Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices
Abstract
:1. Introduction
2. Results
2.1. Body/Organ Weights and Diet Consumption
2.2. Proliferation Index
2.3. Effect of Spice Intervention on Serum Estrogen Levels
2.4. Circulatory Prolactin
2.5. Modulation of Estrogen-Related Markers
2.6. Tumor Incidence, Volume, and Multiplicity
2.7. Potential Toxicity of Caraway
3. Discussion
4. Material and Methods
4.1. Chemicals
4.2. Diet
4.3. Animal Study
4.4. Evaluation of Cell Proliferation by Immunohistochemistry
4.5. Serum E2 Analysis
4.6. Plasma Prolactin
4.7. Western Blot Analysis
4.8. Real-Time PCR for Target Gene Expression
4.9. Toxicity Testing
4.10. Statistical Analyses
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SERM | Selective E2-receptor modulators |
PCNA | Proliferating cell nuclear antigen |
E2 | 17β-estradiol |
ACI | August-Copenhagen Irish rats |
ERα | Estrogen receptor α |
BC | Breast cancer |
HRT | Hormone replacement therapy |
4E2 | 4-Hydroxyestrone |
4E1 | 4-Hydroxyestrone |
References
- American Cancer Society. Cancer Facts & Figures 2016; American Cancer Society: Atlanta, GA, USA, 2017. [Google Scholar]
- Chen, W.Y. Exogenous and endogenous hormones and breast cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Cummings, S.R.; Duong, T.; Kenyon, E.; Cauley, J.A.; Whitehead, M.; Krueger, K.A. Serum estradiol level and risk of breast cancer during treatment with raloxifene. JAMA 2002, 287, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Boyd, N.F.; Guo, H.; Martin, L.J.; Sun, L.; Stone, J.; Fishell, E.; Jong, R.A.; Hislop, G.; Chiarelli, A.; Minkin, S.; et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 2007, 356, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.; Baglietto, L.; Apicella, C.; Stone, J.; Southey, M.C.; English, D.R.; Giles, G.G.; Hopper, J.L. Mammographic density and risk of breast cancer by mode of detection and tumor size: A case-control study. Breast Cancer Res. 2016, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Yaghjyan, L.; Colditz, G.A.; Collins, L.C.; Schnitt, S.J.; Rosner, B.; Vachon, C.; Tamimi, R.M. Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. J. Natl. Cancer Inst. 2011, 103, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.; Rhodes, D.; Hruska, C. Molecular breast imaging. Expert Rev. Anticancer Ther. 2009, 9, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Stefansson, O.A.; Jonasson, J.G.; Johannsson, O.T.; Olafsdottir, K.; Steinarsdottir, M.; Valgeirsdottir, S.; Eyfjord, J.E. Genomic profiling of breast tumours in relation to brca abnormalities and phenotypes. Breast Cancer Res. 2009, 11, R47. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, L.C.; Schaid, D.J.; Woods, J.E.; Crotty, T.P.; Myers, J.L.; Arnold, P.G.; Petty, P.M.; Sellers, T.A.; Johnson, J.L.; McDonnell, S.K.; et al. Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N. Engl. J. Med. 1999, 340, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Rebbeck, T.R.; Friebel, T.; Lynch, H.T.; Neuhausen, S.L.; van’t Veer, L.; Garber, J.E.; Evans, G.R.; Narod, S.A.; Isaacs, C.; Matloff, E.; et al. Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: The PROSE Study Group. J. Clin. Oncol. 2004, 22, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Lostumbo, L.; Carbine, N.E.; Wallace, J. Prophylactic mastectomy for the prevention of breast cancer. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef]
