289. [Google Scholar] [CrossRef] [PubMed]
- Masyuk, A.I.; Marinelli, R.A.; LaRusso, N.F. Water transport by epithelia of the digestive tract. Gastroenterology 2002, 122, 545–562. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, K.; Hara, S.; Kondo, S. Aquaporin water channels in mammals. Clin. Exp. Nephrol. 2009, 13, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, T.; Tajika, Y.; Ablimit, A.; Aoki, T.; Hagiwara, H.; Takata, K. Aquaporins in the digestive system. Med. Electron. Microsc. 2004, 37, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Laforenza, U.; Gastaldi, G.; Grazioli, M.; Cova, E.; Tritto, S.; Faelli, A.; Calamita, G.; Ventura, U. Expression and immunolocalization of aquaporin-7 in rat gastrointestinal tract. Biol. Cell Auspices Eur. Cell. Biol. Org. 2005, 97, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.W. Barrier function of epithelia. Am. J. Physiol. 1981, 241, G275–G288. [Google Scholar] [PubMed]
- Zeuthen, T. Water-transporting proteins. J. Membr. Biol. 2010, 234, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Pelagalli, A.; Squillacioti, C.; Mirabella, N.; Meli, R. Aquaporins in health and disease: An overview focusing on the gut of different species. Int. J. Mol. Sci. 2016, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvin, M.N.; Kurabuchi, S.; Murdiastuti, K.; Yao, C.; Kosugi-Tanaka, C.; Akamatsu, T.; Kanamori, N.; Hosoi, K. Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide in the Brunner’s gland of the rat duodenum. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288, G1283–G1291. [Google Scholar] [CrossRef] [PubMed]
- Laforenza, U.; Gastaldi, G.; Polimeni, M.; Tritto, S.; Tosco, M.; Ventura, U.; Scaffino, M.F.; Yasui, M. Aquaporin-6 is expressed along the rat gastrointestinal tract and upregulated by feeding in the small intestine. BMC Physiol. 2009, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Laforenza, U.; Bottino, C.; Gastaldi, G. Mammalian aquaglyceroporin function in metabolism. Biochim. Biophys. Acta 2016, 1858, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ricanek, P.; Lunde, L.K.; Frye, S.A.; Stoen, M.; Nygard, S.; Morth, J.P.; Rydning, A.; Vatn, M.H.; Amiry-Moghaddam, M.; Tonjum, T. Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clin. Exp. Gastroenterol. 2015, 8, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Laforenza, U.; Miceli, E.; Gastaldi, G.; Scaffino, M.F.; Ventura, U.; Fontana, J.M.; Orsenigo, M.N.; Corazza, G.R. Solute transporters and aquaporins are impaired in celiac disease. Biol. Cell Auspices Eur. Cell. Biol. Org. 2010, 102, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Hunt, R.H.; Camilleri, M.; Crowe, S.E.; El-Omar, E.M.; Fox, J.G.; Kuipers, E.J.; Malfertheiner, P.; McColl, K.E.; Pritchard, D.M.; Rugge, M.; et al. The stomach in health and disease. Gut 2015, 64, 1650–1668. [Google Scholar] [CrossRef] [PubMed]
- Priver, N.A.; Rabon, E.C.; Zeidel, M.L. Apical membrane of the gastric parietal cell: Water, proton, and nonelectrolyte permeabilities. Biochemistry 1993, 32, 2459–2468. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Zhu, Z.; Huang, Y.; Shu, Y.; Sun, M.; Xu, H.; Zhang, G.; Guo, R.; Wei, W.; Wu, W. Expression profile of multiple aquaporins in human gastric carcinoma and its clinical significance. Biomed. Pharmacother. Biomed. Pharmacother. 2010, 64, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Marples, D. Expression of the AQP-1 water channel in normal human tissues: A semiquantitative study using tissue microarray technology. Am. J. Physiol. Cell Physiol. 2004, 286, C529–C537. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Wray, S.; Marples, D. Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J. Mol. Histol. 2005, 36, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Misaka, T.; Abe, K.; Iwabuchi, K.; Kusakabe, Y.; Ichinose, M.; Miki, K.; Emori, Y.; Arai, S. A water channel closely related to rat brain aquaporin 4 is expressed in acid- and pepsinogen-secretory cells of human stomach. FEBS Lett. 1996, 381, 208–212. [Google Scholar] [CrossRef]
