Detailed Characterization of Sympathetic Chain Ganglia (SChG) Neurons Supplying the Skin of the Porcine Hindlimb
Abstract
:1. Introduction
2. Results
2.1. The Number and Distribution Pattern of Skin-Projecting Neurons with in the Porcine Sympathetic Chain Ganglia (SChG)
2.2. Neurochemical Phenotypes of Skin-Projecting Neurons within the Porcine Sympathetic China Ganglia (SChG)
2.2.1. Lumbar SChG
L4 SChG
L5 SChG
L6 SChG
2.2.2. Sacral SChG
S1 SChG
S2 SChG
3. Discussion
3.1. Dopamine β-Hydroxylase (DβH) and/or Neuropeptide Y (NPY)
3.2. DβH and/or Somatostatin (SOM)
3.3. DβH and/or Neuronal Nitric Oxide Synthase (nNOS)
3.4. DβH and/or Substance (SP)
3.5. DβH and/or Vasoactive Intestinal Peptide (VIP)
3.6. DβH and/or Leu5-Enkephalin (LENK)
3.7. DβH and/or Cyclase-Activating Polypeptide (PACAP)
3.8. DβH and/or GAL
4. Materials and Methods
4.1. Laboratory Animals
4.2. Anesthesia, Surgery and Tissue Processing
4.3. Immunofluorescence Procedures
4.4. Counting of Neurons and Statistical Analysis
4.5. Specificity Tests of Tracing and Labeling Procedures
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brain, S.D.; Moore, P.K. Pain and neurogenic inflammation. In Progress in Inflammation Research; Springer: Basel, Switzerland, 1999. [Google Scholar]
- Björklund, H.; Dalsgaard, C.J.; Jonsson, C.E.; Hermansson, A. Sensory and autonomic innervation of non-hairy and hairy human skin. An immunohistochemical study. Cell Tissue Res. 1986, 243, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Karanth, S.S.; Springall, D.R.; Kuhn, D.M.; Levene, M.M.; Polak, J.M. An immunocytochemical study of cutaneous innervation and the distribution of neuropeptides and protein gene product 9.5 in man and commonly employed laboratory animals. Am. J. Anat. 1991, 191, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Debeer, S.; Le Luduec, J.B.; Kaiserlian, D.; Laurent, P.; Nicolas, J.F.; Dubois, B.; Kanitakis, J. Comparative histology and immunohistochemistry of porcine versus human skin. Eur. J. Dermatol. 2013, 23, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, I.; Cuello, A.C.; Parent, A.; Ribeiro-da-Silva, A. Skin blood vessels are simultaneously innervated by sensory, sympathetic, and parasympathetic fibers. J Comp. Neurol. 2002, 448, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Roth, S.; Kummer, W. A quantitative ultrastructural investigation of tyrosine hydroxylase-immunoreactive axons in the hairy skin of the guinea pig. Anat. Embryol. 1994, 190, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Jänig, W.; Kümmel, H. Organization of the sympathetic innervation supplying the hairless skin of the cat’s paw. J. Auton. Nerv. Syst. 1981, 3, 215–230. [Google Scholar] [CrossRef]
- Morris, J.L. Cotransmission from sympathetic vasoconstrictor neurons to small cutaneous arteries in vivo. Am. J. Physiol. 1999, 277, H58–H64. [Google Scholar] [PubMed]
- Mark, A.L.; Abboud, F.M.; Schmid, P.G.; Heistad, D.D.; Mayer, H.E. Differences in direct effects of adrenergic stimuli on coronary, cutaneous, and muscular vessels. J. Clin. Investig. 1972, 51, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Vetrugno, R.; Liguori, R.; Cortelli, P.; Montagna, P. Sympathetic skin response: Basic mechanisms and clinical applications. Clin. Auton. Res. 2003, 13, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Charkoudian, N. Skin blood flow in adult human thermoregulation: How it works, when it does not, and why. Mayo Clin. Proc. 2003, 78, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Brengelmann, G.L.; Savage, M.V. Temperature regulation in the neutral zone. Ann. N. Y. Acad. Sci. 1997, 813, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Rowell, L.B. Reflex control of the cutaneous vasculature. J. Investig. Dermatol. 