- Dale, L.C.; Gotay, C.C. The relationship between complementary and alternative medicine use and breast cancer early detection: A critical review. Evid. Based Complement. Altern. Med. 2012, 2012, 506978. [Google Scholar] [CrossRef] [PubMed]
- Wanchai, A.; Armer, J.M.; Stewart, B.R. Complementary and alternative medicine use among women with breast cancer: A systematic review. Clin. J. Oncol. Nurs. 2010, 14, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Vogel, V.G. Update on raloxifene: Role in reducing the risk of invasive breast cancer in postmenopausal women. Breast Cancer 2011, 3, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Nichols, H.B.; DeRoo, L.A.; Scharf, D.R.; Sandler, D.P. Risk-benefit profiles of women using tamoxifen for chemoprevention. J. Natl. Cancer Inst. 2015, 107, 354. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Kuo, S.J.; Liaw, Y.P.; Avital, I.; Stojadinovic, A.; Man, Y.G.; Mannion, C.; Wang, J.; Chou, M.C.; Tsai, H.D.; et al. Endometrial cancer incidence in breast cancer patients correlating with age and duration of tamoxifen use: A population based study. J. Cancer 2014, 5, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Oseni, T.; Patel, R.; Pyle, J.; Jordan, V.C. Selective estrogen receptor modulators and phytoestrogens. Planta Med. 2008, 74, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, Y.F. Natural compounds as anticancer agents: Experimental evidence. World J. Exp. Med. 2012, 2, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Low Dog, T. A reason to season: The therapeutic benefits of spices and culinary herbs. Explore 2006, 2, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Kaefer, C.M.; Milner, J.A. The role of herbs and spices in cancer prevention. J. Nutr. Biochem. 2008, 19, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Boskabady, M.H.; Alitaneh, S.; Alavinezhad, A. Carum copticum L.: A herbal medicine with various pharmacological effects. BioMed Res. Int. 2014, 2014, 569087. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Hemphill, I.; Cobiac, L.; Patch, C.S.; Sullivan, D.R.; Fenech, M.; Roodenrys, S.; Keogh, J.B.; Clifton, P.M.; Williams, P.G.; et al. Health benefits of herbs and spices: The past, the present, the future. Med. J. Aust. 2006, 185, 4–24. [Google Scholar]
- Ji, H.F.; Li, X.J.; Zhang, H.Y. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 2009, 10, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.L.; Telang, N.T.; Osborne, M.P.; Bradlow, H.L. Medical hypothesis: Bifunctional genetic-hormonal pathways to breast cancer. Environ. Health Perspect. 1997, 105, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.S.; Henley, D.C.; Ahamed, S.; Wimalasena, J. Estrogens and cell-cycle regulation in breast cancer. Trends Endocrinol. Metab. 2001, 12, 320–327. [Google Scholar] [CrossRef]
- Lombardi, M.; Castoria, G.; Migliaccio, A.; Barone, M.V.; Di Stasio, R.; Ciociola, A.; Bottero, D.; Yamaguchi, H.; Appella, E.; Auricchio, F. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells. J. Cell Biol. 2008, 182, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Weroha, S.J.; Li, S.A.; Tawfik, O.; Li, J.J. Overexpression of cyclins D1 and D3 during estrogen-induced breast oncogenesis in female ACI rats. Carcinogenesis 2006, 27, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Forman, M.R.; Hursting, S.D.; Umar, A.; Barrett, J.C. Nutrition and cancer prevention: A multidisciplinary perspective on human trials. Annu. Rev. Nutr. 2004, 24, 223–254. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C. Diet, nutrition, and avoidable cancer. Environ. Health Perspect. 1995, 103, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.R. Targeting apoptosis with dietary bioactive agents. Exp. Biol. Med. 2006, 231, 117–129. [Google Scholar]
