The Role of HCG in Implantation: A Mini-Review of Molecular and Clinical Evidence
Abstract
:1. Introduction
2. Human Chorionic Gonadotrophin (HCG): The Role in Implantation and Early Fetal Development
3. HCG and Clinical Applications in Assisted Reproduction Techniques: Where We Stand
4. The Clinical Impact of Intrauterine Administration of HCG-Treated Autologous Peripheral Blood Mononuclear Cells on Repeated Implantation Failures
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
ART | Assisted reproduction techniques |
ERK 1/2 | Extracellular signal-regulated protein kinases 1/2 |
HCG | Human chorionic gonadotropin |
HOXA10 | Homeobox A10 |
LH | Luteinizing gormone |
LIF | Leukemia inhibitory factor |
M-CSF | Macrophage colony stimulating factor |
PBMC | Peripheral blood mononuclear cells |
Treg | T regulatory cells |
uNK | Uterine natural killer cells |
VEGF | Vascular endothelial growth factor |
References
- Herington, J.L.; Guo, Y.; Reese, J.; Paria, B.C. Gene profiling the window of implantation: Microarray analyses from human and rodent models. J. Reprod. Health Med. 2016, 2, S19–S25. [Google Scholar] [CrossRef] [PubMed]
- Salamonsen, L.A.; Evans, J.; Nguyen, H.P.; Edgell, T.A. The microenvironment of human implantation: Determinant of reproductive success. Am. J. Reprod. Immunol. 2016, 75, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Godbole, G.; Modi, D. Decidual control of trophoblast invasion. Am. J. Reprod. Immunol. 2016, 75, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Jurisicova, A.; Antenos, M.; Kapasi, K.; Meriano, J.; Casper, R.F. Variability in the expression of trophectodermal markers β -human chorionic gonadotrophin, human leukocyte antigen-G and pregnancy specific β -1 glycoprotein by the human blastocyst. Hum. Reprod. 1999, 14, 1852–1858. [Google Scholar] [CrossRef] [PubMed]
- Bonduelle, M.L.; Dodd, R.; Liebaers, I.; Van Steirteghem, A.; Williamson, R.; Akhurst, R. Chorionic gonadotrophin-β mrna, a trophoblast marker, is expressed in human 8-cell embryos derived from tripronucleate zygotes. Hum. Reprod. 1988, 3, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Lopata, A.; Hay, D.L. The potential of early human embryos to form blastocysts, hatch from their zona and secrete hCG in culture. Hum. Reprod. 1989, 4, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Hoshina, M.; Boothby, M.; Hussa, R.; Pattillo, R.; Camel, H.M.; Boime, I. Linkage of human chorionic gonadotrophin and placental lactogen biosynthesis to trophoblast differentiation and tumorigenesis. Placenta 1985, 6, 163–172. [Google Scholar] [CrossRef]
- Shikone, T.; Yamoto, M.; Kokawa, K.; Yamashita, K.; Nishimori, K.; Nakano, R. Apoptosis of human corpora lutea during cyclic luteal regression and early pregnancy. J. Clin. Endocrinol. Metab. 1996, 81, 2376–2380. [Google Scholar] [PubMed]
- Crochet, J.R.; Shah, A.A.; Schomberg, D.W.; Price, T.M. Hyperglycosylated human chorionic gonadotropin does not increase progesterone production by luteinized granulosa cells. J. Clin. Endocrinol. Metab. 2012, 97, E1741–E1744. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.A. hCG, five independent molecules. Clin. Chim. Acta 2012, 413, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Ladner, D.G.; Cole, L.A. Hyperglycosylated human chorionic gonadotropin and the source of pregnancy failures. Fertil. Steril. 2008, 89, 1781–1786. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Salamonsen, L.A.; Menkhorst, E.; Dimitriadis, E. Dynamic changes in hyperglycosylated human chorionic gonadotrophin throughout the first trimester of pregnancy and its role in early placentation. Hum. Reprod. 2015, 30, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.A. Hyperglycosylated hCG, a review. Placenta 2010, 31, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Guibourdenche, J.; Handschuh, K.; Tsatsaris, V.; Gerbaud, P.; Leguy, M.C.; Muller, F.; Brion, D.E.; Fournier, T. Hyperglycosylated hCG is a marker of early human trophoblast invasion. J. Clin. Endocrinol. Metab. 