Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review
Abstract
:1. Introduction
2. Effect of Organic Solvents on Microalgae Growth
2.1. Industrial Wastewaters, Effluents and Streams as a Source of Solvents
2.2. Effect of Traditional Organic Solvents on Microalgae Growth and Cell Metabolism
2.2.1. Methanol
2.2.2. Ethanol
2.2.3. Other Organic Solvents
2.2.4. Glycol Solvents
2.2.5. Cyclic Solvents
2.2.6. Chlorinated Solvents
2.2.7. Aromatic Solvents
2.3. Effect of ILs on Microalgae Growth and Cell Metabolism
2.3.1. Effect of Cations
2.3.2. Effect of Anions
2.3.3. Effect of Cultivation Conditions
2.3.4. Effect of ILs on Microalgal Cell Wall Structure, Morphology and Metabolism
3. Effect of Organic Solvents on Extraction of Valuable Compounds from Microalgae
3.1. Milking: Microalgae Extraction During Microalgae Growth
3.2. Extraction Methods and Techniques
3.3. Energy and Production Cost Study
3.3.1. Lipid Extraction
3.3.2. Carotenoid Extraction: Fucoxanthin
3.3.3. Carotenoid Extraction: β-carotene
3.3.4. Carotenoid Extraction: Astaxanthin
4. Strategies for Organic Solvent Use During Microalgal Cultivation or Extraction
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Heimann, K.; Huerlimann, R. Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In Handbook of Marine Microalgae; Kim, S.-K., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- O’Neill, E.C.; Trick, M.; Henrissat, B.; Field, R.A. Euglena in time: Evolution, controlof central metabolic processes andmulti-domain proteins in carbohydrateand natural product biochemistry. Perspect. Sci. 2015, 6, 84–93. [Google Scholar] [CrossRef]
- Yamada, K.; Suzuki, H.; Takeuchi, T.; Kazama, Y.; Mitra, S.; Abe, T.; Goda, K.; Suzuki, K.; Iwata, O. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Sci. Rep. 2016, 6, 26327. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, D.; Chance, B. Electron Transport in Mitochondria Isolated from the Flagellate Polytomella caeca. Biochem. J. 1968, 107, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Miazek, K.; Remacle, C.; Richel, A.; Goffin, D. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review. Energies 2014, 7, 4446–4481. [Google Scholar] [CrossRef]
- Chen, P.; Min, M.; Chen, Y.; Wang, L.; Li, Y.; Chen, Q.; Wang, C.; Wan, Y.; Wang, X.; Cheng, Y.; et al. Review of the biological and engineering aspects of algae to fuels approach. Int. J. Agric. Biol. Eng. 2009, 2, 2–30. [Google Scholar] [CrossRef]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as Sources of Carotenoids. Mar. Drugs 2011, 9, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Christenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702. [Google Scholar] [CrossRef] [PubMed]
- Úbeda, B.; Gálvez, J.Á.; Michel, M.; Bartual, A. Microalgae cultivation in urban wastewater: Coelastrum cf. pseudomicroporum as a novel carotenoid source and a potential microalgae harvesting tool. Bioresour. Technol. 2017, 228, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.K.; Yun, H.S.; Hwang, B.S.; Kabra, A.N.; Jeon, B.H.; Choi, J. Mixotrophic cultivation of Nephroselmis sp. using industrial wastewater for enhanced microalgal biomass production. Ecol. Eng. 2016, 95, 527–533. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ansari, F.A.; Shriwastav, A.; Sahoo, N.K.; Rawat, I.; Bux, F. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J. Clean. Prod. 2016, 115, 255–264. [Google Scholar] [CrossRef]
- Edmundson, S.J.; Wilkie, A.C. Landfill leachate—A water and nutrient resource for algae-based biofuels. Environ. Technol. 2013, 34, 1849–1857. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Selby, K.; Boxall, A.B.A. Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom. Arch. Environ. Contam. Toxicol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, P.; Chen, J.; Sun, Y.; Che, J. Differential Response of Green Algal Species Pseudokirchneriella subcapitata, Scenedesmus quadricauda, Scenedesmus obliquus, Chlorella vulgaris and Chlorella pyrenoidosa to Six Pesticides. Pol. J. Environ. Stud. 2007, 16, 847–851. [Google Scholar]
- Miazek, K.; Iwanek, W.; Remacle, C.; Richel, A.; Goffin, D. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review. Int. J. Mol. Sci. 2015, 16, 23929–23969. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Wang, Y.J.; Yang, C.F. Estimating low-toxic-effect concentrations in closed-system algal toxicity tests. Ecotoxicol. Environ. Saf. 2009, 72, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.P.; Cho, C.W.; Yun, Y.S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010, 44, 352–372. [Google Scholar] [CrossRef] [PubMed]
- Grodowska, K.; Parczewski, A. Organic Solvents in the Pharmaceutical Industry. Acta Poloniae Pharm. Drug Res. 2010, 67, 3–12. [Google Scholar]
- Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. Green Sustain. Chem. 2014, 4, 44–53. [Google Scholar] [CrossRef]
- Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Orr, V.C.A.; Rehmann, L. Ionic liquids for the fractionation of microalgae biomass. Curr. Opin. Green Sustain. Chem. 2016, 2, 22–27. [Google Scholar] [CrossRef]
- Cuellar-Bermudez, S.P.; Aguilar-Hernandez, I.; Cardenas-Chavez, D.L.; Ornelas-Soto, N.; Romero-Ogawa, M.A.; Parra-Saldivar, R. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 2014, 8, 190–209. [Google Scholar] [CrossRef] [PubMed]
- Amde, M.; Liu, J.F.; Pang, L. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. Environ. Sci. Technol. 2015, 49, 12611–12627. [Google Scholar] [CrossRef] [PubMed]
- Inderjit, A.C.; Kakuta, H. Phytotoxicity and fate of 1,1,2-trichloroethylene: A laboratory study. J. Chem. Ecol. 2003, 29, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Caballero, A.; Ramond, J.B.; Welz, P.J.; Cowan, D.A.; Odlare, M.; Burton, S.G. Treatment of high ethanol concentration wastewater by biological sand filters: Enhanced COD removal and bacterial community dynamics. J. Environ. Manag. 2012, 109, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Badshah, M.; Parawira, W.; Mattiasson, B. Anaerobic treatment of methanol condensate from pulp mill compared with anaerobic treatment of methanol using mesophilic UASB reactors. Bioresour. Technol. 2012, 125, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Sibirny, V.A.; Gonchar, M.V.; Grabek-Lejko, D.; Pavlishko, H.M.; Csoregi, E.; Sibirny, A.A. Photometric assay of methanol and formaldehyde in industrial waste-waters using alcohol oxidase and 3-methyl-2-benzothiazolinone hydrazine. Int. J. Environ. Anal. Chem. 2008, 88, 289–301. [Google Scholar] [CrossRef]