1977, 69, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, L.E.; Ekenvall, L. α-adrenoceptors in the vessels of human finger skin. Acta. Physiol. Scand. 1986, 128, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Kenney, W.L. Effects of Selective α-Adrenergic Blockade on Control of Human Skin Blood Flow during Exercise. In Temperature Regulation; Part of the Series Advances in Pharmacological Sciences; Milton, A.C., Ed.; Springer: Basel, Switzerland, 1994; pp. 151–157. [Google Scholar]
- Stephens, D.P.; Aoki, K.; Kosiba, W.A.; Johnson, J.M. Nonnoradrenergic mechanism of reflex cutaneous vasoconstriction in men. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H1496–H1504. [Google Scholar] [PubMed]
- Mizuno, S.; Takebayashi, T.; Kirita, T.; Tanimoto, K.; Tohse, N.; Yamashita, T. The effects of the sympathetic nerves on lumbar radicular pain: A behavioural and immunohistochemical study. Mayo Clin. Proc. 2007, 78, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Iwase, T.; Takebayashi, T.; Tanimoto, K.; Terashima, Y.; Miyakawa, T.; Kobayashi, T.; Tohse, N.; Yamashita, T. Sympathectomy attenuates excitability of dorsal root ganglion neurons and pain behaviour in a lumbar radiculopathy model. Bone Jt. Res. 2012, 1, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Bridges, D.; Thompson, S.W.; Rice, A.S. Mechanisms of neuropathic pain. Br. J. Anaesth. 2001, 87, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, F.P.; Magnussen, C.; Yousefpour, N.; Ribeiro-da-Silva, A. Sympathetic fibre sprouting in the skin contributes to pain-related behaviour in spared nerve injury and cuff models of neuropathic pain. Mol. Pain 2015, 11. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, R.M.; Cronenwett, J.L. Lumbar sympathectomy for lower extremity ischemic ulcers. In Therapy in Vascular and Endovascular Surgery, 5th ed.; Stanley, J.C., Veith, F.J., Wakefield, T.W., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; p. 612. [Google Scholar]
- Lindh, B.; Lundberg, J.M.; Hökfelt, T. NPY-, galanin-, VIP/PHI-, CGRP- and substance P-immunoreactive neuronal subpopulations in cat autonomic and sensory ganglia and their projections. Cell Tissue Res. 1989, 256, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Koszykowska, M.; Całka, J.; Gańko, M.; Jana, B. Long-term estradiol-17β administration reduces population of neurons in the sympathetic chain ganglia supplying the ovary in adult gilts. Exp. Mol. Pathol. 2011, 91, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Skobowiat, C.; Calka, J.; Wasowicz, K.; Majewski, M. Distribution pattern and chemical coding of neurons of the sympathetic chain ganglia supplying the descending colon in the pig. Acta Vet. Hung. 2010, 58, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Skobowiat, C.; Gonkowski, S.; Calka, J. Phenotyping of sympathetic chain ganglia (SChG) neurons in porcine colitis. J. Vet. Med. Sci. 2010, 72, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Lepiarczyk, E.; Bossowska, A.; Majewski, M. Changes in chemical coding of sympathetic chain ganglia (SChG) neurons supplying porcine urinary bladder after botulinum toxin (BTX) treatment. Cell Tissue Res. 2015, 360, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Lepiarczyk, E.; Majewski, M.; Bossowska, A. The influence of intravesical administration of resiniferatoxin (RTX) on the chemical coding of sympathetic chain ganglia (SChG) neurons supplying the porcine urinary bladder. Histochem. Cell Biol. 2015, 144, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Zalecki, M. Localization and neurochemical characteristics of the extrinsic sympathetic neurons projecting to the pylorus in the domestic pig. J. Chem. Neuroanat. 2012, 43, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mundinger, T.O.; Verchere, C.B.; Baskin, D.G.; Boyle, M.R.; Kowalyk, S.; Taborsky, G.J., Jr. Galanin is localized in sympathetic neurons of the dog liver. Am. J. Physiol. 1997, 273, E1194–E1202. [Google Scholar] [PubMed]