- Watanabe, T.; Fujii, T.; Oya, T.; Horikawa, N.; Tabuchi, Y.; Takahashi, Y.; Morii, M.; Takeguchi, N.; Tsukada, K.; Sakai, H. Involvement of aquaporin-5 in differentiation of human gastric cancer cells. J. Physiol. Sci. 2009, 59, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Mei, W.X.; Lao, S.X.; Yu, N.; Zhou, Z.; Huang, L.P.; Hu, B. Relationship between gene expressions of aquaporin 3 and 4 and various degrees of spleen-stomach dampness-heat syndrome in chronic superficial gastritis. Zhong Xi Yi Jie He Xue Bao = J. Chin. Integr. Med. 2010, 8, 111–115. [Google Scholar] [CrossRef]
- Bodis, B.; Nagy, G.; Nemeth, P.; Mozsik, G. Active water selective channels in the stomach: Investigation of aquaporins after ethanol and capsaicin treatment in rats. J. Physiol. Paris 2001, 95, 271–275. [Google Scholar] [CrossRef]
- Zhao, G.X.; Dong, P.P.; Peng, R.; Li, J.; Zhang, D.Y.; Wang, J.Y.; Shen, X.Z.; Dong, L.; Sun, J.Y. Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system. Biotechnic Histochem. 2016, 91, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Li, J.; Liu, X.; Burnstock, G.; Xiang, Z. Expression of aquaporin-4 water channels in the digestive tract of the guinea pig. J. Mol. Histol. 2014, 45, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Tola, V.B.; Fang, P.; Soybel, D.I.; van Hoek, A.N. Partitioning of aquaporin-4 water channel mRNA and protein in gastric glands. Dig. Dis. Sci. 2003, 48, 2027–2036. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, S.; Matsuzaki, J.; Tsugawa, H.; Masaoka, T.; Miyoshi, S.; Mori, H.; Fukushima, Y.; Yasui, M.; Kanai, T.; Suzuki, H. Mucosal expression of aquaporin-4 in the stomach of histamine type 2 receptor knockout mice and Helicobacter pylori-infected mice. J. Gastroenterol. Hepatol. 2014, 29, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.S.; Komar, A.R.; Ma, T.; Filiz, F.; McLeroy, J.; Hoda, K.; Verkman, A.S.; Bastidas, J.A. Gastric acid secretion in aquaporin-4 knockout mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, G448–G453. [Google Scholar] [PubMed]
- Carmosino, M.; Mazzone, A.; Laforenza, U.; Gastaldi, G.; Svelto, M.; Valenti, G. Altered expression of aquaporin 4 and H+/K+-ATPase in the stomachs of peptide YY (PYY) transgenic mice. Biol. Cell Auspices Eur. Cell. Biol. Org. 2005, 97, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Parvin, M.N.; Tsumura, K.; Akamatsu, T.; Kanamori, N.; Hosoi, K. Expression and localization of AQP5 in the stomach and duodenum of the rat. Biochim. Biophys. Acta 2002, 1542, 116–124. [Google Scholar] [CrossRef]
- Mobasheri, A.; Shakibaei, M.; Marples, D. Immunohistochemical localization of aquaporin-10 in the apical membranes of the human ileum: A potential pathway for luminal water and small solute absorption. Histochem. Cell Biol. 2004, 121, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Misaka, T.; Matsumoto, I.; Watanabe, H.; Abe, K. Aquaporin-9 is expressed in a mucus-secreting goblet cell subset in the small intestine. FEBS Lett. 2003, 540, 157–162. [Google Scholar] [CrossRef]
- Gallardo, P.; Cid, L.P.; Vio, C.P.; Sepulveda, F.V. Aquaporin-2, a regulated water channel, is expressed in apical membranes of rat distal colon epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G856–G863. [Google Scholar] [PubMed]
- Silberstein, C.; Kierbel, A.; Amodeo, G.; Zotta, E.; Bigi, F.; Berkowski, D.; Ibarra, C. Functional characterization and localization of AQP3 in the human colon. Braz. J. Med. Biol. Res. 1999, 32, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Cohly, H.H.; Isokpehi, R.; Rajnarayanan, R.V. Compartmentalization of aquaporins in the human intestine. Int. J. Environ. Res. Public Health 2008, 5, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Hardin, J.A.; Wallace, L.E.; Wong, J.F.K.; O’Loughlin, E.V.; Urbanski, S.J.; Gall, D.G.; MacNaughton, W.K.; Beck, P.L. Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis, Crohn’s disease and infectious colitis. Cell Tissue Res. 2004, 318, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Sipponen, P.; Maaroos, H.I. Chronic gastritis. Scand. J. Gastroenterol. 2015, 50, 657–667. [Google Scholar] [PubMed]