- Esmaeili, A.; Loghmani, K. Removal of Monoethylene Glycol from Gas Field Wastewater Using Aspergillus tubingensis and a New Bioreactor. Waste Biomass Valor. 2016, 7, 151–156. [Google Scholar] [CrossRef]
- Bayat, M.; Mehrnia, M.R.; Hosseinzadeh, M.; Sheikh-Sofla, R. Petrochemical wastewater treatment and reuse by MBR: A pilot study for ethylene oxide/ethylene glycol and olefin units. J. Ind. Eng. Chem. 2015, 25, 265–271. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Tsakovski, S.; Simeonov, V.; Namiesnik, J. Chlorinated solvents in a petrochemical wastewater treatment plant: An assessment of their removal using self-organising maps. Chemosphere 2012, 87, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Enright, A.M.; McHugh, S.; Collins, G.; O’Flaherty, V. Low-temperature anaerobic biological treatment of solvent containing pharmaceutical wastewater. Water Res. 2005, 39, 4587–4596. [Google Scholar] [CrossRef] [PubMed]
- Svojitka, J.; Dvorak, L.; Studer, M.; Straub, J.O.; Fromelt, H.; Wintgens, T. Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment. Bioresour. Technol. 2017, 229, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yang, X.Y.; Xiong, L.; Guo, H.J.; Luo, J.; Wang, B.; Zhang, H.R.; Lin, X.Q.; Chen, X.D. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett. Appl. Microbiol. 2015, 60, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Stepnowski, P.; Blotevogel, K.H.; Ganczarek, P.; Fischer, U.; Jastorff, B. Total recycling of chromatographic solvents—Applied management of methanol and acetonitrile waste. Resour. Conserv. Recycl. 2002, 35, 163–175. [Google Scholar] [CrossRef]
- Neves, C.M.S.S.; Freire, M.G.; Coutinho, J.A.P. Improved recovery of ionic liquids from contaminated aqueous streams using aluminium-based salts. RSC Adv. 2012, 2, 10882–10890. [Google Scholar] [CrossRef]
- Markiewicz, M.; Piszora, M.; Caicedo, N.; Jungnickel, C.; Stolte, S. Toxicity of ionic liquid cations and anions towards activated sewage sludge organisms from different sources—Consequences for biodegradation testing and wastewater treatment plant operation. Water Res. 2013, 47, 2921–2928. [Google Scholar] [CrossRef] [PubMed]
- Gendaszewska, D.; Liwarska-Bizukojc, E.; Maton, C.; Stevens, C.V. Influence of newly synthesized imidazolium ionic liquids on activated sludge process. Arch. Environ. Prot. 2015, 41, 40–48. [Google Scholar] [CrossRef]
- Kilroy, A.C.; Gray, N.F. The toxicity of four organic solvents commonly used in the pharmaceutical industry to activated sludge. Water Res. 1992, 26, 887–892. [Google Scholar] [CrossRef]
- Cooper, G.M. Transport of Small Molecules. Chapter 12. The Cell Surface. The Cell: A Molecular Approach, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2000; ISBN 10:0-87893-106-6. [Google Scholar]
- Kotzabasis, K.; Hatziathanasiou, A.; Bengoa-Ruigomez, M.V.; Kentouri, M.; Divanach, P. Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: Role of the concentration and frequence of administration. J. Biotechnol. 1999, 70, 357–362. [Google Scholar] [CrossRef]
- Choi, W.Y.; Oh, S.H.; Seo, Y.C.; Kim, G.B.; Kang, D.H.; Lee, S.Y.; Jung, K.H.; Cho, J.S.; Ahn, J.H.; Choi, G.P.; et al. Effects of methanol on cell growth and lipid production from mixotrophic cultivation of Chlorella sp. Biotechnol. Bioprocess Eng. 2011, 16, 946–955. [Google Scholar] [CrossRef]
- Stepanov, S.S.; Zolotareva, E.K. Methanol-induced stimulation of growth, intracellular amino acids, and protein content in Chlamydomonas reinhardtii. J. Appl. Phycol. 2015, 27, 1509–1516. [Google Scholar] [CrossRef]
- Hunt, R.W.; Chinnasamy, S.; Bhatnagar, A.; Das, K.C. Effect of Biochemical Stimulants on Biomass Productivity and Metabolite Content of the Microalga, Chlorella sorokiniana. Appl. Biochem. Biotechnol. 2010, 162, 2400–2414. [Google Scholar] [CrossRef] [PubMed]
- Navakoudis, E.; Ioannidis, N.E.; Dörnemann, D.; Kotzabasis, K. Changes in the LHCII-mediated energy utilization and dissipation adjust the methanol-induced biomass increase. Biochim. Biophys. Acta 2007, 1767, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Nonomura, A.M.; Benson, A.A. The path of carbon in photosynthesis: Improved crop yields with methanol. Proc. Natl. Acad. Sci. USA 1992, 89, 9794–9798. [Google Scholar] [CrossRef] [PubMed]
- El Jay, A. Toxic Effects of Organic Solvents on the Growth of Chlorella vulgaris and Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1996, 57, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.P.F.; Pinto, P.C.A.G.; Saraiva, M.L.M.F.S.; Rocha, F.R.P.; Santos, J.R.P.; Monteiro, R.T.R. The aquatic impact of ionic liquids on freshwater organisms. Chemosphere 2015, 139, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, J. How to accurately assay the algal toxicity of pesticides with low water solubility. Environ. Pollut. 2005, 136, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Okumura, Y.; Koyama, J.; Takaku, H.; Satoh, H. Influence of Organic Solvents on the Growth of Marine Microalgae. Arch. Environ. Contam. Toxicol. 2001, 41, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Yoval-Sánchez, B.; Jasso-Chávez, R.; Lira-Silva, E.; Moreno-Sánchez, R.; Rodríguez-Zavala, J.S. Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis. J. Bioenerg. Biomembr. 2011, 43, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Kawanaka, Y.; Izumi, Y.; Inui, H.; Miyatake, K.; Kitaoka, S.; Nakano, Y. Mitochondrial Alcohol Dehydrogenase from Ethanol-Grown Euglena gracilis. J. Biochem. 1995, 117, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Aoyagi, H.; Ogbonna, J.C.; Tanaka, H. Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Appl. Microbiol. Biotechnol. 2008, 79, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Mokrosnop, V.M.; Polishchuk, A.V.; Zolotareva, E.K. Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells under Autotrophic and Mixotrophic Culture Conditions. Appl. Biochem. Microbiol. 2016, 52, 216–221. [Google Scholar] [CrossRef]
- Afiukwa, C.A.; Ogbonna, J.C. Effects of mixed substrates on growth and vitamin production by Euglena gracilis. Afr. J. Biotechnol. 2007, 6, 2612–2615. [Google Scholar]