2010, 95, E240–E244. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.J.; Lei, Z.M.; Rao, C.V.; Lin, J. Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology 1993, 132, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Keay, S.D.; Vatish, M.; Karteris, E.; Hillhouse, E.W.; Randeva, H.S. The role of hCG in reproductive medicine. BJOG 2004, 111, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Fazleabas, A.T.; Donnelly, K.M.; Srinivasan, S.; Fortman, J.D.; Miller, J.B. Modulation of the baboon (Papio anubis) uterine endometrium by chorionic gonadotrophin during the period of uterine receptivity. Proc. Natl. Acad. Sci. USA 1999, 96, 2543–2548. [Google Scholar] [CrossRef] [PubMed]
- Toth, B.; Roth, K.; Kunert-Keil, C.; Scholz, C.; Schulze, S.; Mylonas, I.; Friese, K.; Jeschke, U. Glycodelin protein and mrna is downregulated in human first trimester abortion and partially upregulated in mole pregnancy. J. Histochem. Cytochem. 2008, 56, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Han, S.W.; Lei, Z.M.; Rao, C.V. Treatment of human endometrial stromal cells with chorionic gonadotropin promotes their morphological and functional differentiation into decidua. Mol. Cell. Endocrinol. 1999, 147, 7–16. [Google Scholar] [CrossRef]
- Licht, P.; Losch, A.; Dittrich, R.; Neuwinger, J.; Siebzehnrubl, E.; Wildt, L. Novel insights into human endometrial paracrinology and embryo-maternal communication by intrauterine microdialysis. Hum. Reprod. Update 1998, 4, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Fluhr, H.; Bischof-Islami, D.; Krenzer, S.; Licht, P.; Bischof, P.; Zygmunt, M. Human chorionic gonadotropin stimulates matrix metalloproteinases-2 and -9 in cytotrophoblastic cells and decreases tissue inhibitor of metalloproteinases-1, -2, and -3 in decidualized endometrial stromal cells. Fertil. Steril. 2008, 90, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Fluhr, H.; Carli, S.; Deperschmidt, M.; Wallwiener, D.; Zygmunt, M.; Licht, P. Differential effects of human chorionic gonadotropin and decidualization on insulin-like growth factors-i and -ii in human endometrial stromal cells. Fertil. Steril. 2008, 90, 1384–1389. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Pizarro, A.; Argandona, F.; Palomino, W.A.; Devoto, L. Human chorionic gonadotropin (hCG) modulation of TIMP1 secretion by human endometrial stromal cells facilitates extravillous trophoblast invasion in vitro. Hum. Reprod. 2013, 28, 2215–2227. [Google Scholar] [CrossRef] [PubMed]
- Fogle, R.H.; Li, A.; Paulson, R.J. Modulation of hoxa10 and other markers of endometrial receptivity by age and human chorionic gonadotropin in an endometrial explant model. Fertil. Steril. 2010, 93, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lei, C.X.; Zhang, W. Human chorionic gonadotropin (hCG) regulation of galectin-3 expression in endometrial epithelial cells and endometrial stromal cells. Acta Histochem. 2013, 115, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Kajihara, T.; Uchino, S.; Suzuki, M.; Itakura, A.; Brosens, J.J.; Ishihara, O. Human chorionic gonadotropin confers resistance to oxidative stress-induced apoptosis in decidualizing human endometrial stromal cells. Fertil. Steril. 2011, 95, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Pizarro, A.; Archiles, S.; Argandona, F.; Valencia, C.; Zavaleta, K.; Cecilia Johnson, M.; Gonzalez-Ramos, R.; Devoto, L. hCG activates epac-Erk1/2 signaling regulating progesterone receptor expression and function in human endometrial stromal cells. Mol. Hum. Reprod. 2017, 23, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Salamonsen, L.A. Too much of a good thing? Experimental evidence suggests prolonged exposure to hCG is detrimental to endometrial receptivity. Hum. Reprod. 2013, 28, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, A.; Brachwitz, N.; Sohr, S.; Engeland, K.; Langwisch, S.; Dolaptchieva, M.; Alexander, T.; Taran, A.; Malfertheiner, S.F.; Costa, S.D.; et al. Human chorionic gonadotropin attracts regulatory t cells into the fetal-maternal interface during early human pregnancy. J. Immunol. 2009, 182, 5488–5497. [Google Scholar] [CrossRef] [PubMed]