- Stephens, D.P.; Saad, A.; Bennett, L.A.; Kosiba, W.A.; Johnson, J.M. Neuropeptide Y antagonism reduces reflex cutaneous vasoconstriction in humans. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H1401–H1409. [Google Scholar] [CrossRef] [PubMed]
- Shastry, S.; Dietz, N.M.; Halliwill, J.R.; Reed, A.S.; Joyner, M.J. Effects of nitric oxide synthase inhibition on cutaneous vasodilation during body heating in humans. J. Appl. Physiol. 1998, 85, 830–834. [Google Scholar] [PubMed]
- Avon, S.L.; Wood, R.E. Porcine skin as an in vivo model for ageing of human bite marks. J. Forensic Odonto. Stomatol. 2005, 23, 30–39. [Google Scholar]
- Jaggi, A.S.; Jain, V.; Singh, N. Animal models of neuropathic pain. Fundam. Clin. Pharmacol. 2011, 25, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Herron, A.J. Pigs as Dermatologic Models of Human Skin Disease. In Proceedings of the ACVP/ASVCP Concurrent Annual Meetings, Monterey, CA, USA, 5–9 December 2009; pp. 5–9. [Google Scholar]
- Chyczewski, M.; Wojtkiewicz, J.; Bossowska, A.; Jałyński, M.; Brzeski, W.; Kowalski, I.M.; Majewski, M. Sources of porcine longissimus dorsi muscle (LDM) innervation as revealed by retrograde neuronal tract-tracing. Folia Histochem. Cytobiol. 2006, 44, 189–194. [Google Scholar] [PubMed]
- Ragionieri, L.; Botti, M.; Gazza, F.; Sorteni, C.; Chiocchetti, R.; Clavenzani, P.; Minelli, L.B.; Panu, R. Localization of peripheral autonomic neurons innervating the boar urinary bladder trigone and neurochemical features of the sympathetic component. Eur. J. Histochem. 2013, 57, e16. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M. Synaptogenesis and structure of the autonomic ganglia. Folia Morphol. 1999, 58, 65–99. [Google Scholar]
- Gibbins, I.L.; Morris, J.L. Pathway specific expression of neuropeptides and autonomic control of the vasculature. Regul. Pept. 2000, 93, 93–107. [Google Scholar] [CrossRef]
- Kaleczyc, J.; Timmermans, J.P.; Majewski, M.; Lakomy, M.; Scheuermann, D.W. Distribution and immunohistochemical characteristics of neurons in the porcine caudal mesenteric ganglion projecting to the vas deferens and seminal vesicle. Cell Tissue Res. 1995, 282, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Pidsudko, Z.; Kaleczyc, J.; Majewski, M.; Lakomy, M.; Scheuermann, D.W.; Timmermans, J.P. Differences in the distribution and chemical coding between neurons in the inferior mesenteric ganglion supplying the colon and rectum in the pig. Cell Tissue Res. 2001, 303, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, A.; Mikołajczyk, A.; Adamiak, Z.; Majewski, M. Distribution and chemical coding of sensory neurons innervating the skin of the porcine hindlimb. Neuropeptides 2016, 61, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Łakomy, M.; Happola, O.; Majewski, M.; Wąsowicz, K. Neuropeptides in the porcine coeliac-superior mesenteric ganglion. Folia Histochem. Cytobiol. 1993, 31, 181–191. [Google Scholar] [PubMed]
- Pidsudko, Z. Immunohistochemical characteristics and distribution of neurons in the paravertebral, prevertebral and pelvic ganglia supplying the urinary bladder in the male pig. J. Mol. Neurosci. 2014, 52, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Gibbins, I.L. Autonomic pathways to cutaneous effectors. In Autonomic Innervation of Skin; Morris, J.L., Gibbins, I.L., Eds.; Harwood Academie Publishers: Amsterdam, The Netherlands, 1997; p. 56. [Google Scholar]