- Zhang, S.J.; Chen, G.; Cui, Y.; Lao, S.; Lin, Y.; Chen, Z.; Cheng, Y. Expression of AQP3 gene in chronic atrophic and chronic superficial gastritis patients. JRMS 2007, 12, 286–292. [Google Scholar]
- Yang, P.; Xu, H.; Zhang, H.; Che, H.G.; Wang, J.X. The correlations between the different pathological types gastritis and the expressions of AQP3 and AQP4. J. Pract. Med. 2015, 31, 2471–2474. [Google Scholar]
- Konturek, P.C.; Konturek, S.J.; Brzozowski, T. Helicobacter pylori infection in gastric cancerogenesis. J. Physiol. Pharmacol. 2009, 60, 3–21. [Google Scholar] [PubMed]
- Wang, G.; Gao, F.; Zhang, W.; Chen, J.; Wang, T.; Zhang, G.; Shen, L. Involvement of Aquaporin 3 in Helicobacter pylori-related gastric diseases. PLoS ONE 2012, 7, e49104. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Xu, X.; Wang, Q.; Liu, Z.; Li, Z.; Liu, G. The protective effects of calcitonin gene-related peptide on gastric mucosa injury after cerebral ischemia reperfusion in rats. Regul. Pept. 2010, 160, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA: Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, G.P.; Basha, R.; Rajitha, B.; Alese, O.B.; Alam, A.; Pattnaik, S.; El-Rayes, B. Aquaporins: Their role in gastrointestinal malignancies. Cancer Lett. 2016, 373, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Shiozaki, A.; Ichikawa, D.; Otsuji, E.; Marunaka, Y. Cellular physiological approach for treatment of gastric cancer. World J. Gastroenterol. 2014, 20, 11560–11566. [Google Scholar] [CrossRef] [PubMed]
- Nico, B.; Ribatti, D. Aquaporins in tumor growth and angiogenesis. Cancer Lett. 2010, 294, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, M.C.; Saadoun, S. Key roles of aquaporins in tumor biology. Biochim. Biophys. Acta 2015, 1848, 2576–2583. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, Y.; Wen, J.; Zhao, H.; Dong, X.; Zhang, Z.; Wang, S.; Shen, L. Aquaporin 3 promotes the stem-like properties of gastric cancer cells via Wnt/GSK-3β/β-catenin pathway. Oncotarget 2016, 7, 16529–16541. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Takahashi, N.; Kurata, N.; Yamaguchi, A.; Matsui, H.; Kato, S.; Takeuchi, K. Involvement of aquaporin-1 in gastric epithelial cell migration during wound repair. Biochem. Biophys. Res. Commun. 2009, 386, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Zhou, X.Y.; Wang, H.M.; Xu, H.; Chen, J.; Lv, N.H. Aquaporin 5 promotes the proliferation and migration of human gastric carcinoma cells. Tumour Biol. 2013, 34, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.; Bolshakova, A.; Magalhaes, M.A.; Loitto, V.M.; Magnusson, K.E. Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions. PLoS ONE 2013, 8, e59901. [Google Scholar]
- Huang, Y.; Zhu, Z.; Sun, M.; Wang, J.; Guo, R.; Shen, L.; Wu, W. Critical role of aquaporin-3 in the human epidermal growth factor-induced migration and proliferation in the human gastric adenocarcinoma cells. Cancer Biol. Ther. 2010, 9, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, T.; Zhou, Y.C.; Gao, F.; Zhang, Z.H.; Xu, H.; Wang, S.L.; Shen, L.Z. Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer. J. Exp. Clin. Cancer Res. 2014, 33, 38. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, Y.; Wang, S.; Shen, L. Hyperglycemia promotes human gastric carcinoma progression via aquaporin 3. Dig. Dis. Sci. 2015, 60, 2338–2345. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gui, Z.; Deng, L.; Sun, M.; Guo, R.; Zhang, W.; Shen, L. c-Met upregulates aquaporin 3 expression in human gastric carcinoma cells via the ERK signalling pathway. Cancer Lett. 2012, 319, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yang, X.; Zhou, Y.; Zhang, W.; Wang, Y.; Wen, J.; Zhang, Z.; Shen, L. Potential role of aquaporin 3 in gastric intestinal metaplasia. Oncotarget 2015, 6, 38926–38933. [Google Scholar] [PubMed]
