Novel Structural Approaches to Study GPCR Regulation
Abstract
:1. Introduction
2. Posttranslational Modifications of G Protein-Coupled Receptors (GPCRs)
2.1. Phosphorylation
2.2. Ubiquitination
3. Mass Spectrometry
4. Tales of Three GPCRs
4.1. Free Fatty Acid Receptor 4 (FFA4) Phosphorylation Sites
4.2. α1-Adrenoceptor Associated Proteins
5. Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
GPCRs | G protein coupled-receptors |
PTMs | Posttranslational modifications |
MS | Mass spectrometry |
GRKs | G protein-coupled receptor kinases |
FRET | Förster resonance energy transfer |
BRET | Bioluminescence resonance energy transfer |
References
- Fredriksson, R.; Lagerstrom, M.C.; Lundin, L.G.; Schioth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, R.; Schioth, H.B. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol. Pharmacol. 2005, 67, 1414–1425. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, D.K.; Garrison, J.C. Pharmacodynamics: Molecular mechanisms of drug action. In Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L., Ed.; McGraw Hill: New York, NY, USA, 2011; pp. 47–72. [Google Scholar]
- Lefkowitz, R.J. A brief history of G-protein coupled receptors (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2013, 52, 6366–6378. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.A. New paradigms in GPCR drug discovery. Biochem. Pharmacol. 2015, 98, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Mustafi, D.; Palczewski, K. Topology of class A G protein-coupled receptors: Insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol. Pharmacol. 2009, 75, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kobilka, B. The structural basis of G-protein-coupled receptor signaling (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2013, 52, 6380–6388. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, A.R.; Plouffe, B.; Cahill, T.J., 3rd; Shukla, A.K.; Tarrasch, J.T.; Dosey, A.M.; Kahsai, A.W.; Strachan, R.T.; Pani, B.; Mahoney, J.P.; et al. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell 2016, 166, 907–919. [Google Scholar] [CrossRef] [PubMed]
- García-Sáinz, J.A.; Vázquez-Prado, J.; Medina, L.C. α1-Adrenoceptors: Function and phosphorylation. Eur. J. Pharmacol. 2000, 389, 1–12. [Google Scholar] [CrossRef]
- Vázquez-Prado, J.; Casas-González, P.; García-Sáinz, J.A. G protein-coupled receptor cross-talk: Pivotal roles of protein phosphorylation and protein–protein interactions. Cell Signal. 2003, 15, 549–557. [Google Scholar] [CrossRef]
- García-Sáinz, J.A.; Romero-Ávila, M.T.; Molina-Muñoz, T.; García-Pasquel, M.-J. G-protein-coupled receptor-receptor tyrosine kinase crosstalk. Regulation of receptor sensitivity and roles of autocrine feedback loops and signal integration. Curr. Signal Transduct. Ther. 2008, 3, 174–182. [Google Scholar] [CrossRef]
- Xin, F.; Radivojac, P. Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics 2012, 28, 2905–2913. [Google Scholar] [CrossRef] [PubMed]
- Dores, M.R.; Lin, H.; N, J.G.; Mendez, F.; Trejo, J. The α-arrestin ARRDC3 mediates ALIX ubiquitination and G protein-coupled receptor lysosomal sorting. Mol. Biol. Cell 2015, 26, 4660–4673. [Google Scholar] [CrossRef] [PubMed]
- Dores, M.R.; Trejo, J. Ubiquitination of G protein-coupled receptors: Functional implications and drug discovery. Mol. Pharmacol. 2012, 82, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Venkatakrishnan, A.J.; Deupi, X.; Lebon, G.; Tate, C.G.; Schertler, G.F.; Babu, M.M. Molecular signatures of G-protein-coupled receptors. Nature 2013, 494, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Philip, J.L.; Xu, X.; Theccanat, T.; Abdur Razzaque, M.; Akhter, S.A. β-Arrestins regulate human cardiac fibroblast transformation and collagen synthesis in adverse ventricular remodeling. J. Mol. Cell. Cardiol. 2014, 76, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C.A.; Motoshima, H.; Fox, B.A.; Le Trong, I.; Teller, D.C.; Okada, T.; Stenkamp, R.E.; et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.; Bech-Serra, J.J.; Canals, F.; Zajac, J.M.; Talmont, F.; Arsequell, G.; Valencia, G. Optimized proteomic mass spectrometry characterization of recombinant human mu-opioid receptor functionally expressed in pichia pastoris cell lines. J. Proteome Res. 2015, 14, 3162–3173. [Google Scholar] [CrossRef] [PubMed]
- Bortolato, A.; Dore, A.S.; Hollenstein, K.; Tehan, B.G.; Mason, J.S.; Marshall, F.H. Structure of class B GPCRs: New horizons for drug discovery. Br. J. Pharmacol. 2014, 171, 3132–3145. [Google Scholar] [CrossRef] [PubMed]