- Bezerra, R.P.; Matsudo, M.C.; Pérez-Mora, L.S.; Sato, S.; Carvalho, J.C.M. Ethanol effect on batch and fed-batch Arthrospira platensis growth. J. Ind. Microbiol. Biotechnol. 2014, 41, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Matsudo, M.C.; Sousa, T.F.; Pérez-Mora, L.S.; Bezerra, R.P.; Sato, S.; Carvalho, J.C.M. Ethanol as complementary carbon source in Scenedesmus obliquus cultivation. J. Chem. Technol. Biotechnol. 2016. [Google Scholar] [CrossRef]
- Samkhaniyani, F.; Najafpour, G.D.; Ardestani, F. Evaluation of effective nutritional parameters for Scenedesmus sp. microalgae culturing in a photobioreactor for biodiesel production. Int. J. Environ. Sci. Technol. 2017. [Google Scholar] [CrossRef]
- Wu, C.; Wang, W.; Yue, L.; Yang, Z.; Fu, Q.; Ye, Q. Enhancement effect of ethanol on lipid and fatty acid accumulation and composition of Scenedesmus sp. Bioresour. Technol. 2013, 140, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wei, C.; Zhao-Ling, C.; Fan, O. Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J. Appl. Phycol. 2004, 16, 499–503. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, T.; Qin, S. Differential fatty acid profiles of Chlorella kessleri grown with organic materials. J. Chem. Technol. Biotechnol. 2013, 88, 651–657. [Google Scholar] [CrossRef]
- Tadros, M.G.; Philips, J.; Patel, H.; Pandiripally, V. Differential Response of Green Algal Species to Solvents. Bull. Environ. Contam. Toxicol. 1994, 52, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Tadros, M.G.; Philips, J.; Patel, H.; Pandiripally, V. Differential Response of Marine Diatoms to Solvents. Bull. Environ. Contam. Toxicol. 1995, 54, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Wardas, M.; Wardas, W.; Mazurek, U.; Lechotycka, E. The effect of some organic solvents on the growth of Chlorella algae, strain 366. Oceanologia 1983, 17, 21–28. [Google Scholar]
- Monfils, A.K.; Triemer, R.E.; Bellairs, E.F. Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia 2011, 50, 156–169. [Google Scholar] [CrossRef]
- Rodrıguez-Zavala, J.S.; Ortiz-Cruz, M.A.; Mendoza-Hernandez, G.; Moreno-Sanchez, R. Increased synthesis of a-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J. Appl. Microbiol. 2010, 109, 2160–2172. [Google Scholar] [CrossRef] [PubMed]
- De Swaaf, M.E.; Pronk, J.T.; Sijtsma, L. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl. Microbiol. Biotechnol. 2003, 61, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Atteia, A.; van Lis, R.; Ramirez, J.; Gonzalez-Halphen, D. Polytomella spp. growth on ethanol. Extracellular pH affects the accumulation of mitochondrial cytochrome c550. Eur. J. Biochem. 2000, 267, 2850–2858. [Google Scholar] [CrossRef] [PubMed]
- Andemichael, H.; Lee, J.W. Toxicological study of biofuel ethanol with blue green alga Spirulina platensis. Algal Res. 2016, 18, 110–115. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, J.; Chen, L.; Tian, X.; Huang, S.; Ren, X.; Zhang, W. Quantitative iTRAQ LC-MS/MS Proteomics Reveals Metabolic Responses to Biofuel Ethanol in Cyanobacterial Synechocystis sp. PCC 6803. J. Proteome Res. 2012, 11, 5286–5300. [Google Scholar] [CrossRef] [PubMed]
- Bosma, R.; Miazek, K.; Willemsen, S.M.; Vermue, M.H.; Wijffels, R.H. Growth Inhibition of Monodus subterraneus by Free Fatty Acids. Biotechnol. Bioeng. 2008, 101, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Kämäräinen, J.; Knoop, H.; Stanford, N.J.; Guerrero, F.; Akhtar, M.K.; Aro, E.M.; Steuer, R.; Jones, P.R. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. J. Biotechnol. 2012, 162, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Leon, R.; Garbayo, I.; Hernandez, R.; Vigara, J.; Vilchez, C. Organic solvent toxicity in photoautotrophic unicellular microorganisms. Enzyme Microb. Technol. 2001, 29, 173–180. [Google Scholar] [CrossRef]
- Cho, C.W.; Pham, T.P.T.; Kim, S.; Kim, Y.R.; Jeon, Y.C.; Yun, Y.S. Toxicity assessment of common organic solvents using a biosensor based on algal photosynthetic activity measurement. J. Appl. Phycol. 2009, 21, 683–689. [Google Scholar] [CrossRef]
- Tsai, K.P.; Chen, C.Y. An algal toxicity database of organic toxicants derived by a closed-system technique. Environ. Toxicol. Chem. 2007, 26, 1931–1939. [Google Scholar] [CrossRef] [PubMed]
- Aruoja, V.; Moosus, M.; Kahru, A.; Sihtmae, M.; Maran, U. Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata. Chemosphere 2014, 96, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Kohler, A.; Hellweg, S.; Escher, B.; Hungerbuhler, K. Organic pollutant removal versus toxicity reduction in industrial wastewater treatment: The example of wastewater from fluorescent whitening agent production. Environ. Sci. Technol. 2006, 40, 3395–3401. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.X.; Tian, F.; Martin, F.L.; Ying, G.G. Biochemical alterations in duckweed and algae induced by carrier solvents: Selection of an appropriate solvent in toxicity testing. Environ. Toxicol. Chem. 2017. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.W.; Jeon, Y.C.; Pham, T.P.T.; Vijayaraghavan, K.; Yun, Y.S. The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol. Environ. Saf. 2008, 71, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.S.; Vilkas, A.G. Toxicity of N,N-Dimethylformamide Used as a Solvent in Toxicity Tests with the Green Alga, Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1983, 31, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Stratton, G.W. Toxic Effects of Organic Solvents on the Growth of Blue-Green Algae. Bull. Environ. Contain. Toxicol. 1987, 38, 1012–1019. [Google Scholar] [CrossRef]
- McEvoy, E.; Wright, P.C.; Bustard, M.T. The effect of high concentration isopropanol on the growth of a solvent-tolerant strain of Chlorella vulgaris. Enzyme Microb. Technol. 2004, 35, 140–146. [Google Scholar] [CrossRef]
- Wise, D.L. Carbon Nutrition and Metabolism of Polytomella caeca. J. Protozool. 1959, 6, 19–23. [Google Scholar] [CrossRef]
- Pillard, D.A.; DuFresne, D.L. Toxicity of Formulated Glycol Deicers and Ethylene and Propylene Glycol to Lactuca sativa, Lolium perenne, Selenastrum capricornutum, and Lemna minor. Arch. Environ. Contam. Toxicol. 1999, 37, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Devillers, J.; Chezeau, A.; Thybaud, E.; Poulsen, V.; Porcher, J.M.; Graff, L.; Vasseur, P.; Mouchet, F.; Ferrier, V.; Quiniou, F. Ecotoxicity of ethylene glycol monobutyl ether and its acetate. Toxicol. Mech. Methods 2002, 12, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Kishi, M.; Kawai, M.; Toda, T. Heterotrophic utilization of ethylene glycol and propylene glycol by Chlorella protothecoides. Algal Res. 2015, 11, 428–434. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life: 1,4-Dioxane. Adapted from Bringmann G and Kuhn R. Limiting values of the harmful action of water endangering substances on bacteria (Pseudomonas putida) and green algae (Scenedesmus quadricauda) in the cell multiplication inhibition test. Z. Wasser Abwasser Forsch. 1977b, 10, 87–98. [Google Scholar]