- Gibbins, I.L.; Morris, J.L. Sympathetic noradrenergic neurons containing dynorphin but not neuropeptide Y innervate small cutaneous blood vessels of guinea-pigs. J. Auton. Nerv. Syst. 1990, 29, 137–149. [Google Scholar] [CrossRef]
- Roosterman, D.; Goerge, T.; Schneider, S.W.; Bunnett, N.W.; Steinhoff, M. Neuronal control of skin function: The skin as a neuroimmunoendocrine organ. Physiol. Rev. 2006, 86, 1309–1379. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.M.; Modin, A. Inhibition of sympathetic vasoconstriction in pigs in vivo by the neuropeptide Y-Y1 receptor antagonist BIBP 3226. Br. J. Pharmacol. 1995, 116, 2971–2982. [Google Scholar] [CrossRef] [PubMed]
- Padilla, J.; García-Villalón, A.L.; Monge, L.; García, J.L.; Fernández, N.; Gómez, B.; Diéguez, G. Peptidergic modulation of the sympathetic contraction in the rabbit ear artery: Effects of temperature. Br. J. Pharmacol. 1997, 121, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Wallengren, J. Vasoactive peptides in the skin. J. Investig. Dermatol. Symp. Proc. 1997, 2, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.D.; Taiwo, Y.O.; Collins, S.D.; Tam, J.K. Noradrenaline hyperalgesia is mediated through interaction with sympathetic postgahglionic neurone terminals rather than activation of primary afferent nociceptors. Nature 1986, 323, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Drummond, P.D. Noradrenaline increases hyperalgesia to heat in skin sensitized by capsaicin. Pain 1995, 60, 311–315. [Google Scholar] [CrossRef]
- Gibbs, J.L.; Flores, C.M.; Hargreaves, K.M. Attenuation of capsaicin-evoked mechanical allodynia by peripheral neuropeptide Y Y1 receptors. Pain 2006, 124, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.; Hung, S.P.; Ribeiro-da-Silva, A. Novel expression pattern of neuropeptide Y immunoreactivity in the peripheral nervous system in a rat model of neuropathic pain. Mol. Pain 2015, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Franke-Radowiecka, A.; Wąsowicz, K.; Klimczuk, M.; Podlasz, P.; Zalecki, M.; Sienkiewicz, W. Immunohistochemical Characterization of Sympathetic Chain Ganglia (SChG) Neurons Supplying the Porcine mammary Gland. Anat Histol. Embryol. 2016, 45, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Johansson, O.; Vaalasti, A. Immunohistochemical evidence for the presence of somatostatin-containing sensory nerve fibres in the human skin. Neurosci. Lett. 1987, 73, 225–230. [Google Scholar] [CrossRef]
- Dalsgaard, C.J.; Jernbeck, J.; Stains, W.; Kjartansson, J.; Haegerstrand, A.; Hökfelt, T.; Brodin, E.; Cuello, A.C.; Brown, J.C. Calcitonin gene-related peptide-like immunoreactivity in nerve fibers in the human skin. Relation to fibers containing substance P-, somatostatin- and vasocactive intestinal polypeptide-like immunoreactivity. Histochemistry 1989, 91, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Szolcsányi, J.; Helyes, Z.; Oroszi, G.; Németh, J.; Pintér, E. Release of somatostatin and its role in the mediation of the anti-inflammatory effect induced by antidromic stimulation of sensory fibres of rat sciatic nerve. Br. J. Pharmacol. 1998, 123, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Carlton, S.M.; Du, J.; Zhou, S.; Coggeshall, R.E. Tonic control of peripheral cutaneous nociceptors by somatostatin receptors. J. Neurosci. 2001, 21, 4042–4049. [Google Scholar] [PubMed]
- Botti, M.; Gazza, F.; Ragionieri, L.; Minelli, L.B.; Panu, R. Double labelling immunohistochemistry on the sympathetic trunk ganglia neurons projecting to the extrinsic penile smooth musculature of the pig: An experimental study on the retractor penis muscle. Ital. J. Anat. Embryol. 2013, 118, 223–239. [Google Scholar] [PubMed]