- Papadopoulos, M.C.; Saadoun, S.; Verkman, A.S. Aquaporins and cell migration. Pflugers Arch. Eur. J. Physiol. 2008, 456, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Hamabata, T.; Liu, C.; Takeda, Y. Positive and negative regulation of water channel aquaporins in human small intestine by cholera toxin. Microb. Pathog. 2002, 32, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, K.; Sasaki, S.; Saito, F.; Ikeuchi, T.; Marumo, F. Structure and chromosomal localization of a human water channel (AQP3) gene. Genomics 1995, 27, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, S.; Yoshida, Y.; Tani, T.; Koyama, Y.; Nihei, K.; Ohshiro, K.; Kamiie, J.I.; Yaoita, E.; Suda, T.; Hatakeyama, K.; et al. Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem. Biophys. Res. Commun. 2001, 287, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kamiie, J.; Morishita, Y.; Yoshida, Y.; Yaoita, E.; Ishibashi, K.; Yamamoto, T. Expression and localization of two isoforms of AQP10 in human small intestine. Biol. Cell Auspices Eur. Cell. Biol. Org. 2005, 97, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Koyama, Y.; Yamamoto, T.; Tani, T.; Nihei, K.; Kondo, D.; Funaki, H.; Yaoita, E.; Kawasaki, K.; Sato, N.; Hatakeyama, K.; Kihara, I. Expression and localization of aquaporins in rat gastrointestinal tract. Am. J. Physiol. 1999, 276, C621–C627. [Google Scholar] [PubMed]
- Sakai, H.; Sagara, A.; Matsumoto, K.; Hasegawa, S.; Sato, K.; Nishizaki, M.; Shoji, T.; Horie, S.; Nakagawa, T.; Tokuyama, S.; et al. 5-Fluorouracil induces diarrhea with changes in the expression of inflammatory cytokines and aquaporins in mouse intestines. PLoS ONE 2013, 8, e54788. [Google Scholar]
- Nielsen, S.; Smith, B.L.; Christensen, E.I.; Agre, P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl. Acad. Sci. USA 1993, 90, 7275–7279. [Google Scholar] [CrossRef] [PubMed]
- Purdy, M.J.; Cima, R.R.; Doble, M.A.; Klein, M.A.; Zinner, M.J.; Soybel, D.I. Selective decreases in levels of mRNA encoding a water channel (AQP3) in ileal mucosa after ileostomy in the rat. J. Gastrointest. Surg. 1999, 3, 54–60. [Google Scholar] [CrossRef]
- Elkjaer, M.L.; Nejsum, L.N.; Gresz, V.; Kwon, T.H.; Jensen, U.B.; Frokiaer, J.; Nielsen, S. Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am. J. Physiol. Ren. Physiol. 2001, 281, F1047–F1057. [Google Scholar] [CrossRef]
- Tritto, S.; Gastaldi, G.; Zelenin, S.; Grazioli, M.; Orsenigo, M.N.; Ventura, U.; Laforenza, U.; Zelenina, M. Osmotic water permeability of rat intestinal brush border membrane vesicles: Involvement of aquaporin-7 and aquaporin-8 and effect of metal ions. Biochem. Cell Biol. 2007, 85, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, T.; Tajika, Y.; Suzuki, T.; Aoki, T.; Hagiwara, H.; Takata, K. Immunolocalization of the water channel, aquaporin-5 (AQP5), in the rat digestive system. Arch. Histol. Cytol. 2003, 66, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Calamita, G.; Mazzone, A.; Bizzoca, A.; Cavalier, A.; Cassano, G.; Thomas, D.; Svelto, M. Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. Eur J. Cell. Biol. 2001, 80, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.F.; Liu, C.F.; Lai, W.F.; Xiang, Q.; Li, Z.F.; Wang, H.; Lin, N. The laxative effect of emodin is attributable to increased aquaporin 3 expression in the colon of mice and HT-29 cells. Fitoterapia 2014, 96, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, R.P.; Lin, H.H.; Zhang, W.Y.; Huang, X.L.; Huang, Z.M. Tolvaptan regulates aquaporin-2 and fecal water in cirrhotic rats with ascites. World J. Gastroenterol. 2016, 22, 3363–3371. [Google Scholar] [PubMed]
- Ramirez-Lorca, R.; Vizuete, M.L.; Venero, J.L.; Revuelta, M.; Cano, J.; Ilundain, A.A.; Echevarria, M. Localization of aquaporin-3 mRNA and protein along the gastrointestinal tract of Wistar rats. Pflugers Arch. Eur. J. Phys. 1999, 438, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Laforenza, U.; Cova, E.; Gastaldi, G.; Tritto, S.; Grazioli, M.; LaRusso, N.F.; Splinter, P.L.; D’Adamo, P.; Tosco, M.; Ventura, U. Aquaporin-8 is involved in water transport in isolated superficial colonocytes from rat proximal colon. J. Nutr. 2005, 135, 2329–2336. [Google Scholar] [PubMed]