- Hook, I.L.; Ryan, S.; Sheridan, H. Biotransformation of aliphatic and aromatic ketones, including several monoterpenoid ketones and their derivatives by five species of marine microalgae. Phytochemistry 2003, 63, 31–36. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, H.; Yu, X.; Qiu, L. Toxicological Responses of Chlorella vulgaris to Dichloromethane and Dichloroethane. Environ. Eng. Sci. 2014, 31, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Otsuka, S.; Nishiyama, M.; Senoo, K.; Watanabe, M.M.; Matsumoto, S. Toxic Effects of Dichloromethane and Trichloroethylene on the Growth of Planktonic Green Algae, Chlorella vulgaris NIES227, Selenastrum capricornutum NIES35, and Volvulina steinii NIES545. Microbes Environ. 2003, 18, 43–46. [Google Scholar] [CrossRef]
- Brack, W.; Rottler, H. Toxicity Testing of Highly Volatile—A New Assay Chemicals with Green Algae. Environ. Sci. Pollut. Res. 1994, 4, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Bacsi, I.; Torok, T.; B-Beres, V.; Torok, P.; Tothmeresz, B.; Nagy, A.S.; Vasas, G. Laboratory and microcosm experiments testing the toxicity of chlorinated hydrocarbons on a cyanobacterium strain (Synechococcus PCC 6301) and on natural phytoplankton assemblages. Hydrobiologia 2013, 710, 189–203. [Google Scholar] [CrossRef]
- Lukavsky, J.; Furnadzhieva, S.; Dittrt, F. Toxicity of Trichloroethylene (TCE) on Some Algae and Cyanobacteria. Bull. Environ. Contam. Toxicol. 2011, 86, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lin, D.; Wu, F. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae. J. Hazard. Mater. 2016, 311, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Sicko-Goad, L.; Lazinsky, D.; Hall, J.; Simmons, M.S. Effects of Chlorinated Benzenes on Diatom Fatty Acid Composition and Quantitative Morphology. I. 1,2,4-Trichlorobenzene. Arch. Environ. Contam. Toxicol. 1989, 18, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Sicko-Goad, L.; Andresen, N.A. Effect of Lipid Composition on the Toxicity of Trichlorobenzene Isomers to Diatoms. I. Short-Term Effects of 1,3,5-Trichlorobenzene. Arch. Environ. Contam. Toxicol. 1993, 24, 236–242. [Google Scholar] [CrossRef]
- Dunstan, W.M.; Atkinson, L.P.; Natoli, J. Stimulation and Inhibition of Phytoplankton Growth by Low Molecular Weight Hydrocarbons. Mar. Biol. 1975, 31, 305–310. [Google Scholar] [CrossRef]
- Agrawal Manisha, S.C. Growth, Survival and Reproduction in Chlorella vulgaris and C. variegata with Respect to Culture Age and under Different Chemical Factors. Folia Microbiol. 2007, 52, 399–406. [Google Scholar] [CrossRef]
- Gupta, S.; Agrawal, S.C. Survival of diatoms Synedra, Gomphonema and Fragilaria species in nature and in presence of different chemical and physical stress factors. J. Algal Biomass Utlin. 2011, 2, 52–76. [Google Scholar]
- Ceballos-Laita, L.; Calvo, L.; Bes, M.T.; Fillat, M.F.; Peleato, M.L. Effects of benzene and several pharmaceuticals on the growth and microcystin production in Microcystis aeruginosa PCC 7806. Limnetica 2015, 34, 237–246. [Google Scholar]
- Masten, L.W.; Boeri, R.L.; Walker, J.D. Strategies employed to determine the acute aquatic toxicity of ethyl benzene, a highly volatile, poorly water-soluble chemical. Ecotoxicol. Environ. Saf. 1994, 27, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Herman, D.C.; Inniss, W.E.; Mayfield, C.I. Toxicity Testing of Aromatic Hydrocarbons Utilizing a Measure of Their Impact on the Membrane Integrity of the Green Alga Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1991, 47, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cui, F.; Ma, H.; Fan, Z.; Zhao, Z.; Hou, Z.; Liu, D.; Jia, X. The interaction between nitrobenzene and Microcystis aeruginosa and its potential to impact water quality. Chemosphere 2013, 92, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cui, F.; Ma, H.; Fan, Z.; Zhao, Z. The role of nitrobenzene on the yield of trihalomethane formation potential in aqueous solutions with Microcystis aeruginosa. Water Res. 2011, 45, 6489–6495. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.R.; Kusk, K.O.; Nyholm, N. Dose-response regressions for algal growth and similar continuous endpoints: Calculation of effective concentrations. Environ. Toxicol. Chem. 2009, 28, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.B.; Chandra, R. Comparative Chronic Toxicity of Pyridine, α-Picoline, and β-Picoline to Lemna minor L. and Chlorella vulgaris B. Bull. Environ. Contam. Toxicol. 2005, 75, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Semple, K.T.; Cain, R.B.; Schmidt, S. Biodegradation of aromatic compounds by microalgae. FEMS Microbiol. Lett. 1999, 170, 291–300. [Google Scholar] [CrossRef]
- Semple, K.T. Biodegradation of phenols by a eukaryotic alga. Res. Microbial. 1997, 148, 365–367. [Google Scholar] [CrossRef]
- Papazi, A.; Assimakopoulos, K.; Kotzabasis, K. Bioenergetic Strategy for the Biodegradation of p-Cresol by the Unicellular Green Alga Scenedesmus obliquus. PLoS ONE 2012, 12, e51852. [Google Scholar] [CrossRef] [PubMed]
- Papazi, A.; Kotzabasis, K. Inductive and resonance effects of substituents adjust the microalgal biodegradation of toxical phenolic compounds. J. Biotechnol. 2008, 135, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.P.T.; Cho, C.W.; Min, J.; Yun, Y.S. Alkyl-Chain Length Effects of Imidazolium and Pyridinium Ionic Liquids on Photosynthetic Response of Pseudokirchneriella subcapitata. J. Biosci. Bioeng. 2008, 105, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.P.T.; Cho, C.W.; Yun, Y.S. Structural effects of ionic liquids on microalgal growth inhibition and microbial degradation. Environ. Sci. Pollut. Res. 2016, 23, 4294–4300. [Google Scholar] [CrossRef] [PubMed]