- Ibba-Manneschi, L.; Niissalo, S.; Milia, A.F.; Allanore, Y.; Del Rosso, A.; Pacini, A.; Manetti, M.; Toscano, A.; Cipriani, P.; Liakouli, V.; et al. Variations of neuronal nitric oxide synthase in systemic sclerosis skin. Arthritis Rheumatol. 2006, 54, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, D.L.; Zhao, J.L.; Wu, Y. Neuronal nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo. J. Physiol. 2008, 586, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Houghton, B.L.; Meendering, J.R.; Wong, B.J.; Minson, C.T. Nitric oxide and noradrenaline contribute to the temperature threshold of the axon reflex response to gradual local heating in humanskin. J. Physiol. 2006, 572, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Gazza, F.; Acone, F.; Botti, M.; Ragionieri, L.; Panu, R.; Bo Minelli, L.; Palmieri, G. Double labelling immunohistochemistry on the peripheral autonomic neurons projecting to the bulbospongiosus muscle in male impuberal pigs. Vet. Res. Commun. 2003, 27, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Ragionieri, L.; Botti, M.; Gazza, F.; Bo Minelli, L.; Acone, F.; Panu, R.; Palmieri, G. Double labelling immunohistochemical characterization of autonomic sympathetic neurons innervating the sow retractor clitoridis muscle. Eur. J. Histochem. 2008, 52, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Eide, K.; Hole, K. Interactions between substance P and norepinephrine in the regulation of nociception in mouse spinal cord. Pharmacol. Toxicol. 1992, 70, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.J.; Tublitz, N.J.; Minson, C.T. Neurokinin-1 receptor desensitization to consecutive microdialysis infusions ofsubstancePin human skin. J. Physiol. 2005, 568, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.L.; Elde, R. Vasoactive intestinal peptide distribution and colocalization with dopamine-β-hydroxylase in sympathetic chain ganglia of pig. J. Auton. Nerv. Syst. 1989, 27, 229–239. [Google Scholar] [CrossRef]
- Lundberg, J.M.; Änggärd, A.; Fahrenkrug, J.T.; Hökfelt, V.M. Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: Functional significance of coexisting transmitters for vasodilation and secretion. Proc. Natl. Acad. Sci. USA 1980, 77, 1651–1655. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Geissen, M.; Götz, R.; Ernsberger, U.; Rohrer, H. The early expression of VAChT and VIP in mouse sympathetic ganglia is not induced by cytokines acting through LIFR β or CNTFR α. Mech. Dev. 2000, 91, 91–96. [Google Scholar] [CrossRef]
- Hartschuh, W.; Weihe, E.; Reinecke, M. Peptidergic (neurotensin, VIP, substance P) nerve fibres in the skin. Immunohistochemical evidence of an involvement of neuropeptides in nociception, pruritus and inflammation. Br. J. Dermatol. 1983, 109, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Schulze, E.; Witt, M.; Fink, T.; Hofer, A.; Funk, R.H. Immunohistochemical detection of human skin nerve fibers. Acta Histochem. 1997, 99, 301–309. [Google Scholar] [CrossRef]
- Bennett, L.A.; Johnson, J.M.; Stephens, D.P.; Saad, A.R.; Kellogg, D.L., Jr. Evidence for a role for vasoactive intestinal peptide in active vasodilatation in the cutaneous vasculature of humans. J. Physiol. 2003, 552, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, B.W.; Chung, L.H.; Tublitz, N.J.; Wong, B.J.; Minson, C.T. Mechanisms of vasoactive intestinal peptide-mediated vasodilation in human skin. J. Appl. Physiol. 2004, 97, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Szabo, B.; Hedler, L.; Ensinger, H.; Starke, K. Opioid peptides decrease noradrenaline release and blood pressure in the rabbit at peripheral receptors. Naunyn Schmiedebergs Arch. Pharmacol. 1986, 332, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Chahl, L.A. Opioids—Mechanisms of action. Exp. Clin. Pharmacol. 1996, 19, 63–65. [Google Scholar] [CrossRef]