- Ikarashi, N.; Ushiki, T.; Mochizuki, T.; Toda, T.; Kudo, T.; Baba, K.; Ishii, M.; Ito, K.; Ochiai, W.; Sugiyama, K. Effects of magnesium sulphate administration on aquaporin 3 in rat gastrointestinal tract. Biol. Pharm. Bull. 2011, 34, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Guttman, J.A.; Samji, F.N.; Li, Y.; Deng, W.; Lin, A.; Finlay, B.B. Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cell. Microbiol. 2007, 9, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.S.; Ma, T.; Filiz, F.; Verkman, A.S.; Bastidas, J.A. Colon water transport in transgenic mice lacking aquaporin-4 water channels. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, G463–G470. [Google Scholar] [PubMed]
- Tani, T.; Koyama, Y.; Nihei, K.; Hatakeyama, S.; Ohshiro, K.; Yoshida, Y.; Yaoita, E.; Sakai, Y.; Hatakeyama, K.; Yamamoto, T. Immunolocalization of aquaporin-8 in rat digestive organs and testis. Arch. Histol. Cytol. 2001, 64, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Thi, M.M.; Spray, D.C.; Hanani, M. Aquaporin-4 water channels in enteric neurons. J. Neurosci. Res. 2008, 86, 448–456. [Google Scholar] [PubMed]
- Zhao, G.; Li, J.; Wang, J.; Shen, X.; Sun, J. Aquaporin 3 and 8 are down-regulated in TNBS-induced rat colitis. Biochem. Biophys. Res. Commun. 2014, 443, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajah, J.R.; Zhao, D.; Verkman, A.S. Impaired enterocyte proliferation in aquaporin-3 deficiency in mouse models of colitis. Gut 2007, 56, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Liu, T.T.; Kung, W.M.; Chen, C.C.; Wen, Y.T.; Lin, I.C.; Huang, C.C.; Wei, L. Expression of aquaporins in intestine after heat stroke. Int. J. Clin. Exp. Pathol. 2015, 8, 8742–8753. [Google Scholar] [PubMed]
- Towne, J.E.; Krane, C.M.; Bachurski, C.J.; Menon, A.G. Tumor necrosis factor-α inhibits aquaporin 5 expression in mouse lung epithelial cells. J. Biol. Chem. 2001, 276, 18657–18664. [Google Scholar] [CrossRef] [PubMed]
- Banwell, J.G.; Pierce, N.F.; Mitra, R.C.; Brigham, K.L.; Caranasos, G.J.; Keimowitz, R.I.; Fedson, D.S.; Thomas, J.; Gorbach, S.L.; Sack, R.B.; et al. Intestinal fluid and electrolyte transport in human cholera. J. Clin. Investig. 1970, 49, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Li, F.X.; Huang, L.Z.; Dong, C.; Wang, J.P.; Wu, H.J.; Shuang, S.M. Down-regulation of aquaporin3 expression by lipopolysaccharide via p38/c-Jun N-terminal kinase signalling pathway in HT-29 human colon epithelial cells. World J. Gastroenterol. 2015, 21, 4547–4554. [Google Scholar] [PubMed]
- Ikarashi, N.; Kon, R.; Iizasa, T.; Suzuki, N.; Hiruma, R.; Suenaga, K.; Toda, T.; Ishii, M.; Hoshino, M.; Ochiai, W.; et al. Inhibition of aquaporin-3 water channel in the colon induces diarrhea. Biol. Pharm. Bull. 2012, 35, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Loos, M.; Geens, M.; Schauvliege, S.; Gasthuys, F.; van der Meulen, J.; Dubreuil, J.D.; Goddeeris, B.M.; Niewold, T.; Cox, E. Role of heat-stable enterotoxins in the induction of early immune responses in piglets after infection with enterotoxigenic Escherichia coli. PLoS ONE 2012, 7, e41041. [Google Scholar]
- Hou, Y.; Wang, L.; Yi, D.; Ding, B.; Yang, Z.; Li, J.; Chen, X.; Qiu, Y.; Wu, G. N-acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 2013, 45, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Flach, C.F.; Qadri, F.; Bhuiyan, T.R.; Alam, N.H.; Jennische, E.; Holmgren, J.; Lonnroth, I. Differential expression of intestinal membrane transporters in cholera patients. FEBS Lett. 2007, 581, 3183–3188. [Google Scholar] [CrossRef] [PubMed]