- Hollenstein, K.; de Graaf, C.; Bortolato, A.; Wang, M.W.; Marshall, F.H.; Stevens, R.C. Insights into the structure of class B GPCRs. Trends Pharmacol. Sci. 2014, 35, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Dore, A.S.; Okrasa, K.; Patel, J.C.; Serrano-Vega, M.; Bennett, K.; Cooke, R.M.; Errey, J.C.; Jazayeri, A.; Khan, S.; Tehan, B.; et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 2014, 511, 557–562. [Google Scholar] [CrossRef] [PubMed]
- McCusker, E.C.; Bane, S.E.; O’Malley, M.A.; Robinson, A.S. Heterologous GPCR expression: A bottleneck to obtaining crystal structures. Biotechnol. Prog. 2007, 23, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Hassell, A.M.; An, G.; Bledsoe, R.K.; Bynum, J.M.; Carter, H.L., 3rd; Deng, S.J.; Gampe, R.T.; Grisard, T.E.; Madauss, K.P.; Nolte, R.T.; et al. Crystallization of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 2007, 63, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.G.; DeVree, B.T.; Zou, Y.; Kruse, A.C.; Chung, K.Y.; Kobilka, T.S.; Thian, F.S.; Chae, P.S.; Pardon, E.; Calinski, D.; et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 2011, 477, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.K.; Manglik, A.; Kruse, A.C.; Xiao, K.; Reis, R.I.; Tseng, W.C.; Staus, D.P.; Hilger, D.; Uysal, S.; Huang, L.Y.; et al. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 2013, 497, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Na, S.; Jeong, J.; Park, H.; Lee, K.J.; Paek, E. Unrestrictive identification of multiple post-translational modifications from tandem mass spectrometry using an error-tolerant algorithm based on an extended sequence tag approach. Mol. Cell. Proteom. 2008, 7, 2452–2463. [Google Scholar] [CrossRef] [PubMed]
- Kaltashov, I.A.; Eyles, S.J. Studies of biomolecular conformations and conformational dynamics by mass spectrometry. Mass Spectrom. Rev. 2002, 21, 37–71. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Park, Y.S.; Lee, K.J. Hydrogen-deuterium exchange mass spectrometry for determining protein structural changes in drug discovery. Arch. Pharm. Res. 2015, 38, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.; Chen, G. Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 6541–6558. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Mo, J.; Tao, L.; Russell, R.J.; Tymiak, A.A.; Chen, G.; Iacob, R.E.; Engen, J.R. Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: Methodology and applications. Drug Discov. Today 2014, 19, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Butcher, A.J.; Prihandoko, R.; Kong, K.C.; McWilliams, P.; Edwards, J.M.; Bottrill, A.; Mistry, S.; Tobin, A.B. Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J. Biol. Chem. 2011, 286, 11506–11518. [Google Scholar] [CrossRef] [PubMed]
- Tobin, A.B.; Butcher, A.J.; Kong, K.C. Location, location, location...site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol. Sci. 2008, 29, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Norskov-Lauritsen, L.; Brauner-Osborne, H. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors. Eur. J. Pharmacol. 2015, 763, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 2015, 43, D512–D520. [Google Scholar] [CrossRef] [PubMed]
- Pagel, O.; Loroch, S.; Sickmann, A.; Zahedi, R.P. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev. Proteom. 2015, 12, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Maeda, T.; Imanishi, Y.; Palczewski, K. Rhodopsin phosphorylation: 30 years later. Prog. Retin. Eye Res. 2003, 22, 417–434. [Google Scholar] [CrossRef]
- Tobin, A.B. G-protein-coupled receptor phosphorylation: Where, when and by whom. Br. J. Pharmacol. 2008, 153, S167–S176. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.S. Phosphorylation-independent attenuation of GPCR signalling. Trends Pharmacol. Sci. 2007, 28, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Baltensperger, K.; Karoor, V.; Paul, H.; Ruoho, A.; Czech, M.P.; Malbon, C.C. The β-adrenergic receptor is a substrate for the insulin receptor tyrosine kinase. J. Biol. Chem. 1996, 271, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Gavi, S.; Shumay, E.; Wang, H.Y.; Malbon, C.C. G-protein-coupled receptors and tyrosine kinases: Crossroads in cell signaling and regulation. Trends Endocrinol. Metab. 2006, 17, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Casas-González, P.; García-Sáinz, J.A. Role of epidermal growth factor receptor transactivation in α1B-adrenoceptor phosphorylation. Eur. J. Pharmacol. 