- Jeyabalan, J.; Aqil, F.; Soper, L.; Schultz, D.J.; Gupta, R.C. Potent chemopreventive/antioxidant activity detected in common spices of the apiaceae family. Nutr. Cancer 2015, 67, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Dennison, K.L.; Samanas, N.B.; Harenda, Q.E.; Hickman, M.P.; Seiler, N.L.; Ding, L.; Shull, J.D. Development and characterization of a novel rat model of estrogen-induced mammary cancer. Endocr. Relat. Cancer 2015, 22, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Beatson, G.T. On the treatment of inoperable cases of carcinoma of the mamma: Suggestions for a new method of treatment, with illustrative cases. Cancer J. Clin. 1983, 33, 108–121. [Google Scholar] [CrossRef]
- Sims, A.H.; Howell, A.; Howell, S.J.; Clarke, R.B. Origins of breast cancer subtypes and therapeutic implications. Nat. Clin. Pract. Oncol. 2007, 4, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Hermenegildo, C. The endometrial effects of serms. Hum. Reprod. Updat. 2000, 6, 244–254. [Google Scholar] [CrossRef]
- Milano, A.; Dal Lago, L.; Sotiriou, C.; Piccart, M.; Cardoso, F. What clinicians need to know about antioestrogen resistance in breast cancer therapy. Eur. J. Cancer 2006, 42, 2692–2705. [Google Scholar] [CrossRef] [PubMed]
- Lewis-Wambi, J.S.; Jordan, V.C. Treatment of postmenopausal breast cancer with selective estrogen receptor modulators (SERMs). Breast Dis. 2005, 24, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.R.; Singh, S.V. Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. AAPS J. 2014, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aqil, F.; Jeyabalan, J.; Munagala, R.; Singh, I.P.; Gupta, R.C. Prevention of hormonal breast cancer by dietary jamun. Mol. Nutr. Food Res. 2016, 60, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Jeyabalan, J.; Aqil, F.; Munagala, R.; Annamalai, L.; Vadhanam, M.V.; Gupta, R.C. Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer. J. Agric. Food Chem. 2014, 62, 3963–3971. [Google Scholar] [CrossRef] [PubMed]
- Ravoori, S.; Vadhanam, M.V.; Sahoo, S.; Srinivasan, C.; Gupta, R.C. Mammary tumor induction in Aci rats exposed to low levels of 17β-estradiol. Int. J. Oncol. 2007, 31, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhou, Y.; Li, Y.; Xu, D.P.; Li, S.; Li, H.B. Spices for prevention and treatment of cancers. Nutrients 2016, 8, 495. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.B.; Stancel, G.M. Estrogen receptor-mediated processes in normal and cancer cells. J. Natl. Cancer Inst. Monogr. 2000, 27, 135–145. [Google Scholar] [CrossRef]