- Flach, C.-F.; Lange, S.; Jennische, E.; Lönnroth, I. Cholera toxin induces expression of ion channels and carriers in rat small intestinal mucosa. FEBS Lett. 2004, 561, 122–126. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kuramoto, H.; Kadowaki, M. Downregulation in aquaporin 4 and aquaporin 8 expression of the colon associated with the induction of allergic diarrhea in a mouse model of food allergy. Life Sci. 2007, 81, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Yang, M.; Ou, Z.; Li, D.; Geng, L.; Chen, P.; Chen, H.; Gong, S. Involvement of aquaporins in a mouse model of rotavirus diarrhea. Virol. Sin. 2014, 29, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Dicay, M.S.; Hirota, C.L.; Ronaghan, N.J.; Peplowski, M.A.; Zaheer, R.S.; Carati, C.A.; MacNaughton, W.K. Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation. PLoS ONE 2015, 10, e0118713. [Google Scholar] [CrossRef] [PubMed]
- Bottino, C.; Vazquez, M.; Devesa, V.; Laforenza, U. Impaired aquaporins expression in the gastrointestinal tract of rat after mercury exposure. J. Appl. Toxicol. 2016, 36, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Sha, S.; Liang, S.; Zhao, L.; Liu, L.; Chai, N.; Wang, H.; Wu, K. Berberine increases the expression of NHE3 and AQP4 in sennosideA-induced diarrhoea model. Fitoterapia 2012, 83, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zheng, Y.; Xu, W.; Wang, H.; Lin, N. Rhubarb tannins extract inhibits the expression of aquaporins 2 and 3 in magnesium sulphate-induced diarrhoea model. BioMed Res. Int. 2014, 2014, 619465. [Google Scholar] [CrossRef] [PubMed]
- Verkman, A.S.; Yang, B.; Song, Y.; Manley, G.T.; Ma, T. Role of water channels in fluid transport studied by phenotype analysis of aquaporin knockout mice. Exp. Physiol. 2000, 85, 233S–241S. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.; Soria, J.C.; Jang, S.J.; Lee, J.; Obaidul Hoque, M.; Sibony, M.; Trink, B.; Chang, Y.S.; Sidransky, D.; Mao, L. Involvement of aquaporins in colorectal carcinogenesis. Oncogene 2003, 22, 6699–6703. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Lu, D.; Zhang, Y.; Li, J.; Fang, Y.; Li, F.; Sun, J. Critical role of aquaporin-3 in epidermal growth factor-induced migration of colorectal carcinoma cells and its clinical significance. Oncol. Rep. 2013, 29, 535–540. [Google Scholar] [PubMed]
- Zhang, W.; Xu, Y.; Chen, Z.; Xu, Z.; Xu, H. Knockdown of aquaporin 3 is involved in intestinal barrier integrity impairment. FEBS Lett. 2011, 585, 3113–3119. [Google Scholar] [CrossRef] [PubMed]
- Zhi, X.; Tao, J.; Li, Z.; Jiang, B.; Feng, J.; Yang, L.; Xu, H.; Xu, Z. MiR-874 promotes intestinal barrier dysfunction through targeting AQP3 following intestinal ischemic injury. FEBS Lett. 2014, 588, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Hecker, J.F.; Grovum, W.L. Rates of passage of digesta and water absorption along the larg intestines of sheep, cows and pigs. Aust. J. Biol. Sci. 1975, 28, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Squillacioti, C.; De Luca, A.; Pero, M.E.; Vassalotti, G.; Lombardi, P.; Avallone, L.; Mirabella, N.; Pelagalli, A. Effect of colostrum and milk on small intestine expression of AQP4 and AQP5 in newborn buffalo calves. Res. Vet. Sci. 2015, 103, 149–155. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Vassalotti, G.; Pelagalli, A.; Pero, M.E.; Squillacioti, C.; Mirabella, N.; Lombardi, P.; Avallone, L. Expression and localization of aquaporin-1 along the intestine of colostrum suckling buffalo calves. Anat. Histol. Embryol. 2015, 44, 391–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelagalli, A.; Squillacioti, C.; De Luca, A.; Pero, M.E.; Vassalotti, G.; Lombardi, P.; Avallone, L.; Mirabella, N. Expression and localization of aquaporin 4 and aquaporin 5 along the large intestine of colostrum-suckling buffalo calves. Anat. Histol. Embryol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Rojen, B.A.; Poulsen, S.B.; Theil, P.K.; Fenton, R.A.; Kristensen, N.B. Short communication: Effects of dietary nitrogen concentration on messenger RNA expression and protein abundance of urea transporter-B and aquaporins in ruminal papillae from lactating Holstein cows. J. Dairy Sci. 2011, 94, 2587–2591. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Morishita, Y.; Ishibashi, K. Aquaporin10 is a pseudogene in cattle and their relatives. Biochem. Biophys. Rep. 2015, 1, 16–21. [Google Scholar] [CrossRef]