2006, 542, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Butcher, A.J.; Hudson, B.D.; Shimpukade, B.; Alvarez-Curto, E.; Prihandoko, R.; Ulven, T.; Milligan, G.; Tobin, A.B. Concomitant action of structural elements and receptor phosphorylation determine arrestin-3 interaction with the free fatty acid receptor FFA4. J. Biol. Chem. 2014, 289, 18451–18465. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, S.K.; Lefkowitz, R.J. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol. Sci. 2011, 32, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Mouledous, L.; Froment, C.; Burlet-Schiltz, O.; Schulz, S.; Mollereau, C. Phosphoproteomic analysis of the mouse brain mu-opioid (MOP) receptor. FEBS Lett. 2015, 589, 2401–2408. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Garrido, J.; Garcia-Calvo, E.; Luque-Garcia, J.L. Sample preparation strategies for improving the identification of membrane proteins by mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 4893–4905. [Google Scholar] [CrossRef] [PubMed]
- Ohguro, H.; van Hooser, J.P.; Milam, A.H.; Palczewski, K. Rhodopsin phosphorylation and dephosphorylation in vivo. J. Biol. Chem. 1995, 270, 14259–14262. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.A.; Craven, K.B.; Niemi, G.A.; Hurley, J.B. Mass spectrometric analysis of the kinetics of in vivo rhodopsin phosphorylation. Protein Sci. 2002, 11, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Doronin, S.; Lin, F.; Wang, H.Y.; Malbon, C.C. The full-length, cytoplasmic C-terminus of the β 2-adrenergic receptor expressed in E. coli acts as a substrate for phosphorylation by protein kinase A, insulin receptor tyrosine kinase, GRK2, but not protein kinase C and suppresses desensitization when expressed in vivo. Protein Expr. Purif. 2000, 20, 451–461. [Google Scholar] [PubMed]
- Nobles, K.N.; Xiao, K.; Ahn, S.; Shukla, A.K.; Lam, C.M.; Rajagopal, S.; Strachan, R.T.; Huang, T.Y.; Bressler, E.A.; Hara, M.R.; et al. Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal. 2011, 4, ra51. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Malbon, C.; Wang, H.Y. Probing the stoichiometry of β2-adrenergic receptor phosphorylation by targeted mass spectrometry. J. Mol. Signal. 2014, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Birnbaumer, M.; Guan, Z. Phosphorylation analysis of G protein-coupled receptor by mass spectrometry: Identification of a phosphorylation site in V2 vasopressin receptor. Anal. Chem. 2008, 80, 6034–6037. [Google Scholar] [CrossRef] [PubMed]
- Busillo, J.M.; Armando, S.; Sengupta, R.; Meucci, O.; Bouvier, M.; Benovic, J.L. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J. Biol. Chem. 2010, 285, 7805–7817. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Park, Y.U.; Kim, D.K.; Lee, S.; Kwak, Y.; Lee, S.A.; Lee, H.; Suh, Y.H.; Gho, Y.S.; Hwang, D.; et al. Cdk5 phosphorylates dopamine D2 receptor and attenuates downstream signaling. PLoS ONE 2013, 8, e84482. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bai, B.; Tian, Y.; Du, H.; Chen, J. Identification of serine 348 on the apelin receptor as a novel regulatory phosphorylation site in apelin-13-induced G protein-independent biased signaling. J. Biol. Chem. 2014, 289, 31173–31187. [Google Scholar] [CrossRef] [PubMed]
- Bray, L.; Froment, C.; Pardo, P.; Candotto, C.; Burlet-Schiltz, O.; Zajac, J.M.; Mollereau, C.; Mouledous, L. Identification and functional characterization of the phosphorylation sites of the neuropeptide FF2 receptor. J. Biol. Chem. 2014, 289, 33754–33766. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chiu, Y.T.; Wu, W.; Huang, P.; Mann, A.; Schulz, S.; Liu-Chen, L.Y. Determination of sites of U50,488H-promoted phosphorylation of the mouse kappa opioid receptor (KOPR): Disconnect between KOPR phosphorylation and internalization. Biochem. J. 2016, 473, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Zindel, D.; Engel, S.; Bottrill, A.R.; Pin, J.P.; Prezeau, L.; Tobin, A.B.; Bunemann, M.; Krasel, C.; Butcher, A.J. Identification of key phosphorylation sites in PTH1R which determine arrestin3 binding and fine tune receptor signaling. Biochem. J. 2016, 473, 4173–4192. [Google Scholar] [CrossRef] [PubMed]
- Bouzo-Lorenzo, M.; Santo-Zas, I.; Lodeiro, M.; Nogueiras, R.; Casanueva, F.F.; Castro, M.; Pazos, Y.; Tobin, A.B.; Butcher, A.J.; Camina, J.P. Distinct phosphorylation sites on the ghrelin receptor, GHSR1a, establish a code that determines the functions of ss-arrestins. Sci. Rep. 2016, 6, 22495. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.E.; Marchese, A. Regulation of GPCR Trafficking by Ubiquitin. Prog. Mol. Biol. Transl. Sci. 2015, 132, 15–38. [Google Scholar] [PubMed]
