Sensitivity of Quantitative Signal Detection in Regards to Pharmacological Neuroenhancement
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Database
4.2. Database Query and Search Strategy
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Franke, A.; Northoff, R.; Hildt, E. The case of pharmacological neuroenhancement: Medical, judicial and ethical aspects from a german perspective. Pharmacopsychiatry 2015, 48, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Ragan, C.; Bard, I.; Singh, I. What should we do about student drug use of cognitive enhancers? An analysis of current evidence. Neuropharmacology 2013, 64, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Franke, A.; Bagusat, C.; Rust, S.; Engel, A.; Lieb, K. Substances used and prevalence rates of pharmacological cognitive enhancement among healthy subjects. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264 (Suppl. S1), S83–S90. [Google Scholar] [CrossRef] [PubMed]
- Micoulaud-Franchi, J.; MacGregor, A.; Fond, G. A preliminary study on cognitive enhancer consumption behaviors an motives of French Medicine and Pharmacology students. Eur. Rev. Pharmacol. Sci. 2014, 18, 1875–1878. [Google Scholar]
- Ott, R.; Biller-Andorno, N. Neuroenhancement among Swiss students—A comparison of users and non-users. Pharmacopsychiatry 2014, 47, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Maher, B. Poll results: Look who’s doping. Nature 2008, 452, 674–675. [Google Scholar] [CrossRef] [PubMed]
- Dietz, P.; Soyka, M.; Franke, A. Pharmacological neuroenhancement in the field of economics—Poll results from an online survey. Front. Psychol. 2016, 7, 520. [Google Scholar] [CrossRef] [PubMed]
- Heinz, A.; Kipke, R.; Heimann, H.; Wiesing, U. Cognitive euroenhancement: False asumptions in the ethical debate. J. Med. Eth. 2012, 38, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Faber, N.; Savulescu, J.; Douglas, T. Why is cognitive enhancement deemed unacceptable? The role of fairnes, deservingness, and hollow achievements. Front. Psychol. 2016, 7, 232. [Google Scholar] [CrossRef] [PubMed]
- Franke, A.; Soyka, M. Pharmacological cognitive enhancement from a perspective of misuse and addiction. Fortschr. Neurol. Psychiatry 2015, 83, 83–90. [Google Scholar]
- Vargo, E.; Petróczi, A. “It was me on a good day”: Exploring the smart drug use phenomenon in England. Front. Psychol. 2016, 27, 779. [Google Scholar] [CrossRef] [PubMed]
- Clemow, D.; Walker, D. The potential for misuse and abuse medications in ADHS: A review. Postgrad. Med. 2014, 126, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Battleday, R.; Brem, A. Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: A systematic review. Eur. Neuropsychopharmacol. 2015, 25, 1865–1881. [Google Scholar] [CrossRef] [PubMed]
- Repantis, D.; Schlattmann, P.; Laisney, O.; Heuser, I. Modafinil and methylphenidate for neuroenhancement in healthy individuals: A systematic review. Pharmacol. Res. 2010, 62, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Repantis, D.; Laisney, O.; Heuser, I. Acetylchlinesterase inhibitors and memantine for neuroenhancement in health individuals: A systematic review. Pharmacol. Res. 2010, 61, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Graf, H.; Abler, B.; Freudenmann, R.; Beschoner, P.; Schaeffeler, E.; Spitzer, M.; Schwab, M.; Grön, G. Neural correlates of error monitoring modulated by atomoxetine in healthy volunteers. Biol. Psychiatry 2011, 69, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Hildt, E.; Lieb, K.; Bagusat, C.; Franke, A. Reflections on addiction in students using stimulants for neuroenhancement: A preliminary interview study. BioMed Res. Int. 2015, 2015, 621075. [Google Scholar] [CrossRef] [PubMed]
- Micallef, J.; Lapeyre-Mestre, M. Addictovigilance: The pharmacological challenge of assessment and prevention of risky substances. Therapie 2015, 70, 111. [Google Scholar] [CrossRef] [PubMed]