- Diao, L.H.; Li, G.G.; Zhu, Y.C.; Tu, W.W.; Huang, C.Y.; Lian, R.C.; Chen, X.; Li, Y.Y.; Zhang, T.; Huang, Y.; et al. Human chorionic gonadotropin potentially affects pregnancy outcome in women with recurrent implantation failure by regulating the homing preference of regulatory T cells. Am. J. Reprod. Immunol. 2017, 77, e12618. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Khan, A.; Savelkoul, H.F.; Benner, R. Inhibition of diabetes in nod mice by human pregnancy factor. Hum. Immunol. 2001, 62, 1315–1323. [Google Scholar] [CrossRef]
- Dong, M.; Ding, G.; Zhou, J.; Wang, H.; Zhao, Y.; Huang, H. The effect of trophoblasts on T lymphocytes: Possible regulatory effector molecules--A proteomic analysis. Cell. Physiol. Biochem. 2008, 21, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Akoum, A.; Metz, C.N.; Morin, M. Marked increase in macrophage migration inhibitory factor synthesis and secretion in human endometrial cells in response to human chorionic gonadotropin hormone. J. Clin. Endocrinol. Metab. 2005, 90, 2904–2910. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Versnel, M.A.; Cheung, W.Y.; Leenen, P.J.; Khan, N.A.; Benner, R.; Kiekens, R.C. Chorionic gonadotropin can enhance innate immunity by stimulating macrophage function. J. Leukoc. Biol. 2007, 82, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Kayisli, U.A.; Selam, B.; Guzeloglu-Kayisli, O.; Demir, R.; Arici, A. Human chorionic gonadotropin contributes to maternal immunotolerance and endometrial apoptosis by regulating Fas-Fas ligand system. J. Immunol. 2003, 171, 2305–2313. [Google Scholar] [CrossRef] [PubMed]
- Kane, N.; Kelly, R.; Saunders, P.T.; Critchley, H.O. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology 2009, 150, 2882–2888. [Google Scholar] [CrossRef] [PubMed]
- Dehghani Firouzabadi, R.; Janati, S.; Razi, M.H. The effect of intrauterine human chorionic gonadotropin injection before embryo transfer on the implantation and pregnancy rate in infertile patients: A randomized clinical trial. Int. J. Reprod. Biomed. 2016, 14, 657–664. [Google Scholar]
- Mansour, R.; Tawab, N.; Kamal, O.; El-Faissal, Y.; Serour, A.; Aboulghar, M.; Serour, G. Intrauterine injection of human chorionic gonadotropin before embryo transfer significantly improves the implantation and pregnancy rates in in vitro fertilization/intracytoplasmic sperm injection: A prospective randomized study. Fertil. Steril. 2011, 96, 1370–1374. [Google Scholar] [CrossRef] [PubMed]
- Navali, N.; Gassemzadeh, A.; Farzadi, L.; Abdollahi, S.; Nouri, M.; Hamdi, K.; Mallah, F.; Jalilvand, F. Intrauterine administration of hCG immediately after oocyte retrieval and the outcome of ICSI: A randomized controlled trial. Hum. Reprod. 2016, 31, 2520–2526. [Google Scholar] [CrossRef] [PubMed]
- Santibanez, A.; Garcia, J.; Pashkova, O.; Colin, O.; Castellanos, G.; Sanchez, A.P.; De la Jara, J.F. Effect of intrauterine injection of human chorionic gonadotropin before embryo transfer on clinical pregnancy rates from in vitro fertilisation cycles: A prospective study. Reprod. Biol. Endocrinol. 2014, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Wirleitner, B.; Schuff, M.; Vanderzwalmen, P.; Stecher, A.; Okhowat, J.; Hradecky, L.; Kohoutek, T.; Kralickova, M.; Spitzer, D.; Zech, N.H. Intrauterine administration of human chorionic gonadotropin does not improve pregnancy and life birth rates independently of blastocyst quality: A randomised prospective study. Reprod. Biol. Endocrinol. 2015, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Zarei, A.; Parsanezhad, M.E.; Younesi, M.; Alborzi, S.; Zolghadri, J.; Samsami, A.; Amooee, S.; Aramesh, S. Intrauterine administration of recombinant human chorionic gonadotropin before embryo transfer on outcome of in vitro fertilization/ intracytoplasmic sperm injection: A randomized clinical trial. Iran. J. Reprod. Med. 2014, 12, 1–6. [Google Scholar] [PubMed]