- Skieterska, K.; Rondou, P.; van Craenenbroeck, K. Dopamine D4 receptor ubiquitination. Biochem. Soc. Trans. 2016, 44, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, G.S. Roles of proteolysis in regulation of GPCR function. Br. J. Pharmacol. 2013, 168, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, S.K.; McDonald, P.H.; Kohout, T.A.; Lefkowitz, R.J. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 2001, 294, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Shenoy, S.K. β2-adrenergic receptor lysosomal trafficking is regulated by ubiquitination of lysyl residues in two distinct receptor domains. J. Biol. Chem. 2011, 286, 12785–12795. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.; Xiao, K.; Shenoy, S.K. A tale of two sites: How ubiquitination of a G protein-coupled receptor is coupled to its lysosomal trafficking from distinct receptor domains. Commun. Integr. Biol. 2011, 4, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Jean-Charles, P.Y.; Snyder, J.C.; Shenoy, S.K. Chapter One—Ubiquitination and deubiquitination of G protein-coupled receptors. Prog. Mol. Biol. Transl. Sci. 2016, 141, 1–55. [Google Scholar] [PubMed]
- Han, S.O.; Xiao, K.; Kim, J.; Wu, J.H.; Wisler, J.W.; Nakamura, N.; Freedman, N.J.; Shenoy, S.K. MARCH2 promotes endocytosis and lysosomal sorting of carvedilol-bound β2-adrenergic receptors. J. Cell Biol. 2012, 199, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Kenakin, T. Quantifying biased β-arrestin signaling. Handb. Exp. Pharmacol. 2014, 219, 57–83. [Google Scholar] [PubMed]
- Kenakin, T. The effective application of biased signaling to new drug discovery. Mol. Pharmacol. 2015, 88, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Kenakin, T.P. A Pharmacology Primer: Theory, Applications, and Methods, 3rd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2009; p. 389. [Google Scholar]
- Oo, M.L.; Thangada, S.; Wu, M.T.; Liu, C.H.; Macdonald, T.L.; Lynch, K.R.; Lin, C.Y.; Hla, T. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J. Biol. Chem. 2007, 282, 9082–9089. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.; Proia, R.L.; Olivera, A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 2008, 8, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Gardell, S.E.; Herr, D.R.; Rivera, R.; Lee, C.W.; Noguchi, K.; Teo, S.T.; Yung, Y.C.; Lu, M.; Kennedy, G.; et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc. Natl. Acad. Sci. USA 2011, 108, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Billich, A.; Baumruker, T.; Heining, P.; Schmouder, R.; Francis, G.; Aradhye, S.; Burtin, P. Fingolimod (FTY720): Discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 2010, 9, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.Y.; Day, P.W.; Velez-Ruiz, G.; Sunahara, R.K.; Kobilka, B.K. Identification of GPCR-interacting cytosolic proteins using HDL particles and mass spectrometry-based proteomic approach. PLoS ONE 2013, 8, e54942. [Google Scholar] [CrossRef] [PubMed]
- Daulat, A.M.; Maurice, P.; Froment, C.; Guillaume, J.L.; Broussard, C.; Monsarrat, B.; Delagrange, P.; Jockers, R. Purification and identification of G protein-coupled receptor protein complexes under native conditions. Mol. Cell. Proteom. 2007, 6, 835–844. [Google Scholar] [CrossRef] [PubMed]
- AbdAlla, S.; Lother, H.; el Massiery, A.; Quitterer, U. Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med. 2001, 7, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Repa, J.J.; Evans, R.M.; Mangelsdorf, D.J. Nuclear receptors and lipid physiology: Opening the X-files. Science 2001, 294, 1866–1870. [Google Scholar] [CrossRef] [PubMed]
- Stoddart, L.A.; Smith, N.J.; Milligan, G. International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: Pharmacology and pathophysiological functions. Pharmacol. Rev. 2008, 60, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, A.; Tsumaya, K.; Awaji, T.; Katsuma, S.; Adachi, T.; Yamada, M.; Sugimoto, Y.; Miyazaki, S.; Tsujimoto, G. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 2005, 11, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, A.; Hirasawa, A.; Poulain-Godefroy, O.; Bonnefond, A.; Hara, T.; Yengo, L.; Kimura, I.; Leloire, A.; Liu, N.; Iida, K.; et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 2012, 483, 350–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 is an ω-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Kashihara, D.; Ichimura, A.; Kimura, I.; Tsujimoto, G.; Hirasawa, A. Role of free fatty acid receptors in the regulation of energy metabolism. Biochim. Biophys. Acta 2014, 1841, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Reyes, O.B.; Romero-Ávila, M.T.; Castillo-Badillo, J.A.; Takei, Y.; Hirasawa, A.; Tsujimoto, G.; Villalobos-Molina, R.; García-Sáinz, J.A. Free fatty acids and protein kinase C activation induce GPR120 (free fatty acid receptor 4) phosphorylation. Eur. J. Pharmacol. 