- Pretti, C.; Chiappe, C.; Baldetti, I.; Brunini, S.; Monni, G.; Intorre, L. Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol. Environ. Saf. 2009, 72, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Tsarpali, V.; Harbi, K.; Dailianis, S. Physiological response of the green microalgae Dunaliella tertiolecta against imidazolium ionic liquids [bmim][BF4] and/or [omim][BF4]: The role of salinity on the observed effects. J. Appl. Phycol. 2016, 28, 979–990. [Google Scholar] [CrossRef]
- Tsarpali, V.; Dailianis, S. Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: Role of acetone in the induced toxicity. Ecotoxicol. Environ. Saf. 2015, 117, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.M.; Cai, L.L.; Zhang, B.J.; Hu, L.W.; Li, X.Y.; Wang, J.J. Acute toxicity and effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on green algae. Ecotoxicol. Environ. Saf. 2010, 73, 1465–1469. [Google Scholar] [CrossRef] [PubMed]
- Wells, A.S.; Coombe, V.T. On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic Liquids. Org. Process Res. Dev. 2006, 10, 794–798. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; Gurbisz, M.; Ghavre, M.; Ferreira, F.M.M.; Gonçalves, F.; Beadham, I.; Quilty, B.; Coutinho, J.A.P.; Gathergood, N. Imidazolium and Pyridinium Ionic Liquids from Mandelic Acid Derivatives: Synthesis and Bacteria and Algae Toxicity Evaluation. ACS Sustain. Chem. Eng. 2013, 1, 393–402. [Google Scholar] [CrossRef]
- Santos, J.I.; Goncalves, A.M.M.; Pereira, J.L.; Figueiredo, B.F.H.T.; Silva, F.A.; Coutinho, J.A.P.; Ventura, S.P.M.; Goncalves, F. Environmental safety of cholinium-based ionic liquids: Assessing structure-ecotoxicity relationships. Green Chem. 2015, 17, 4657–4668. [Google Scholar] [CrossRef]
- Cho, C.W.; Pham, T.P.T.; Jeon, Y.C.; Yun, Y.S. Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Green Chem. 2008, 10, 67–72. [Google Scholar] [CrossRef]
- Stolte, S.; Matzke, M.; Arning, J.; Boschen, A.; Pitner, W.R.; Welz-Biermann, U.; Jastorff, B.; Ranke, J. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem. 2007, 9, 1170–1179. [Google Scholar] [CrossRef]
- Stolte, S.; Schulz, T.; Cho, C.W.; Arning, J.; Strassner, T. Synthesis, Toxicity, and Biodegradation of Tunable Aryl Alkyl Ionic Liquids (TAAILs). ACS Sustain. Chem. Eng. 2013, 1, 410–418. [Google Scholar] [CrossRef]
- Samori, C.; Campisi, T.; Fagnoni, M.; Galletti, P.; Pasteris, A.; Pezzolesi, L.; Protti, S.; Ravelli, D.; Tagliavini, E. Pyrrolidinium-based Ionic Liquids: Aquatic Ecotoxicity, Biodegradability, and Algal Subinhibitory Stimulation. ACS Sustain. Chem. Eng. 2015, 3, 1860–1865. [Google Scholar] [CrossRef]
- Chen, H.; Zou, Y.; Zhang, L.; Wen, Y.; Liu, W. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae. Aquat. Toxicol. 2014, 154, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, X.; Dong, Y.; Chen, C.; Zhu, S.; Ma, X. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium tartrate on Scenedesmus obliquus. Aquat. Toxicol. 2015, 169, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, X.; Chen, C.; Du, S.; Dong, Y. Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 2015, 122, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Kulacki, K.J.; Lamberti, G.A. Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem. 2008, 10, 104–110. [Google Scholar] [CrossRef]
- Latała, A.; Nedzia, M.; Stepnowski, P. Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem. 2010, 12, 60–64. [Google Scholar] [CrossRef]
- Samori, C.; Sciutto, G.; Pezzolesi, L.; Galletti, P.; Guerrini, F.; Mazzeo, R.; Pistocchi, R.; Prati, S.; Tagliavini, E. Effects of Imidazolium Ionic Liquids on Growth, Photosynthetic Efficiency, and Cellular Components of the Diatoms Skeletonema marinoi and Phaeodactylum tricornutum. Chem. Res. Toxicol. 2011, 24, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Yoo, B.; Jing, B.; Jones, S.E.; Lamberti, G.A.; Zhu, Y.; Shah, J.K.; Maginn, E.J. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach. Sci. Rep. 2016, 6, 19889. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.Y.; Gao, K.; Pei, F.; Wang, C.H.; Cao, K.W. Effects of a functionalized ionic liquid on the growth and antioxidant enzymes of Synechococcus sp. PCC7942. Afr. J. Microbiol. Res. 2013, 29, 3824–3830. [Google Scholar]
- Deng, X.Y.; Cheng, J.; Hu, X.L.; Gao, K.; Wang, C.H. Physiological and biochemical responses of a marine diatom Phaeodactylum tricornutum exposed to 1-octyl-3-methylimidazolium bromide. Aquat. Biol. 2015, 24, 109–115. [Google Scholar] [CrossRef]
- Deng, X.Y.; Hu, X.L.; Cheng, J.; Ma, Z.X.; Gao, K. Growth inhibition and oxidative stress induced by 1-octyl-3-methylimidazolium bromide on the marine diatom Skeletonema costatum. Ecotoxicol. Environ. Saf. 2016, 132, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Beadham, I.; Wu, J.; Chen, X.D.; Hu, L.; Gu, J. Chronic effects of the ionic liquid [C4mim][Cl] towards the microalga Scenedesmus quadricauda. Environ. Pollut. 2015, 204, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xiang, W.; Sun, X.; Wu, H.; Li, T.; Long, L. A Novel Lipid Extraction Method from Wet Microalga Picochlorum sp. at Room Temperature. Mar. Drugs 2014, 12, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, M.A.; Kleinegris, D.; Wijffels, R.H. Mechanism of extraction of beta-carotene from microalga Dunaliellea salina in two-phase bioreactors. Biotechnol. Bioeng. 2004, 88, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Ramachandra, T.V.; Mahapatra, D.M.; Karthick, B. Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels. Ind. Eng. Chem. Res. 2009, 48, 8769–8788. [Google Scholar] [CrossRef]
- Vinayak, V.; Manoylov, K.M.; Gateau, H.; Blanckaert, V.; Hérault, J.; Pencréac’h, G.; Marchand, J.; Gordon, R.; Schoefs, B. Diatom Milking: A Review and New Approaches. Mar. Drugs 2015, 13, 2629–2665. [Google Scholar] [CrossRef] [PubMed]
- Mojaat, M.; Foucault, A.; Pruvost, J.; Legrand, J. Optimal selection of organic solvents for biocompatible extraction of B-carotene from Dunaliella salina. J. Biotechnol. 2008, 133, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cheng, L.H.; Xu, X.H.; Zhang, L.; Chen, H.L. Screening of biocompatible organic solvents for enhancement of lipid milking from Nannochloropsis sp. Process Biochem. 2011, 46, 1934–1941. [Google Scholar] [CrossRef]
- Nezammahalleh, H.; Nosrati, M.; Ghanati, F.; Shojaosadati, S.A. Exergy-based screening of biocompatible solvents for in situ lipid extraction from Chlorella vulgaris. J. Appl. Phycol. 2017. [Google Scholar] [CrossRef]
- Atta, M.; Bukhari, A.; Idris, A. Enhanced lipid selective extraction from Chlorella vulgaris without cell sacrifice. Algal Res. 2016, 20, 7–15. [Google Scholar] [CrossRef]