- Jin, S.Y.; Liu, Y.L.; Xu, L.N.; Jiang, Y.; Wang, Y.; Yang, B.X.; Yang, H.; Ma, T.H. Cloning and characterization of porcine aquaporin 1 water channel expressed extensively in gastrointestinal system. World J. Gastroenterol. 2006, 12, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A. Comment on: Cloning and characterization of porcine aquaporin 1 water channel expressed extensively in the gastrointestinal system. World J. Gastroenterol. 2006, 12, 4437–4439. [Google Scholar] [CrossRef] [PubMed]
- Arciszewski, M.B.; Stefaniak, M.; Zacharko-Siembida, A.; Calka, J. Aquaporin 1 water channel is expressed on submucosal but not myenteric neurons from the ovine duodenum. Ann. Anat. 2011, 193, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Priori, D.; Trevisi, P.; Bosi, P. Differential gene expression in the oxyntic and pyloric mucosa of the young pig. PLoS ONE 2014, 9, e111447. [Google Scholar]
- Arciszewski, M.B.; Matysek, M.; Sienkiewicz, W. Immunohistochemical localization of aquaporin 4 (AQP4) in the porcine gastrointestinal tract. Acta Vet. Brno 2015, 84, 321–326. [Google Scholar] [CrossRef]
- Delporte, C.; Bryla, A.; Perret, J. Aquaporins in salivary glands: From basic research to clinical applications. Int. J. Mol. Sci. 2016, 17, 166. [Google Scholar] [CrossRef] [PubMed]
AQPs | Species | Distribution | Method | Reference |
---|---|---|---|---|
Human stomach | ||||
AQP1 | Human | Gastric mucosal tissues; stomach body; pyloric antrum | RT-PCR | [3,25,26] |
AQP2 | Human | Antral and oxyntic gastric mucosa | Tissue microarrays, IHC | [27] |
AQP3 | Human | Gastric antral and oxyntic mucosa; stomach body; pyloric antrum; MKN45 cells | RT-PCR, WB, tissue microarrays, IF | [3,25,27,29,30] |
AQP4 | Human | Gastric mucosal tissues; stomach body; MKN45 cells | RT-PCR, WB, IHC | [3,25,28,29,30] |
AQP5 | Human | Gastric mucosal tissues; stomach body; pyloric antrum; MKN45 cells | RT-PCR, WB, IHC, IF | [3,25,29] |
AQP7 | Human | Stomach body; pyloric antrum | RT-PCR | [3] |
AQP8 | Human | Stomach body | RT-PCR | [3] |
AQP9 | Human | Gastric gland and smooth muscle cells | IHC | 1 |
AQP10 | Human | Stomach body | RT-PCR | [3] |
AQP11 | Human | Gastric mucosal tissues; stomach antrum and body | RT-PCR | [3,25] |
Murine stomach | ||||
AQP1 | Rat | Gastric mucosa | ELISA, IHC | [31] |
AQP3 | Rat | Gastric gland | RT-PCR, WB, IHC | [32] |
AQP4 | Rat, mouse, guinea pig | Parietal cells; gastric mucosa; gastric gland | RT-PCR, ELISA, WB, IHC, IF | [31,33,34,35,36,37] |
AQP5 | Rat | Pyloric gland | RT-PCR, WB, IHC, IF | [18,38] |
AQP6 | Rat | Gastric gland | RT-PCR, WB, IHC, IS | [19] |
AQP8 | Rat | Gastric gland | RT-PCR | [32] |
Tissue | Cell Types | Localization | Reference | ||
---|---|---|---|---|---|
Apical | Intracellular | Basolateral | |||
Stomach | (1) Surface epithelial cells | AQP5 | – | AQP3, AQP4 | [3,13,31] |
(2) Gastric gland cells | |||||
Parietal cells | AQP5 | – | AQP3, AQP4, AQP6 | [11,13,19,33,36,37] | |
Chief cells | AQP5 | – | AQP4 | [11] | |
(3) Microvessels | AQP1 | – | AQP1 | [3,13] | |
Small intestine | (1) Villi epithelial cells | AQP6, AQP7, AQP10, AQP11 ? | AQP8 | AQP3 | [3,11,19,20,39] |
(2) Crypt epithelial cells | – | – | AQP3, AQP4 | [3,11] | |
(3) Goblet cells | AQP9, AQP10 | – | AQP3 | [39,40] | |
(4) Paneth cells | – | – | AQP3 | [39] | |
(5) Microvessels | AQP1, AQP10 | – | AQP1 | [3,13,39] | |
Large intestine | (1) Villi epithelial cells | AQP2, AQP3, AQP7, AQP8, AQP10, AQP11 ? | AQP8 | AQP3, AQP4 | [3,11,21,41,42,43] |
(2) Crypt epithelial cells | AQP7, AQP8 | AQP7, AQP8 | – | [3,44] | |
(3) Goblet cells | AQP9 | – | – | [40] | |
(4) Microvessels | AQP1 | – | AQP1 | [3,13] |
AQPs | Species | Distribution | Method | Reference | |
---|---|---|---|---|---|
Human small intestine | |||||
AQP1 | Human | Duodenum, jejunum and ileum | RT-PCR, IHC | [21,66] | |
AQP2 | Human | Duodenum, jejunum and ileum | Tissue microarrays, IHC | [27] | |
AQP3 | Human | Duodenum, jejunum and ileum | RT-PCR, tissue microarrays, IHC | [21,27,66] | |
AQP4 | Human | Duodenum, jejunum and ileum | RT-PCR | [66] | |