2014, 723, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.N.; Moniri, N.H. Agonism with the ω-3 fatty acids α-linolenic acid and docosahexaenoic acid mediates phosphorylation of both the short and long isoforms of the human GPR120 receptor. Biochem. Biophys. Res. Commun. 2010, 396, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.N.; Singh, M.; Senatorov, I.S.; Moniri, N.H. Mechanisms of homologous and heterologous phosphorylation of FFA receptor 4 (GPR120): GRK6 and PKC mediate phosphorylation of Thr347, Ser350, and Ser357 in the C-terminal tail. Biochem. Pharmacol. 2014, 87, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Prihandoko, R.; Alvarez-Curto, E.; Hudson, B.D.; Butcher, A.J.; Ulven, T.; Miller, A.M.; Tobin, A.B.; Milligan, G. Distinct phosphorylation clusters determine the signaling outcome of free fatty acid receptor 4/G protein-coupled receptor 120. Mol. Pharmacol. 2016, 89, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Ren, J.; Gao, X.; Jin, C.; Wen, L.; Yao, X. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol. Cell. Proteom. 2008, 7, 1598–1608. [Google Scholar] [CrossRef] [PubMed]
- Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 1999, 294, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.D.; Wang, W.B.; Xu, Z.G.; Liu, C.H.; He, D.F.; Du, L.P.; Li, M.Y.; Yu, X.; Sun, J.P. FFA4 receptor (GPR120): A hot target for the development of anti-diabetic therapies. Eur. J. Pharmacol. 2015, 763, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Hieble, J.P.; Bylund, D.B.; Clarke, D.E.; Eikenburg, D.C.; Langer, S.Z.; Lefkowitz, R.J.; Minneman, K.P.; Ruffolo, R.R., Jr. International union of pharmacology. X. recommendation for nomenclature of α 1-adrenoceptors: Consensus update. Pharmacol. Rev. 1995, 47, 267–270. [Google Scholar] [PubMed]
- García-Sáinz, J.A.; Vázquez-Prado, J.; Villalobos-Molina, R. α1-Adrenoceptors: Subtypes, signaling, and roles in health and disease. Arch. Med. Res. 1999, 30, 449–458. [Google Scholar] [CrossRef]
- Cabrera-Wrooman, A.; Romero-Ávila, M.T.; García-Sáinz, J.A. Roles of the α1A-adrenergic receptor carboxyl tail in protein kinase C-induced phosphorylation and desensitization. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2010, 382, 499–510. [Google Scholar] [CrossRef] [PubMed]
- García-Sáinz, J.A.; Rodríguez-Pérez, C.E.; Romero-Ávila, M.T. Human α-1D adrenoceptor phosphorylation and desensitization. Biochem. Pharmacol. 2004, 67, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- García-Sáinz, J.A.; Romero-Ávila, M.T.; Alcántara-Hernández, R. Mechanisms involved in α1B-adrenoceptor desensitization. IUBMB Life 2011, 63, 811–815. [Google Scholar] [CrossRef] [PubMed]
- García-Sáinz, J.A.; Vázquez-Cuevas, F.G.; Romero-Ávila, M.T. Phosphorylation and desensitization of α1D-adrenergic receptors. Biochem. J. 2001, 353, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, C.E.; Romero-Ávila, M.T.; Reyes-Cruz, G.; García-Sáinz, J.A. Signaling properties of human α1D-adrenoceptors lacking the carboxyl terminus: Intrinsic activity, agonist-mediated activation, and desensitization. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2009, 380, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Prado, J.; García-Sáinz, J.A. Effect of phorbol myristate acetate on α1-adrenergic action in cells expressing recombinant α1-adrenoceptor subtypes. Mol. Pharmacol. 1996, 50, 17–22. [Google Scholar] [PubMed]
- Vázquez-Prado, J.; Medina, L.C.; García-Sáinz, J.A. Activation of endothelin ETA receptors induces phosphorylation of α1B-adrenoreceptors in Rat-1 fibroblasts. J. Biol. Chem. 1997, 272, 27330–27337. [Google Scholar] [CrossRef] [PubMed]
- Diviani, D.; Lattion, A.L.; Cotecchia, S. Characterization of the phosphorylation sites involved in G protein-coupled receptor kinase- and protein kinase C-mediated desensitization of the α1B-adrenergic receptor. J. Biol. Chem. 1997, 272, 28712–28719. [Google Scholar] [CrossRef] [PubMed]
- Diviani, D.; Lattion, A.L.; Larbi, N.; Kunapuli, P.; Pronin, A.; Benovic, J.L.; Cotecchia, S. Effect of different G protein-coupled receptor kinases on phosphorylation and desensitization of the α1B-adrenergic receptor. J. Biol. Chem. 1996, 271, 5049–5058. [Google Scholar] [PubMed]
- Lattion, A.L.; Diviani, D.; Cotecchia, S. Truncation of the receptor carboxyl terminus impairs agonist-dependent phosphorylation and desensitization of the α 1B-adrenergic receptor. J. Biol. Chem. 1994, 269, 22887–22893. [Google Scholar] [PubMed]