- Kleinegris, D.M.M.; van Es, M.A.; Janssen, M.; Brandenburg, W.A.; Wijffels, R.H. Phase toxicity of dodecane on the microalga Dunaliella salina. J. Appl. Phycol. 2011, 23, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Griehl, C.; Kleinert, C.; Griehl, C.; Bieler, S. Design of a continuous milking bioreactor for non-destructive hydrocarbon extraction from Botryococcus braunii. J. Appl. Phycol. 2015, 27, 1833–1843. [Google Scholar] [CrossRef]
- Moheimani, N.R.; Cord-Ruwisch, R.; Raes, E.; Borowitzka, M.A. Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). J. Appl. Phycol. 2013, 25, 1653–1661. [Google Scholar] [CrossRef]
- Hidalgo, P.; Ciudad, G.; Navia, R. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Bioresour. Technol. 2016, 201, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Anthony, R.; Stuart, B. Solvent extraction and characterization of neutral lipids in Oocystis sp. Front. Energy Res. 2015, 2, 64. [Google Scholar] [CrossRef]
- Olkiewicz, M.; Caporgno, M.P.; Font, J.; Legrand, J.; Lepine, O.; Plechkova, N.V.; Pruvost, J.; Seddond, K.R.; Bengoa, C. A novel recovery process for lipids from microalgae for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem. 2015, 17, 2813–2824. [Google Scholar] [CrossRef]
- Bi, Z.; He, B.B.; McDonald, A.G. Biodiesel Production from Green Microalgae Schizochytrium limacinum via in Situ Transesterification. Energy Fuels 2015, 29, 5018–5027. [Google Scholar] [CrossRef]
- Desai, R.K.; Streefland, M.; Wijffels, R.H.; Eppink, M.H.M. Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids. Green Chem. 2016, 18, 1261–1267. [Google Scholar] [CrossRef]
- Yap, B.H.J.; Crawford, S.A.; Dumsday, G.J.; Scales, P.J.; Martin, G.J.O. A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction. Algal Res. 2014, 5, 112–120. [Google Scholar] [CrossRef]
- Choi, W.Y.; Lee, H.Y. Effective production of bioenergy from marine Chlorella sp. by high-pressure homogenization. Biotechnol. Biotechnol. Equip. 2016, 30, 81–89. [Google Scholar] [CrossRef]
- Doucha, J.; Lívanský, K. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl. Microbiol. Biotechnol. 2008, 81, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.C.; Choi, W.Y.; Oh, S.H.; Lee, C.G.; Seo, Y.C.; Kim, J.S.; Song, C.H.; Kim, G.V.; Lee, S.Y.; Kang, D.H.; et al. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process. J. Biomed. Biotechnol. 2012, 2012, 359432. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, E.; Herrero, M.; Mendiola, J.A.; Castro-Puyana, M. Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates. In Marine Bioactive Compounds: Sources, Characterization and Applications; Hayes, M., Ed.; Springer Science+Business Media, LLC: New York, NY, USA, 2012; Chapter 2. [Google Scholar]
- Herrero, M.; Ibanez, E. Green processes and sustainability: An overview on the extraction of high added-value products from seaweeds and microalgae. J. Supercrit. Fluids 2015, 96, 211–216. [Google Scholar] [CrossRef]
- Pico, Y. Ultrasound-assisted extraction for food and environmental samples. Trends Anal. Chem. 2013, 43, 84–99. [Google Scholar] [CrossRef]
- Ma, Y.A.; Cheng, Y.M.; Huang, J.W.; Jen, J.F.; Huang, Y.S.; Yu, C.C. Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. Bioprocess Biosyst. Eng. 2014, 37, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Pasquet, V.; Chérouvrier, J.R.; Farhat, F.; Thiéry, V.; Piot, J.M.; Bérard, J.B.; Kaas, R.; Serive, B.; Patrice, T.; Cadoret, J.P.; et al. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochem. 2011, 46, 59–67. [Google Scholar] [CrossRef]
- Plaza, M.; Santoyo, S.; Jaime, L.; Avalo, B.; Cifuentes, A.; Reglero, G.; Garcia-Blairsy Reina, G.; Senorans, F.J.; Ibanez, E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT Food Sci. Technol. 2012, 46, 245–253. [Google Scholar] [CrossRef]
- Tatke, P.; Jaiswal, Y. An Overview of Microwave Assisted Extraction and Its Applications in Herbal Drug Research. Res. J. Med. Plants 2011, 5, 21–31. [Google Scholar] [CrossRef]
- Veggi, P.C.; Martinez, J.; Meireles, M.A.A. Fundamentals of Microwave Extraction. In Microwave-Assisted Extraction for Bioactive Compounds. Theory and Practice; Chemat, F., Cravotto, G., Eds.; Springer Science+Business Media: New York, NY, USA, 2013; Chapter 2. [Google Scholar]
- Lin, C.Y.; Lin, B.Y. Fatty Acid Characteristics of Isochrysis galbana Lipids Extracted Using a Microwave-Assisted Method. Energies 2015, 8, 1154–1165. [Google Scholar] [CrossRef]
- Pan, J.; Muppaneni, T.; Sun, Y.; Reddy, H.K.; Fu, J.; Lu, X.; Deng, S. Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel 2016, 178, 49–55. [Google Scholar] [CrossRef]
- Gilbert-Lopez, B.; Barranco, A.; Herrero, M.; Cifuentes, A.; Ibanez, E. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int. 2016. [Google Scholar] [CrossRef]
- Capuzzo, A.; Maffei, M.E.; Occhipinti, A. Supercritical Fluid Extraction of Plant Flavors and Fragrances. Molecules 2013, 18, 7194–7238. [Google Scholar] [CrossRef] [PubMed]
- Uquiche, E.; Antilaf, I.; Millao, S. Enhancement of pigment extraction from B. braunii pretreated using CO2 rapid depressurization. Braz. J. Microbiol. 2016, 47, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.C.; Serrano, C.M.; Rodríguez, M.R.; Martínez de la Ossa, E.J.; Lubián, L.M. Extraction of Carotenoids and Fatty Acids from Microalgae Using Supercritical Technology. Am. J. Anal Chem. 2012, 3, 877–883. [Google Scholar] [CrossRef]
- Reyes, F.A.; Mendiola, J.A.; Ibanez, E.; del Valle, J.M. Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol. J. Supercrit. Fluids 2014, 92, 75–83. [Google Scholar] [CrossRef]
- Ansari, F.A.; Shriwastav, A.; Gupta, S.K.; Rawat, I.; Bux, F. Exploration of Microalgae Biorefinery by Optimizing Sequential Extraction of Major Metabolites from Scenedesmus obliquus. Ind. Eng. Chem. Res. 2017, 56, 3407–3412. [Google Scholar] [CrossRef]
- Bozhkov, A.I.; Menzyanova, N.G. Influence of ethanol on metabolism of algae. Metabolism of nucleic acids and protein in cells of Dunaliella viridis Teod. Int. J. Algae 2002, 4, 65–74. [Google Scholar] [CrossRef]
- Menzyanova, N.G.; Bozhkov, A.I. Influence of ethanol on metabolism of algae. Growth dynamics, content of nucleic acids, proteins, and lipids in Chlorella vulgaris Beijer and Spirulina platensis (Nordst.) Geitl. Cells. Int. J. Algae 2003, 5, 64–73. [Google Scholar] [CrossRef]