- Fu, M.; Wang, C.; Li, Z.; Sakamaki, T.; Pestell, R.G. Minireview: Cyclin D1: Normal and abnormal functions. Endocrinology 2004, 145, 5439–5447. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.J.; Albanese, C.; Fu, M.; D’Amico, M.; Lin, B.; Watanabe, G.; Haines, G.K.; Siegel, P.M.; Hung, M.C.; Yarden, Y.; et al. Cyclin D1 is required for transformation by activated neu and is induced through an E2F-dependent signaling pathway. Mol. Cell. Biol. 2000, 20, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Spencer, W.A.; Vadhanam, M.V.; Jeyabalan, J.; Gupta, R.C. Oxidative DNA damage following microsome/Cu(II)-mediated activation of the estrogens, 17β-estradiol, equilenin, and equilin: Role of reactive oxygen species. Chem. Res. Toxicol. 2012, 25, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Kisselev, P.; Schunck, W.H.; Roots, I.; Schwarz, D. Association of CYP1A1 polymorphisms with differential metabolic activation of 17β-estradiol and estrone. Cancer Res. 2005, 65, 2972–2978. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, Y.; Nakajima, M.; Takagi, S.; Taniya, T.; Yokoi, T. Microrna regulates the expression of human cytochrome P450 1B1. Cancer Res. 2006, 66, 9090–9098. [Google Scholar] [CrossRef] [PubMed]
- Modugno, F.; Knoll, C.; Kanbour-Shakir, A.; Romkes, M. A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res. Treat. 2003, 82, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Liehr, J.G.; Ricci, M.J. 4-hydroxylation of estrogens as marker of human mammary tumors. Proc. Natl. Acad. Sci. USA 1996, 93, 3294–3296. [Google Scholar] [CrossRef] [PubMed]
- Li, S.A.; Weroha, S.J.; Tawfik, O.; Li, J.J. Prevention of solely estrogen-induced mammary tumors in female ACI rats by tamoxifen: Evidence for estrogen receptor mediation. J. Endocrinol. 2002, 175, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Clevenger, C.V.; Furth, P.A.; Hankinson, S.E.; Schuler, L.A. The role of prolactin in mammary carcinoma. Endocr. Rev. 2003, 24, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Sutton, K.M.; Greenshields, A.L.; Hoskin, D.W. Thymoquinone, a bioactive component of black caraway seeds, causes G1 phase cell cycle arrest and apoptosis in triple-negative breast cancer cells with mutant p53. Nutr. Cancer 2014, 66, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Ravoori, S.; Vadhanam, M.V.; Aqil, F.; Gupta, R.C. Inhibition of estrogen-mediated mammary tumorigenesis by blueberry and black raspberry. J. Agric. Food Chem. 2012, 60, 5547–5555. [Google Scholar] [CrossRef] [PubMed]
- Munagala, R.; Kausar, H.; Munjal, C.; Gupta, R.C. Withaferin a induces p53-dependent apoptosis by repression of hpv oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 2011, 32, 1697–1705. [Google Scholar] [CrossRef] [PubMed]
- Munagala, R.; Aqil, F.; Vadhanam, M.V.; Gupta, R.C. Microrna “signature” during estrogen-mediated mammary carcinogenesis and its reversal by ellagic acid intervention. Cancer Lett. 2013, 339, 175–184. [Google Scholar] [CrossRef] [PubMed]
Group | Weights (g) at 3 Weeks | Weights (g) at 12 Weeks | ||||||
---|---|---|---|---|---|---|---|---|
Body wt. | Liver | Mammary | Pituitary a | Body wt. | Liver | Mammary | Pituitary a | |
Control diet | 153.2 ± 9.3 | 4.5 ± 0.4 | 3.9 ± 1.1 | 8.5 ± 1.2 | 169 ± 9 | 4.4 ± 0.4 | 4.0 ± 0.6 | 8.7 ± 0.3 |
Anise | 159.1 ± 4.0 | 5.1 ± 0.4 | 4.6 ± 1.0 | 7.7 ± 1.9 | 172 ± 3 | 4.9 ± 0.2 | 3.3 ± 0.2 | 9.4 ± 1.0 |
Caraway | 157.5 ± 2.4 | 4.6 ± 0.1 | 4.0 ± 0.4 | 9.2 ± 0.5 | 166 ± 3 | 4.6 ± 0.1 | 2.6 ± 0.3 | 9.2 ± 0.9 |
Celery | 146.3 ± 4.7 | 5.4 ± 0.3 | 3.2 ± 0.5 | 7.7 ± 1.0 | 171 ± 6 | 5.4 ± 0.3 | 4.4 ± 1.2 | 8.6 ± 1.4 |
E2 + Control diet | 156.0 ± 16 | 7.0 ± 0.4 *** | 4.9 ± 1.2 ** | 17.9 ± 2.6 *** | 184 ± 13 * | 6.3 ± 0.2 ** | 6.5 ± 0.9 *** | 32.5 ± 2.4 *** |