- Stanasila, L.; Abuin, L.; Dey, J.; Cotecchia, S. Different internalization properties of the α1A- and α1B-adrenergic receptor subtypes: The potential role of receptor interaction with β-arrestins and AP50. Mol. Pharmacol. 2008, 74, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.P.; Price, R.R.; Smith, M.P.; Lei, B.; Schwinn, D.A. Cellular trafficking of human α1A-adrenergic receptors is continuous and primarily agonist-independent. Mol. Pharmacol. 2004, 66, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Price, R.R.; Morris, D.P.; Biswas, G.; Smith, M.P.; Schwinn, D.A. Acute agonist-mediated desensitization of the human α1A-adrenergic receptor is primarily independent of carboxyl terminus regulation: Implications for regulation of α1AAR splice variants. J. Biol. Chem. 2002, 277, 9570–9579. [Google Scholar] [CrossRef] [PubMed]
- Schwinn, D.A.; Kwatra, M.M. Expression and regulation of α1-adrenergic receptors in human tissues. In Catecholamines. Bridging Basic Science with Clinical Medicine; Goldstein, D.S., Eisenhofer, G., McCarty, R., Eds.; Academic Press: San Diego, CA, USA, 1998; pp. 390–394. [Google Scholar]
- Akinaga, J.; Lima, V.; Kiguti, L.R.; Hebeler-Barbosa, F.; Alcántara-Hernández, R.; García-Sáinz, J.A.; Pupo, A.S. Differential phosphorylation, desensitization, and internalization of α1A-adrenoceptors activated by norepinephrine and oxymetazoline. Mol. Pharmacol. 2013, 83, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Papay, R.S.; Perez, D.M. α1a-Adrenergic receptor prevents cardiac ischemic damage through PKCδa/GLUT1/4-mediated glucose uptake. J. Recept. Signal Transduct. Res. 2016, 36, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; O’Connell, T.D. Nuclear compartmentalization of α1-adrenergic receptor signaling in adult cardiac myocytes. J. Cardiovasc. Pharmacol. 2015, 65, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Schulman, C.C.; Cortvriend, J.; Jonas, U.; Lock, T.M.; Vaage, S.; Speakman, M.J. Tamsulosin, the first prostate-selective α1A-adrenoceptor antagonist. Analysis of a multinational, multicentre, open-label study assessing the long-term efficacy and safety in patients with benign prostatic obstruction (symptomatic BPH). European Tamsulosin Study Group. Eur. Urol. 1996, 29, 145–154. [Google Scholar] [PubMed]
- Villalobos-Molina, R.; Ibarra, M. α1-Adrenoceptors mediating contraction in arteries of normotensive and spontaneously hypertensive rats are of the α1D or α1A subtypes. Eur. J. Pharmacol. 1996, 298, 257–263. [Google Scholar] [CrossRef]
- Villalobos-Molina, R.; Ibarra, M. Vascular α1D-adrenoceptors: Are they related to hypertension? Arch. Med. Res. 1999, 30, 347–352. [Google Scholar] [CrossRef]
- Villalobos-Molina, R.; López-Guerrero, J.J.; Ibarra, M. Functional evidence of α1D-adrenoceptors in the vasculature of young and adult spontaneously hypertensive rats. Br. J. Pharmacol. 1999, 126, 1534–1536. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, A.; Nasa, Y.; Koshimizu, T.; Shinoura, H.; Oshikawa, S.; Kawai, T.; Sunada, S.; Takeo, S.; Tsujimoto, G. The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J. Clin. Investig. 2002, 109, 765–775. [Google Scholar] [CrossRef] [PubMed]
- García-Sáinz, J.A.; Romero-Ávila, M.T.; Medina, L.C. α1D-Adrenergic receptors constitutive activity and reduced expression at the plasma membrane. Methods Enzymol. 2010, 484, 109–125. [Google Scholar] [PubMed]
- García-Sáinz, J.A.; Torres-Padilla, M.E. Modulation of basal intracellular calcium by inverse agonists and phorbol myristate acetate in rat-1 fibroblasts stably expressing α1D-adrenoceptors. FEBS Lett. 1999, 443, 277–281. [Google Scholar] [CrossRef]
- Gisbert, R.; Noguera, M.A.; Ivorra, M.D.; D’Ocon, P. Functional evidence of a constitutively active population of α1D-adrenoceptors in rat aorta. J. Pharmacol. Exp. Ther. 2000, 295, 810–817. [Google Scholar] [PubMed]
- Noguera, M.A.; Ivorra, M.D.; D’Ocon, P. Functional evidence of inverse agonism in vascular smooth muscle. Br. J. Pharmacol. 1996, 119, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Ziani, K.; Gisbert, R.; Noguera, M.A.; Ivorra, M.D.; D’Ocon, P. Modulatory role of a constitutively active population of α1D-adrenoceptors in conductance arteries. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H475–H481. [Google Scholar] [CrossRef] [PubMed]
- McCune, D.F.; Edelmann, S.E.; Olges, J.R.; Post, G.R.; Waldrop, B.A.; Waugh, D.J.; Perez, D.M.; Piascik, M.T. Regulation of the cellular localization and signaling properties of the α1B- and α1D-adrenoceptors by agonists and inverse agonists. Mol. Pharmacol. 2000, 57, 659–666. [Google Scholar] [PubMed]