- Menzyanova, N.G.; Bozhkov, A.I.; Sotnik, N.N. Influence of ethanol on the growth dynamics and metabolism of triacylglycerides and B-carotene in Dunaliella viridis Teod. Int. J. Algae 2002, 4, 99–111. [Google Scholar] [CrossRef]
- Masojidek, J.; Papacek, S.; Sergejevova, M.; Jirka, V.; Cerveny, J.; Kunc, J.; Korecko, J.; Verbovikova, O.; Kopecky, J.; Stys, D.; et al. A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: Basic design and performance. J. Appl. Phycol. 2003, 15, 239–248. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Jerez, C.G.; Navarro, E.; Malpartida, I.; Rico, R.M.; Masojidek, J.; Abdala, R.; Figueroa, F.L. Hydrodynamics and photosynthesis performance of Chlorella fusca (Chlorophyta) grown in a thin-layer cascade (TLC) system. Aquat. Biol. 2014, 22, 111–122. [Google Scholar] [CrossRef]
- Bumbak, F.; Cook, S.; Zachleder, V.; Hauser, S.; Kovar, K. Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. Appl. Microbiol. Biotechnol. 2011, 91, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Luan, G.; Tan, X.; Zhang, H.; Lu, X. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy. Biotechnol. Biofuels 2017, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Ramond, J.B.; Tuffin, M.; Burton, S.; Eley, K.; Cowan, D. Mechanisms and Applications of Microbial Solvent Tolerance. In Microbial Stress Tolerance for Biofuels, Microbiology Monographs 22; Liu, Z.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Gallego, A.; Gemini, V.L.; Fortunato, M.S.; Dabas, P.; Rossi, S.L.; Gomez, C.E.; Vescina, C.; Planes, E.I.; Korol, S.E. Degradation and Detoxification of Cresols in Synthetic and Industrial Wastewater by an Indigenous Strain of Pseudomonas putida in Aerobic Reactors. Environ. Toxicol. 2008, 23, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Neumegen, R.A.; Fernandez-Alba, A.R.; Chisti, Y. Toxicities of Triclosan, Phenol, and Copper Sulfate in Activated Sludge. Environ. Toxicol. 2005, 20, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Ehimen, E.A.; Connaughton, S.; Sun, Z.; Carrington, G.C. Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy 2009, 1, 371–381. [Google Scholar] [CrossRef]
- Bohutskyi, P.; Ketter, B.; Chow, S.; Adams, K.J.; Betenbaugh, M.J.; Allnutt, F.C.T.; Bouwer, E.J. Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresour. Technol. 2015, 183, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Ma, J.; Zhao, Q.; Laurens, L.; Jarvis, E.; Chen, S.; Frear, C. Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour. Technol. 2014, 161, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Golmakani, M.-T.; Mendiola, J.A.; Rezaei, K.; Ibanez, E. Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorganisms. J. Supercrit. Fluids 2014, 92, 1–7. [Google Scholar] [CrossRef]
- Gilbert-Lopez, B.; Mendiola, J.A.; Fontecha, J.; van Den Broek, L.A.M.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibanez, E. Downstream processing of Isochrysis galbana: A step towards microalgal biorefinery. Green Chem. 2015, 17, 4599–4609. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Herrero, M.; Urreta, I.; Mendiola, J.A.; Cifuentes, A.; Ibanez, E.; Suarez-Alvarez, S. Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 4607–4616. [Google Scholar] [CrossRef] [PubMed]
- Castro-Puyana, M.; Perez-Sanchez, A.; Valdes, A.; Ibrahim, O.H.M.; Suarez-Alvarez, S.; Ferragut, J.A.; Micol, V.; Cifuentes, A.; Ibanez, E.; Garcia-Canas, V. Pressurized liquid extraction of Neochloris oleoabundans for the recovery of bioactive carotenoids with anti-proliferative activity against human colon cancer cells. Food Res. Int. 2016. [Google Scholar] [CrossRef]
- Gilbert-Lopez, B.; Mendiola, J.A.; van den Broek, L.A.M.; Houweling-Tan, B.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibanez, E. Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res. 2017, 24, 111–121. [Google Scholar] [CrossRef]
Product | Strain | Solvent | Parameters | Yield | Reference |
---|---|---|---|---|---|
Lipids | Scenedesmus sp. (freeze-dried) | Chloroform:Methanol (2:1, v/v) | Pretreatment: High Pressure Homogenizer, Pressure (1200 psi). Extraction: 1 g sample per 30 mL solvent, 30 min, 35 °C, 500 rpm. | 24.9% (w/w) | [153] |
Pretreatment: none. Extraction: 1 g sample per 30 mL solvent, 5 h, 65 °C, 500 rpm. | 19.8% (w/w) | ||||
Additional processes: centrifugation, drying. | |||||
Lipids | Nannochloropsis oculata (freeze-dried and ground) | Hexane | Soxhlet extraction: 1 g biomass in a thimble, 200 mL solvent in a flask, 80 cycles within 7 h. | 9.1% (on dry weight basis) | [147] |
[P(CH2OH)4]Cl (80% in water) | Extraction: 1 g biomass for 10 mL ionic liquid, 100 °C, 24 h, magnetic stirring. Further, methanol and hexane used to purify lipid fraction. | 12.8% (on dry weight basis) | |||
Additional processes: centrifugation, rotary evaporation. | |||||
Lipids | Chlorella sp. (freeze-dried) | CH2Cl2/MeOH/Microalgal solution (50 mL/25 mL/20 mL) | Pretreatment: 0.5 g in 20 mL water, stirring for 2 min, ultrasonic waves (40 kHz, 200 W, the actual heating power = 48 W) for 1200 s. Extraction: stirring for 62 min, at room temperature, further 25 mL CH2Cl2 and 25 mL H2O added and a mixture was stirred again. | 11.6% (wt %) | [157] |
Pretreatment: 0.5 g in 20 mL water, stirring for 2 min, microwaves (2450 MHz, 530 W, the actual heating power = 380 W) for 75 s. Extraction: stirring for 62 min, at room temperature, further 25 mL CH2Cl2 and 25 mL H2O added and a mixture was stirred again. | 11.6% (wt %) | ||||
Additional processes: centrifugation, rotary evaporation. | |||||
Lipids | Chlorella sorokiniana | [BMIM][HSO4] 1 g biomass: 5 g solvent | Microwave irradiation 800 W, 120 °C, 60 min. | 23% (w/w) | [163] |
Oil bath: 120 °C, 60 min. | 1.1% (w/w) | ||||
Additional processes: addition of distilled H2O and n-hexane, mixing, filtration, evaporation. |
Product | Strain | Solvent | Parameters | Yield | Reference |
---|---|---|---|---|---|
Fucoxanthin | Cylindrotheca closterium (diatom) | Acetone 100% (50 mg freeze-dried biomass per 30 mL acetone) | Room Temperature Extraction (20 °C) 60 min under magnetic stirring | 0.45% | [158] |
Microwave Assisted Extraction (56 °C, atm pressure) 5 min, 50 W under magnetic stirring | 0.42% | ||||
Ultrasound Assisted Extraction (8.5 °C) 5 min, 12.2 W under magnetic stirring | 0.34% | ||||
Additional processes: centrifugation, evaporation, purification (chromatography). | |||||