AQP7 | Human | Ileum | RT-PCR, IHC | [21] | |
AQP8 | Human | Ileum | RT-PCR, IHC | [21] | |
AQP10 | Human | Duodenum, jejunum and ileum | RT-PCR, IS, NB, WB, IHC, IEM | [68,69] | |
AQP11 | Human | Duodenum | RT-PCR | [3] | |
Murine small intestine | |||||
AQP1 | Rat, mouse | Duodenum, jejunum and ileum | RT-PCR, WB, IHC | [18,38,71,74] | |
AQP3 | Rat, mouse | Jejunum and ileum | RT-PCR, WB, IHC | [32,71,73] | |
AQP4 | Rat, guinea pig | Jejunum and ileum | WB, IF | [33,73] | |
AQP5 | Rat | Duodenum | RT-PCR, WB, IF | [38] | |
AQP6 | Rat | Duodenum, jejunum and ileum | RT-PCR, WB, IHC, IS | [19] | |
AQP7 | Mouse, rat | Duodenum, jejunum and ileum | RT-PCR, WB, IHC | [14,71,75] | |
AQP8 | Rat | Duodenum, jejunum and ileum | RT-PCR, WB, IHC | [32,75] | |
AQP9 | Mouse | Duodenum, jejunum and ileum | RT-PCR, IS, WB | [40] | |
AQP11 | Mouse | Jejunum and ileum | RT-PCR | [71] |
AQPs | Species | Distribution | Method | Reference |
---|---|---|---|---|
Human large intestine | ||||
AQP1 | Human | Colon | RT-PCR, WB, IF | [21] |
AQP2 | Human | Colon | Tissue microarrays, IHC | [27] |
AQP3 | Human | Colon | RT-PCR, WB, tissue microarrays, IHC | [21,27,42] |
AQP4 | Human | Colon | RT-PCR | [44] |
AQP7 | Human | Colon | RT-PCR, IHC | [21,44] |
AQP8 | Human | Colon | RT-PCR, IHC, NB, IS | [8,21,44] |
AQP10 | Human | Colon | RT-PCR | [3] |
AQP11 | Human | Colon | RT-PCR | [3] |
Murine large intestine | ||||
AQP1 | Mouse | Colon | RT-PCR | [71] |
AQP2 | Rat | Colon | RT-PCR, WB, IS, IHC | [41,79] |
AQP3 | Rat, mouse | Colon and rectum | RT-PCR, WB, IHC | [32,78,80,81] |
AQP4 | Rat, mouse | Colon | RT-PCR, WB, IHC | [33,44,71,81] |
AQP6 | Rat | Colon and cecum | RT-PCR, WB, IHC, IS | [19] |
AQP7 | Mouse, rat | Colon, cecum, and rectum | WB, IHC | [14,44] |
AQP8 | Rat, mouse | Colon | RT-PCR, WB, IHC | [44,71,81] |
AQP9 | Mouse | Colon | IS | [40] |
AQP11 | Mouse | Colon | RT-PCR | [71] |
Species | Cell Types | AQPs Changes | Level 1 | Reference |
---|---|---|---|---|
Escherichia coli- and LPS-induced diarrhea | ||||
Human | HT-29 cells | LPS decreased AQP3 expression | M, P | [92] |
Rat | Colon | Inhibition of AQP3 function caused diarrhea | M, P | [93] |
Mouse | Colon | AQP2 and AQP3 were mislocalized from cell membranes to the cytoplasm under EHEC and EPEC diarrhea | L | [83] |
Piglet | Jejunum | ETEC challenge reduced mucosa AQP8 expression | M | [94] |
Piglet | Jejunum | LPS challenge decreased mucosa AQP8 expression | M | [95] |
Cholera toxin-induced secretory diarrhea | ||||
Human | Duodenum | AQP10 expression was downregulated | M | [96] |
Rat | Small intestine | Mucosal AQP8 expression was decreased | M | [97] |
Allergy-induced diarrhea | ||||
Human | Colon | AQP3, AQP7, AQP10 and AQP11 expression was decreased in celiac disease patients | M, P | [3,22] |
Mouse | Proximal colon | AQP4 and AQP8 were downregulation when there was an allergy | M, P | [98] |
Drug-induced diarrhea | ||||
Mouse | Colon | AQP1 and AQP11 expression was decreased in 5-fluorouracil-induced diarrhea | M | [71] |
Mouse | Colon | AQP4 and AQP8 expression was decreased in 5-fluorouracil-induced diarrhea | M, P | [71] |
Rotavirus diarrhea | ||||
Mouse | Colon | AQP1, AQP4 and AQP8 expression was downregulated in rotavirus diarrhea | P | [99] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Chen, Z.; Jiang, Z. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines. Int. J. Mol. Sci. 2016, 17, 1399. https://doi.org/10.3390/ijms17091399
Zhu C, Chen Z, Jiang Z. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines. International Journal of Molecular Sciences. 2016; 17(9):1399. https://doi.org/10.3390/ijms17091399
Chicago/Turabian StyleZhu, Cui, Zhuang Chen, and Zongyong Jiang. 2016. "Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines" International Journal of Molecular Sciences 17, no. 9: 1399. https://doi.org/10.3390/ijms17091399
APA StyleZhu, C., Chen, Z., & Jiang, Z. (2016). Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines. International Journal of Molecular Sciences, 17(9), 1399. https://doi.org/10.3390/ijms17091399