- Hague, C.; Chen, Z.; Pupo, A.S.; Schulte, N.A.; Toews, M.L.; Minneman, K.P. The N Terminus of the Human α1D-Adrenergic Receptor Prevents Cell Surface Expression. J. Pharmacol. Exp. Ther. 2004, 309, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Hague, C.; Lee, S.E.; Chen, Z.; Prinster, S.C.; Hall, R.A.; Minneman, K.P. Heterodimers of α1B- and α1D-adrenergic receptors form a single functional entity. Mol. Pharmacol. 2006, 69, 45–55. [Google Scholar] [PubMed]
- Hague, C.; Uberti, M.A.; Chen, Z.; Hall, R.A.; Minneman, K.P. Cell surface expression of α1d-adrenergic receptors is controlled by heterodimerization with α1b-adrenergic receptors. J. Biol. Chem. 2004, 279, 15541–15549. [Google Scholar] [CrossRef] [PubMed]
- Kountz, T.S.; Lee, K.S.; Aggarwal-Howarth, S.; Curran, E.; Park, J.M.; Harris, D.A.; Stewart, A.; Hendrickson, J.; Camp, N.D.; Wolf-Yadlin, A.; et al. Endogenous N-terminal domain cleavage modulates α1d-adrenergic receptor pharmacodynamics. J. Biol. Chem. 2016, 291, 18210–18221. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hague, C.; Hall, R.A.; Minneman, K.P. Syntrophins regulate α1D-adrenergic receptors through a PDZ domain-mediated interaction. J. Biol. Chem. 2006, 281, 12414–12420. [Google Scholar] [CrossRef] [PubMed]
- Lyssand, J.S.; Defino, M.C.; Tang, X.B.; Hertz, A.L.; Feller, D.B.; Wacker, J.L.; Adams, M.E.; Hague, C. Blood pressure is regulated by an α1D-adrenergic receptor/dystrophin signalosome. J. Biol. Chem. 2008, 283, 18792–18800. [Google Scholar] [CrossRef] [PubMed]
- Bradley, S.J.; Wiegman, C.H.; Iglesias, M.M.; Kong, K.C.; Butcher, A.J.; Plouffe, B.; Goupil, E.; Bourgognon, J.M.; Macedo-Hatch, T.; LeGouill, C.; et al. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction. Proc. Natl. Acad. Sci. USA 2016, 113, 4524–4529. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Zigman, J.M.; Nakano, Y.; Coppari, R.; Balthasar, N.; Marcus, J.N.; Lee, C.E.; Jones, J.E.; Deysher, A.E.; Waxman, A.R.; White, R.D.; et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin Investig. 2005, 115, 3564–3572. [Google Scholar] [CrossRef] [PubMed]
- Chebani, Y.; Marion, C.; Zizzari, P.; Chettab, K.; Pastor, M.; Korostelev, M.; Geny, D.; Epelbaum, J.; Tolle, V.; Morisset-Lopez, S.; et al. Enhanced responsiveness of Ghsr Q343X rats to ghrelin results in enhanced adiposity without increased appetite. Sci. Signal. 2016, 9, ra39. [Google Scholar] [CrossRef] [PubMed]
GPCR | Main Phospho-Peptides Identified by MS | DOM | Functional Role | Ref. |
---|---|---|---|---|
Rhodopsin | DDDAS334ATASKTE | C-term | Inactivation | [46] |
DDDASATAS338KTE | C-term | |||
Rhodopsin | DDDAS334ATASKTE | C-term | Inactivation | [47] |
DDDASATAS338KTE | C-term | |||
DDDASATASKTETS343QVAPA | C-term | |||
β2-Adrenergic | LPGT384EDFVGHQGT393VPS396DNIDS401QGRNCS407T408ND | C-term | In vitro phosphorylation. Desensitization | [48] |
LPGT384EDFVGHQGT393VPS396DNIDS401QGRNCS407T408ND | C-term | |||
S411LLDLPGT384EDFVGHQGT393VPS396DNIDS401QGRNCS407T408ND | C-term | |||
β2-Adrenergic | FHVQNLS246QVEQDGRT | 3IL | Desensitization | [49,50] |
RS261SKFCLKE | 3IL | |||
RSS262KFCLKE | 3IL | |||
AYGNYS355SNGNTGEQSGYHVEQEK | C-term | |||
AYGNYSS356NGNTGEQSGYHVEQEK | C-term | |||
LLCEDLPGTEDFVGHQGTVPSDNIDS401QGR | C-term | |||
V2-vasopressin | TGS255PGEGAHVSAAVAK | 3IL | Not suggested | [51] |
CXCR4 | ALTSVSRGS323S324LKIL | C-term | Desensitization Internalization Signaling | [52] |
Muscarinic M3 | PS384SDNLQVPD | 3IL | Signaling | [31] |
QAQKS412MDDR | 3IL | |||
QS577VIFHK | C-term | |||
Dopamine 2 | HGLHSTPDS321PAKPEK | 3IL | Desensitization Internalization | [53] |
GPR120/FFA4 | GAILT347DTS350VKR | C-term | Desensitization and Recruitment of arrestin 3 | [42] |
GAILTDT349S350VKR | C-term | |||
RNDLS357IISGYPYDVPDYA | C-term | |||
Apelin (APJ) | SAS345YSSGHSQGPGPNMGK | C-term | Biased signaling | [54] |
SASYSS348GHSQGPGPNMGK | C-term | |||
Neuropeptide FF2 (NPFF2) | AKS369HVLINT375S376NQLVQESTFQNPHGETLLYR | C-term | Desensitization | [55] |
KS398AEKPQQELVMEELK | C-term | |||
ETTNSS418EIESAMVSK | C-term | |||
µ-Opioid | EFCIPTSSTIEQQNS363AR | C-term | Internalization | [44] |
EHPS375TANTVDR | C-term | |||
QNT370REHPSTANTVDR | C-term | |||
κ-Opioid | RQS356T357NRVRNTVQDPASMRDVGGMNKPVTHHHHHR | C-term | Internalization | [56] |
QSTNRVRNT363VQDPAS369MRD | C-term | |||
Parathyroid hormone receptor 1 (PTHR1) | S473WSRWTLALDKR | C-term | Interaction with β-arrestins | [57] |
SGS491SSYSYGPMVSHTSVTNVGPR | C-term | |||