- Ye, H.; Hu, J.; He, W.; Zhang, Y.; Li, C. The efficacy of intrauterine injection of human chorionic gonadotropin before embryo transfer in assisted reproductive cycles: Meta-analysis. J. Int. Med. Res. 2015, 43, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Pundir, J.; Elsherbini, M.; Dave, S.; El-Toukhy, T.; Khalaf, Y. The effect of intrauterine hCG injection on IVF outcome: A systematic review and meta-analysis. Reprod. Biomed. Online 2016, 33, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Craciunas, L.; Tsampras, N.; Coomarasamy, A.; Raine-Fenning, N. Intrauterine administration of human chorionic gonadotropin (hCG) for subfertile women undergoing assisted reproduction. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Strug, M.R.; Su, R.; Young, J.E.; Dodds, W.G.; Shavell, V.I.; Diaz-Gimeno, P.; Ruiz-Alonso, M.; Simon, C.; Lessey, B.A.; Leach, R.E.; et al. Intrauterine human chorionic gonadotropin infusion in oocyte donors promotes endometrial synchrony and induction of early decidual markers for stromal survival: A randomized clinical trial. Hum. Reprod. 2016, 31, 1552–1561. [Google Scholar] [CrossRef] [PubMed]
- Makrigiannakis, A.; BenKhalifa, M.; Vrekoussis, T.; Mahjub, S.; Kalantaridou, S.N.; Gurgan, T. Repeated implantation failure: A new potential treatment option. Eur. J. Clin. Investig. 2015, 45, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, S.; Fujiwara, H.; Nakayama, T.; Kosaka, K.; Mori, T.; Fujii, S. Intrauterine administration of autologous peripheral blood mononuclear cells promotes implantation rates in patients with repeated failure of IVF-embryo transfer. Hum. Reprod. 2006, 21, 3290–3294. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J.; Cheng, Y.; Zhou, D.; Yin, T.; Xu, W.; Yu, N.; Yang, J. Intrauterine administration of hCG-activated autologous human peripheral blood mononuclear cells (PBMC) promotes live birth rates in frozen/thawed embryo transfer cycles of patients with repeated implantation failure. J. Reprod. Immunol. 2017, 119, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Zhang, B.; Xu, M.; Wang, S.; Liu, R.; Wu, J.; Yang, J.; Feng, L. Intrauterine administration of autologous peripheral blood mononuclear cells (PBMCS) activated by hCG improves the implantation and pregnancy rates in patients with repeated implantation failure: A prospective randomized study. Am. J. Reprod. Immunol. 2016, 76, 212–216. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makrigiannakis, A.; Vrekoussis, T.; Zoumakis, E.; Kalantaridou, S.N.; Jeschke, U. The Role of HCG in Implantation: A Mini-Review of Molecular and Clinical Evidence. Int. J. Mol. Sci. 2017, 18, 1305. https://doi.org/10.3390/ijms18061305
Makrigiannakis A, Vrekoussis T, Zoumakis E, Kalantaridou SN, Jeschke U. The Role of HCG in Implantation: A Mini-Review of Molecular and Clinical Evidence. International Journal of Molecular Sciences. 2017; 18(6):1305. https://doi.org/10.3390/ijms18061305
Chicago/Turabian StyleMakrigiannakis, Antonis, Thomas Vrekoussis, Emmanouel Zoumakis, Sophia N. Kalantaridou, and Udo Jeschke. 2017. "The Role of HCG in Implantation: A Mini-Review of Molecular and Clinical Evidence" International Journal of Molecular Sciences 18, no. 6: 1305. https://doi.org/10.3390/ijms18061305
APA StyleMakrigiannakis, A., Vrekoussis, T., Zoumakis, E., Kalantaridou, S. N., & Jeschke, U. (2017). The Role of HCG in Implantation: A Mini-Review of Molecular and Clinical Evidence. International Journal of Molecular Sciences, 18(6), 1305. https://doi.org/10.3390/ijms18061305