- Lapeyre-Mestre, M.; Dupui, M. Drug abuse monitoring: Which pharmacoepidemiological resources at the European level? Therapie 2015, 70, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Goldman, S. Limitations and strengths of spontaneous reports data. Clin. Ther. 1998, 20 (Suppl. C), C40–C44. [Google Scholar] [CrossRef]
- Bossard, J.; Ponté, C.; Dupouy, J.; Lapeyre-Mestre, M.; Jouanjus, E. Disproportionality analysis for the assessment of abuse and dependence potential of pregabalin in the French Pharmacovigilance Database. Clin. Drug Investig. 2016, 36, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Cossmann, M.; Kohnen, C.; Langford, R.; McCartney, C. Tolerance and drug safety of tramadol use. Results of international studies and data from drug surveillance. Drugs 1997, 53 (Suppl. S2), 50–62. [Google Scholar] [CrossRef] [PubMed]
- Bate, A.; Evans, S. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol. Drug Saf. 2009, 18, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Bogle, K.; Smit, B. Illicit methlphenidate use: A review of prevalence, availability, pharmacology, and consequences. Curr. Drug Abuse. Rev. 2009, 2, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.; Swanson, J. Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am. J. Psychiatry 2003, 160, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Heil, S.H.; Holmes, H.W.; Bickel, W.K.; Higgins, S.T.; Badger, G.J.; Laws, H.F.; Faries, D.E. Comparison of the subjective, physiological, and psychomotor effects of atomoxetine and methylphenidate in light drug users. Drug Alcohol. Depend. 2002, 67, 149–156. [Google Scholar] [CrossRef]
- Upadhyaya, H.P.; Desaiah, D.; Schuh, K.J.; Bymaster, F.P.; Kallman, M.J.; Clarke, D.O.; Durell, T.M.; Trzepacz, P.T.; Calligaro, D.O.; Nisenbaum, E.S.; et al. A review of the abuse potential assessment of atomoxetine: A non-stimulant medication for attention-deficit/hyperactivity disorder. Psychopharmacology 2013, 226, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Jasinski, D. An evaluation of the abuse potential of modafinil using methylphenidate as a reference. J. Psychopharmacol. 2000, 14, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Jasinski, D.; Kovacevic-Ristanovic, R. Evaluation of the abuse liability of modafinil and other drugs for excessive daytime sleepiness associated with narcolepsy. Clin. Neuropharmacol. 2000, 23, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Kapoor, K.; Wilton, L.; Mann, R. Underreporting of suspected adverse drug reactions to newly marketed (“black triangle”) drugs in general practice: Observational study. BMJ 1998, 317, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Doyon, W.; Thomas, A.; Ostroumov, A.; Dong, Y.; Dani, J. Potential substrates for nicotine and alcohol interactions: A focus on the mesocorticolimbic dopamine system. Biochem. Pharmacol. 2013, 86, 1181–1193. [Google Scholar] [CrossRef] [PubMed]
- Cauli, O.; Morelli, M. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur. J. Pharmacol. 2005, 393, 295–314. [Google Scholar]
- Brown, E.; Wood, L.; Wood, S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 1999, 20, 109. [Google Scholar] [CrossRef] [PubMed]
- Van Manen, R.; Fram, D.; DuMouchel, W. Signal detection methodologies to support effective safety management. Expert Opin. Drug Saf. 2007, 6, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Gould, A. Practical pharmacovigilance analysis strategies. Pharmacoepidemiol. Drug Saf. 2003, 12, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Ooba, N.; Kubota, K. Selected control events and reporting odds ratio in signal detection methodology. Pharmacoepidemiol. Drug Saf. 2010, 19, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Finney, D. Statistical logic in the monitoring of reactions to therapeutic drugs. Methods Inf. Med. 1971, 10, 237–245. [Google Scholar] [PubMed]