β-carotene | Synechococcus sp. (cyanobacterium) | Supercritical CO2 (4.6 g homogenized biomass in an extractor with maximal capacity 10 mL) with a flow 0.8 g/min | CO2 extraction (3 h) | [167] | |
40 °C 200 bar | 0.016% | ||||
40 °C 400 bar | 0.035% | ||||
60 °C 400 bar | 0.046% | ||||
CO2 extraction with 5% (vol) ethanol (3 h) | |||||
40 °C 200 bar | 0.036% | ||||
40 °C 400 bar | 0.077% | ||||
60 °C 400 bar | 0.060% | ||||
Astaxanthin | Haematococcus pluvialis | Ethyl acetate 2 mL (two rounds) for solvent treated biomass | Biomass (10 mg) treated with [EMIM][DBP] (2.1 mL) at 25 °C for 90 min. | 36% of total astaxanthin | [149] |
Biomass (10 mg) treated with [EMIM][DBP] (2.1 mL) at 45 °C for 90 min. | 70% of total astaxanthin | ||||
Biomass treated with acetone at 25–45 °C for 90 min. | ~4% of total astaxanthin | ||||
Additional processes: centrifugation, mixing. |
Data Source | [153] | [147] | [157] | [163] | ||||
---|---|---|---|---|---|---|---|---|
Strain | Scenedesmus sp. (freeze-dried) | Nannochloropsis oculata (freeze-dried and ground) | Chlorella sp. (freeze-dried) | Chlorella sorokiniana | ||||
Pretreatment | no | High pressure homogenizer | no | no | ultrasound | microwave | no | no |
Extraction | yes | yes | yes | yes | yes | yes | microwave | solvolysis at high temperature in oil bath |
Solvent | Chloroform methanol | Chloroform methanol | hexane | ionic liquid THPC | Dichloremethan methanol | Dichloremethan methanol | ionic liquid BMIMHSO4 | ionic liquid BMIMHSO4 |
wdB (% wt.) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Yproduct (% dry wt.) | 19.8 | 24.9 | 9.1 | 12.8 | 11.6 | 11.6 | 23.0 | 1.1 |
ESEP (MJ·kg−1 product) | 165 | 137 | 987 | 440 | 5637 | 2185 | 12,700 | 5550 |
Pretreatment (%) | 0 | 4.4 | 0 | 0 | 73.4 | 31.4 | 98.2 | 17.0 |
Mixing (%) | 0.5 | < 0.1 | 1.8 | 1.0 | <0.1 | < 0.1 | <0.1 | <0.1 |
Evaporation (%) | 49.8 | 47.8 | 49.1 | 49.5 | 13.3 | 34.3 | 0.9 | 41.5 |
Condensation (%) | 49.8 | 47.8 | 49.1 | 49.5 | 13.3 | 34.3 | 0.9 | 41.5 |
CSEP (Eur·kg−1 product) | 0.92 | 0.8 | 5.6 | 2.5 | 49 | 15 | 123 | 35 |
Pretreatment (%) | 0.0 | 7.4 | 0.0 | 0.0 | 82.9 | 44.6 | 99 | 26.5 |
Mixing (%) | 0.9 | <0.1 | 3 | 1.8 | <0.1 | 0.1 | 0.0 | 0.1 |
Evaporation (%) | 84.8 | 79.2 | 83.1 | 84 | 14.6 | 47.3 | 0.9 | 62.8 |
Condensation (%) | 14.3 | 13.4 | 14 | 14.2 | 2.5 | 8 | 0.1 | 10.6 |
CCHEMICALS (Eur·kg−1 product) * | 697 | 555 | 45,100 | 21,170 | 6850 | 6850 | 11,000 | 230,000 |
Data Source | [158] | ||
---|---|---|---|
Strain | Cylindrotheca closterium (diatom) | ||
Extraction | ambient solvolysis | microwave | ultrasound |
Solvent | acetone | acetone | acetone |
wdB (% wt.) | 100 | 100 | 100 |
Yproduct (% dry wt.) | 0.45 | 0.42 | 0.34 |
ESEP (GJ·kg−1 product) | 127 | 207 | 189 |
Pretreatment (%) | <0.1 | 34.5 | 11.4 |
Mixing (%) | 0.2 | <0.1 | <0.1 |
Evaporation (%) | 49.9 | 32.8 | 44.3 |
Condensation (%) | 49.9 | 32.8 | 44.3 |
CSEP (Eur·kg−1 product) | 704 | 1 450 | 1 140 |
Pretreatment (%) | <0.1 | 48.0 | 18.4 |
Mixing (%) | 0.4 | <0.1 | <0.1 |
Evaporation (%) | 85.2 | 44.5 | 69.8 |
Condensation (%) | 14.4 | 7.5 | 11.8 |
CCHEMICALS (Eur·kg−1 product) * | 386,700 | 414,300 | 511,800 |
Data Source | [167] | |||||
---|---|---|---|---|---|---|
Strain | Synechococcus sp. (cyanobacterium) | |||||
Temperature (°C) | 40 | 40 | 60 | 40 | 40 | 60 |
Pressure (MPa) | 20 | 40 | 40 | 20 | 40 | 40 |
Pretreatment | no | no | no | no | no | no |
Solvent | Carbon dioxide | Carbon dioxide | Carbon dioxide | Carbon dioxide ethanol | Carbon dioxide ethanol | Carbon dioxide ethanol |
Solvent flowrate (g/min) | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
xethanol (% mol) | 0 | 0 | 0 | 5 | 5 | 5 |
wdB (% wt.) | 100 | 100 | 100 | 100 | 100 | 100 |
Yproduct (% dry wt.) | 0.016 | 0.035 | 0.046 | 0.036 | 0.077 | 0.060 |
ESEP (GJ·kg−1 product) | 268.0 | 143.8 | 108.3 | 119.3 | 65.2 | 82.8 |
Solvent compression (%) | 50.7 | 50.7 | 51.2 | 50.8 | 50.8 | 51.3 |
Solvent cooling (%) | 49.3 | 49.3 | 48.8 | 49.2 | 49.2 | 48.7 |
CSEP (Eur·kg−1 product) | 1532 | 816 | 619 | 682 | 370 | 474 |
Solvent compression (%) | 86.3 | 86.2 | 86.5 | 86.3 | 86.3 | 86.6 |
Solvent cooling (%) | 13.7 | 13.8 | 13.5 | 13.7 | 13.7 | 13.4 |
CCHEMICALS (Eur·kg−1 product) * | 352,170 | 160,990 | 122,490 | 277,760 | 129,860 | 166,650 |
Data Source | [149] | ||
---|---|---|---|
Strain | Haematococcus pluvialis | ||
Pretreatment solvent | EMIM DBP | EMIM DBP | Acetone |
Temperature (°C) | 25 | 45 | 25-45 |
Time (min) | 90 | 90 | 90 |
Extraction solvent | Ethyl acetate | Ethyl acetate | Ethyl acetate |
wdB (% wt.) | 100 | 100 | 100 |
Total astaxanthin (% wt.) | 3.2 | ||
Yproduct (% of total wt. of astaxanthin) | 36 | 70 | 4 |
ESEP (GJ·kg−1 product) | 26 | 14 | 277 |
Pretreatment (%) | 1.7 | 7.5 | 1 |
Mixing (%) | 0.1 | 0.1 | 0.1 |
Evaporation (%) | 49.1 | 46.2 | 49.4 |
Condensation (%) | 49.1 | 46.2 | 49.4 |
CSEP (Eur·kg−1 product) | 144 | 83 | 1542 |
Pretreatment (%) | 2.9 | 12.5 | 1.8 |
Mixing (%) | 0.2 | 0.2 | 0.2 |
Evaporation (%) | 82.9 | 74.7 | 83.9 |
Condensation (%) | 14 | 12.6 | 14.1 |
CCHEMICALS (Eur·g−1 product) * | 4078 | 2093 | 15,025 |
Solvent Type | Stimulatory Range | Inhibitory Range |
---|---|---|
Methanol | 1.3–7.92 g/L, ~23 g/L [45] | 0.5–82 g/L |
Ethanol | 0.15–10 g/L | 1.4–16.5 g/L |
Cresols | 16–160 mg/L | n.d. |
Chlorinated solvents | 0.05–0.1 g/L | 2 µg/L–2.86 g/L |
Glycols (EG, PG) | ~2.5 g/L | 10–36 g/L |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miazek, K.; Kratky, L.; Sulc, R.; Jirout, T.; Aguedo, M.; Richel, A.; Goffin, D. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review. Int. J. Mol. Sci. 2017, 18, 1429. https://doi.org/10.3390/ijms18071429
Miazek K, Kratky L, Sulc R, Jirout T, Aguedo M, Richel A, Goffin D. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review. International Journal of Molecular Sciences. 2017; 18(7):1429. https://doi.org/10.3390/ijms18071429
Chicago/Turabian StyleMiazek, Krystian, Lukas Kratky, Radek Sulc, Tomas Jirout, Mario Aguedo, Aurore Richel, and Dorothee Goffin. 2017. "Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review" International Journal of Molecular Sciences 18, no. 7: 1429. https://doi.org/10.3390/ijms18071429
APA StyleMiazek, K., Kratky, L., Sulc, R., Jirout, T., Aguedo, M., Richel, A., & Goffin, D. (2017). Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review. International Journal of Molecular Sciences, 18(7), 1429. https://doi.org/10.3390/ijms18071429