SGSS492S493YSYGPMVSHTSVTNVGPR | C-term | |||
SGSSSYSYGPMVSHT503S504VTNVGPR | C-term | |||
VGLGLPLS518PR | C-term | |||
PGTPALET548LETTPPAMAAPK | C-term | |||
PGTPALETLETT552PPAMAAPK | C-term | |||
Growth hormone secretagogue receptor (GHSR1) | KLS349T/350LKDESSR | C-term | Endocytosis and recruitment of β-arrestins | [58] |
AWTES362SINT366 | C-term | |||
AWTESS363INT366 | C-term |
FFA4 Receptor Carboxyl Tail Sequence | Technique | Ref. |
---|---|---|
CRNEWKKIFCCFWFPEKGAILT347DT349S350VKRNDLS357IIS360G | In silico | [87,88] |
CRNEWKKIFCCFWFPEKGAILT347DTS350VKRNDLS357IISG | Mutagenesis | [85] |
CRNEWKKIFCCFWFPEKGAILT347DT349S350VKRNDLS357II SG | MS | [42] |
CRNEWKKIFCCFWFPEKGAILT347DT349S350VKRNDLS357IIS360G | MS | [86] |
CRNEWKKIFCCFWFPEKGAILTDTS350VKRNDLS357IIS360G | MS | Our data |
FFA4 Receptor Intracellular Loop 3 Sequence | Technique | Ref. |
S226YS228KILQITKAS237RKRLT242VSLAYSES250HQIRVS256QQDFRLFRT265LFL | In silico GPS | [87,88] |
SYSKILQITKAS237RKRLT242VSLAYSESHQIRVS256QQDFRLFRTLFL | In silico | [89] |
SYSKILQITKASRKRLT242VSLAYSEHQIRVSQQDFRLFRTLFL | MS | Our data |
Detected Protein | Function | Possible Role |
---|---|---|
PKC α, δ and ζ | Serine/threonine protein kinase | Desensitization |
PI3K | Phosphoinositide-dependent protein kinase | Desensitization |
PP2A | Serine/threonine protein phosphatase | Resensitization |
Dynamin 2 | Scission of newly formed vesicles from de plasma membrane | Internalization |
Clathrin | Formation of coated vesicles | Internalization |
STAT1 and 3 | Signal transducer and activator of transcription | Unknown |
MAD2 and 4 | TGF-β action, transcription factor | Unknown |
Rab3 | Membrane traffic | Vesicular traffic |
Ubiquitin protein ligase E3 | Ubiquitin ligase | Degradation |
SUMO-activating enzyme subunit 2 | E1-ligase for SUMO1/2/3 | Degradation |
Cullin-associated NEDD8-dissociated protein 1 | E3 ubiquitin ligase complexes | Degradation |
Exportin-1 | Nuclear export of proteins | Unknown |
Exportin-2 | Nuclear export of proteins | Unknown |
Importin-7 | Prevents activation of Ran-GTPase | Unknown |
Lamina B1 | Nuclear structure and dynamics | Nuclear association |
Lamina-associated polypeptide 2 | Assembly of the nuclear lamina/nuclear organization | Nuclear association |
Myosin | ATP-dependent motor protein | Unknown |
Protein | Function | Possible Role |
---|---|---|
* SNTB Syntrophin, β 1 and 2 | Actin-binding protein | Adaptor protein |
* UTRN Utrophin | Component of cytoskeleton | Adaptor protein |
* ERLIN 2 ER lipid raft associated 2 | Endoplasmic reticulum-associated degradation | Unknown |
* GOPC | Golgi-associated PDZ and coiled-coil motif containing | Adaptor protein |
* ERLIN 1 | Endoplasmic reticulum-associated degradation | Unknown |
* DTNA, Distrobrevin α | Cytoplasmic proteins bind to syntrophin | Adaptor protein |
* SNTA1. Syntrophin α 1 | Actin-binding protein, protein associated with dystrophin | Adaptor protein |
* ACTA | Actin α 2 smooth muscle aorta | Cell motility |
* AMFR | Autocrine motility factor receptor | Membrane traffic |
* CKAP4 | Cytoskeleton-associated protein | Cell motility |
** OPA1 | Dynamin-like 120 kDa protein, mitochondrial | Unknown |
** DNM2 | Dynamin-2 | Scission of newly formed vesicles |
** EEF2 | Elongation factor 2 | Unknown |
** CSE1L, XPO1, XPO7 | Exportin 1, 2 and 7 | Unknown |
** XRCC5 | X-ray repair cross-complementing protein 5 | Unknown |
** MTHFD1 | C-1-tetrahydrofolate synthase, cytoplasmic | Unknown |
** UBA2 | SUMO-activating enzyme subunit 2 | Unknown |
** NUP93 | Nuclear pore complex protein Nup93 | Unknown |
** DDX21 | Nucleolar RNA helicase 2 | Unknown |
** MCM7 | DNA replication licensing factor MCM7 | Unknown |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfonzo-Méndez, M.A.; Alcántara-Hernández, R.; García-Sáinz, J.A. Novel Structural Approaches to Study GPCR Regulation. Int. J. Mol. Sci. 2017, 18, 27. https://doi.org/10.3390/ijms18010027
Alfonzo-Méndez MA, Alcántara-Hernández R, García-Sáinz JA. Novel Structural Approaches to Study GPCR Regulation. International Journal of Molecular Sciences. 2017; 18(1):27. https://doi.org/10.3390/ijms18010027
Chicago/Turabian StyleAlfonzo-Méndez, Marco A., Rocío Alcántara-Hernández, and J. Adolfo García-Sáinz. 2017. "Novel Structural Approaches to Study GPCR Regulation" International Journal of Molecular Sciences 18, no. 1: 27. https://doi.org/10.3390/ijms18010027
APA StyleAlfonzo-Méndez, M. A., Alcántara-Hernández, R., & García-Sáinz, J. A. (2017). Novel Structural Approaches to Study GPCR Regulation. International Journal of Molecular Sciences, 18(1), 27. https://doi.org/10.3390/ijms18010027