- Van Puijenbroek, E.P.; Bate, A.; Leufkens, H.G.; Lindquist, M.; Orre, R.; Egberts, A.C. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol. Drug Saf. 2002, 11, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Rothman, K.; Lanes, S.; Sacks, S. The reporting odds ratio and its advantages over the proportional reporting odds ratio. Drug Saf. 2004, 13, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Evans, S. Pharmacovigilance: A science or fielding emergencies? Stat. Med. 2000, 19, 3199–3209. [Google Scholar] [CrossRef]
Cases/All ADR-Reports per Drug per Dataset (No SMQ Restriction) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Substance | Total Dataset | Australia | Canada | France | Germany | Italy | Spain | United Kingdom | USA |
Atomoxetine | 248/21,265 | 1/148 | 5/406 | 0/7 | 7/496 | 0/119 | 0/133 | 10/776 | 221/17,178 |
Donepezil | 42/11,294 | 1/377 | 0/574 | 0/875 | 4/528 | 2/386 | 0/266 | 1/1266 | 33/3567 |
Galantamine | 9/3927 | 0/152 | 0/280 | 0/382 | 5/341 | 0/60 | 0/111 | 1/314 | 3/1008 |
Memantine | 40/6993 | 0/45 | 0/74 | 0/580 | 12/295 | 0/213 | 0/150 | 0/249 | 27/4534 |
Methylphenidate | 728/28,591 | 11/295 | 44/1472 | 42/408 | 133/1472 | 0/123 | 11/326 | 16/1170 | 340/16,989 |
Modafinil | 85/3586 | 0/28 | 0/72 | 1/154 | 5/51 | 0/7 | 0/16 | 2/170 | 75/2913 |
Rivastigmine | 10/11,117 | 0/191 | 0/1426 | 0/725 | 0/698 | 0/468 | 0/314 | 0/522 | 8/3048 |
Positive Control Substances | |||||||||
Diazepam | 4359/23,119 | 38/1018 | 118/1060 | 80/1251 | 531/1673 | 264/592 | 23/476 | 94/1062 | 2887/11,291 |
Lorazepam | 3251/19,966 | 1/146 | 60/680 | 57/1489 | 1763/3052 | 417/1136 | 26/812 | 36/460 | 662/8396 |
ROR (95% CI) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Substance | Total Dataset | Australia | Canada | France | Germany | Italy | Spain | United Kingdom | USA |
Atomoxetine | 1.3 (1.2–1.5) | 2.2 (0.3–15.7) | 1.4 (0.6–3.3) | - | 0.6 (0.3–1.3) | - | - | 3.3 (1.8–6.1) | 1.0 (0.9–1.1) |
Donepezil | 0.4 (0.3–0.6) | 0.9 (0.1–6.1) | - | - | 0.3 (0.1–0.9) | 0.5 (0.1–2.2) | - | 0.2 (0.0–1.4) | 0.7 (0.5–1.0) |
Galantamine | 0.3 (0.1–0.5) | - | - | - | 0.6 (0.3–1.5) | - | - | 0.8 (0.1–5.7) | 0.2 (0.1–0.7) |
Memantine | 0.6 (0.5–0.9) | - | - | - | 1.8 (1.0–3.2) | - | - | - | 0.5 (0.3–0.7) |
Methylphenidate | 2.9 (2.7–3.1) | 12.6 (6.9–23.4) | 3.4 (2.5–4.5) | 22.6 (16.4–31.2) | 4.2 (3.5–5.0) | - | 23.6 (12.8–43.5) | 3.5 (2.1–5.7) | 1.5 (1.4–1.7) |
Modafinil | 2.7 (2.2–3.3) | - | - | 1.3 (0.2–9.1) | 4.6 (1.8–11.5) | - | - | 3.0 (0.7–12.0) | 2.0 (1.6–2.5) |
Rivastigmine | 0.1 (0.05–0.2) | - | - | - | - | - | - | - | 0.2 (0.1–0.4) |
Positive Control Substances | |||||||||
Diazepam | 26.5 (25.7–27.4) | 12.9 (9.3–18.0) | 14.0 (11.5–17.0) | 13.6 (10.9–17.2) | 20.4 (18.4–22.7) | 91.0 (77.0–107.4) | 35.5 (23.0–54.6) | 25.0 (20.2–31.0) | 26.5 (25.4–27.6) |
Lorazepam | 22.0 (21.2–22.9) | 2.2 (0.3–15.9) | 10.6 (8.1–13.9) | 7.9 (6.0–10.3) | 67.1 (62.3–72.3) | 69.5 (61.3–79.0) | 23.3 (15.5–34.8) | 21.4 (15.2–30.2) | 6.4 (5.9–7.0) |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gahr, M.; Connemann, B.J.; Schönfeldt-Lecuona, C.; Zeiss, R. Sensitivity of Quantitative Signal Detection in Regards to Pharmacological Neuroenhancement. Int. J. Mol. Sci. 2017, 18, 101. https://doi.org/10.3390/ijms18010101
Gahr M, Connemann BJ, Schönfeldt-Lecuona C, Zeiss R. Sensitivity of Quantitative Signal Detection in Regards to Pharmacological Neuroenhancement. International Journal of Molecular Sciences. 2017; 18(1):101. https://doi.org/10.3390/ijms18010101
Chicago/Turabian StyleGahr, Maximilian, Bernhard J. Connemann, Carlos Schönfeldt-Lecuona, and René Zeiss. 2017. "Sensitivity of Quantitative Signal Detection in Regards to Pharmacological Neuroenhancement" International Journal of Molecular Sciences 18, no. 1: 101. https://doi.org/10.3390/ijms18010101
APA StyleGahr, M., Connemann, B. J., Schönfeldt-Lecuona, C., & Zeiss, R. (2017). Sensitivity of Quantitative Signal Detection in Regards to Pharmacological Neuroenhancement. International Journal of Molecular Sciences, 18(1), 101. https://doi.org/10.3390/ijms18010101