E2 + Anise | 159.5 ± 6.2 | 6.8 ± 0.3 | 5.4 ± 0.9 | 19.1 ± 3.9 | 177 ± 9 | 7.1 ± 0.7 | 5.5 ± 0.4 | 26.6 ± 5.5 # |
E2 + Caraway | 160.3 ± 3.5 | 7.2 ± 0.5 | 4.3 ± 0.6 # | 20.6 ± 5.0 | 184 ± 3 | 7.7 ± 0.3 | 6.7 ± 0.2 | 21.2 ± 5.7 ### |
E2 + Celery | 158.0 ± 6.0 | 7.8 ± 0.6 | 4.9 ± 0.5 | 14.4 ± 3.5 # | 187 ± 14 | 9.0 ± 0.8 | 6.3 ± 0.4 | 21.8 ± 5.2 ### |
Biochemical Profile | Control | Caraway | E2/Control | E2/Caraway |
---|---|---|---|---|
Liver profile | ||||
Aspartate aminotransferase | 154 ± 67 | 203.3 ± 79.3 | 207.5 ± 88.8 | 154.7 ± 34.7 |
Alanine aminotransferase | 51 ± 9.1 | 47.7 ± 18.0 | 37.3 ± 6.6 * | 45.7 ± 5.3 |
Alk Phosphatase | 51 ± 7.3 | 49.7 ± 12.6 | 27.3 ± 6.1 ** | 32.3 ± 2.2 ** |
Gamma-glutamyl transferase | 1 ± 0.5 | 1.3 ± 0.5 | 2.3 ± 0.8 | 1.5 ± 1 |
Amylase | 654 ± 58 | 584 ± 18 | 561 ± 47 | 670 ± 50 |
Creatine phosphokinase | 798 ± 295 | 1017 ± 330 | 1010 ± 549 | 634.7 ± 127 |
Kidney profile | ||||
Blood Urea nitrogen (BUN) | 28.5 ± 2.4 | 18.7 ± 1.5 | 25.7 ± 2.3 | 22.3 ± 3.6 |
BUN/Creatinine Ratio | 61.5 ± 6 | 40.7 ± 8.3 * | 55.7 ± 8.8 | 40.5 ± 6.1 * |
Phosphorus | 15.2 ± 0.9 | 18.1 ± 2.1 | 12.5 ± 1.4 | 12.9 ± 0.6 |
Calcium | 10.9 ± 0.9 | 10.5 ± 1.1 | 11.5 ± 0.3 | 11.9 ± 0.1 |
Total Protein | 8.1 ± 0.4 | 7.0 ± 0.4 | 8.0 ± 0.3 | 8.1 ± 0.3 |
Albumin | 4.9 ± 0.3 | 4.1 ± 0.3 | 4.7 ± 0.3 | 4.5 ± 0.2 |
Globulin | 3.3 ± 0.1 | 2.9 ± 0.1 | 3.3 ± 0.4 | 3.7 ± 0.05 |
Albumin/Globulin Ratio | 1.5 ± 0.1 | 1.43 ± 0.2 | 1.4 ± 0.3 | 1.2 ± 0.08 |
Glucose | 154.7 ± 40.5 | 128.7 ± 42.1 | 107.8 ± 7.1 | 109.7 ± 27.5 |
Cholesterol | 158.3 ± 39.7 | 101.7 ± 1.53 * | 120.8 ± 8.7 | 125.5 ± 9.3 |
Triglyceride | 203.7 ± 28.1 | 114.7 ± 36.5 * | 107.0 ± 44.7 | 171.2 ± 91.6 |
Hematological Profile | Control | Caraway | E2/Control | E2/Caraway |
---|---|---|---|---|
White blood cells | 5.1 ± 1.1 | 4.8 ± 1.6 | 4.4 ± 1.5 | 4.5 ± 1.2 |
Hemoglobin | 13.3 ± 0.6 | 12.2 ± 0.2 | 10.5 ± 0.9 | 11.5 ± 0.8 |
Hematocrit | 46.7 ± 1.2 | 41.7 ± 1.5 | 34.8 ± 4.1 ** | 38.5 ± 2.4 * |
Mean corpuscular volume | 56 ± 1.0 | 54.3 ± 1.2 | 52.8 ± 2.5 | 54.5 ± 2.1 |
Mean corpuscular hemoglobin conc. | 28.7 ± 0.6 | 29.7 ± 0.6 | 30.2 ± 1.6 | 29.8 ± 1.0 |
Platelet Count | 939 ± 61 | 993.7 ± 61.7 | 745.3 ± 208 | 845 ± 24.7 |
Neutrophils | 17.8 ± 7.5 | 14.7 ± 2.1 | 28 ± 11.5 | 17.0 ± 7.4 |
Lymphocytes | 76.8 ± 7.8 | 81 ± 1.7 | 64.8 ± 12.6 | 75.3 ± 5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aqil, F.; Jeyabalan, J.; Munagala, R.; Ravoori, S.; Vadhanam, M.V.; Schultz, D.J.; Gupta, R.C. Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices. Int. J. Mol. Sci. 2017, 18, 425. https://doi.org/10.3390/ijms18020425
Aqil F, Jeyabalan J, Munagala R, Ravoori S, Vadhanam MV, Schultz DJ, Gupta RC. Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices. International Journal of Molecular Sciences. 2017; 18(2):425. https://doi.org/10.3390/ijms18020425
Chicago/Turabian StyleAqil, Farrukh, Jeyaprakash Jeyabalan, Radha Munagala, Srivani Ravoori, Manicka V. Vadhanam, David J. Schultz, and Ramesh C. Gupta. 2017. "Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices" International Journal of Molecular Sciences 18, no. 2: 425. https://doi.org/10.3390/ijms18020425
APA StyleAqil, F., Jeyabalan, J., Munagala, R., Ravoori, S., Vadhanam, M. V., Schultz, D. J., & Gupta, R. C. (2017). Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices. International Journal of Molecular Sciences, 18(2), 425. https://doi.org/10.3390/ijms18020425