- Shioda, S.; Yada, T.; Muroya, S.; Uramura, S.; Nakajo, S.; Ohtaki, H.; Hori, T.; Shimoda, Y.; Funahashi, H. Functional significance of colocalization of PACAP and catecholamine in nerve terminals. Ann. N. Y. Acad. Sci. 2000, 921, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, M.; McGregor, G.P.; Radleff-Schlimme, A.; Steinhoff, A.; Jarry, H.; Schmidt, W.E. Identification ofpituitary adenylate cyclase activating polypeptide (PACAP) and PACAP type 1 receptor in human skin: Expression of PACAP-38 is increased in patients with psoriasis. Regul. Pept. 1999, 80, 49–55. [Google Scholar] [CrossRef]
- Warren, J.B.; Larkin, S.W.; Coughlan, M.; Kajekar, R.; Williams, T.J. Pituitary adenylate cyclase activating polypeptide is a potent vasodilator and oedema potentiator in rabbit skin in vivo. Br. J. Pharmacol. 1992, 106, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Cardell, L.O.; Stjärne, P.; Wagstaff, S.J.; Agustí, C.; Nadel, J.A. PACAP-induced plasma extravasation in rat skin. Regul. Pept. 1997, 71, 67–71. [Google Scholar] [CrossRef]
- Tainio, H.; Vaalasti, A.; Rechardt, L. The distribution of substance P-, CGRP-, galanin- and ANP-like immunoreactive nerves in human sweat glands. Histochem. J. 1987, 19, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Kofler, B.; Berger, A.; Santic, R.; Moritz, K.; Almer, D.; Tuechler, C.; Lang, R.; Emberger, M.; Klausegger, A.; Sperl, W.; et al. Expression of neuropeptide galanin and galanin receptors in human skin. J. Investig. Dermatol. 2004, 122, 1050–1053. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, S.M.; Rauch, I.; Kofler, B.; Brain, S.D. Evidence that the modulatory effect of galanin on inflammatory edema formation is mediated by the galanin receptor 3 in the murine microvasculature. J. Mol. Neurosci. 2009, 37, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, K.; Kuteeva, E.; Brumovsky, P.; Kahl, U.; Karlström, H.; Lucas, G.A.; Rodriguez, J.; Westerblad, H.; Hilke, S.; Theodorsson, E.; et al. Generation and phenotypic characterization of a galanin overexpressing mouse. Neuroscience 2005, 133, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Brumovsky, P.; Hygge-Blakeman, K.; Villar, M.J.; Watanabe, M.; Wiesenfeld-Hallin, Z.; Hökfelt, T. Phenotyping of sensory and sympathetic ganglion neurons of a galanin-overexpressing mouse—Possible implications for pain processing. J. Chem. Neuroanat. 2006, 31, 243–262. [Google Scholar] [CrossRef] [PubMed]
Substances | Ganglia | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L4 | L5 | L6 | ||||||||||
FB+/DβH+/S+ | FB+/DβH+/S− | FB+/DβH−/S+ | FB+/DβH−/S− | FB+/DβH+/S+ | FB+/DβH+/S− | FB+/DβH−/S+ | FB+/DβH−/S− | FB+/DβH+/S+ | FB+/DβH+/S− | FB+/DβH−/S+ | FB+/DβH−/S− | |
PACAP | Small cells | Small cells | Small cells | |||||||||
26.0 ± 1.3 | 49.7 ± 1.8 | 0.3 ± 0.3 | 23.8 ± 1.3 | 49.5 ± 2.3 a (p < 0.001) | 34.8 ± 4.6 a (p < 0.05) | 0.6 ± 0.6 | 14.9 ± 4.0 | 33.1 ± 1.9 c (p < 0.001) | 39.6 ± 3.4 | 0 | 27.3 ± 1.9 c (p < 0.01) | |
Large cells | Large cells | Large cells | ||||||||||
18.1 ± 1.7 * | 61.4 ± 1.7 *** | 0 | 20.5 ± 0.5 | 36.1 ± 7.3 | 57.6 ± 4.8 | 0 | 6.2 ± 6.2 | 20.9 ± 0.5 | 58.1 ± 1.0 | 0 | 20.9 ± 0.5 | |
SOM | Small cells | Small cells | Small cells | |||||||||
33.7 ± 2.2 | 52.8 ± 2.9 | 1.0 ± 0.6 | 12.4 ± 1.9 | 23.5 ± 0.7 a (p < 0.001) | 62.6 ± 1.3 | 0.3 ± 0.3 | 13.6 ± 1.2 | 17.4 ± 0.9 b(p<0.001);c(p<0.001) | 62.9 ± 3.5 | 2.7 ± 1.7 | 16.9 ± 1.4 | |
Large cells | Large cells | Large cells | ||||||||||
23.9 ± 3.2 ** | 63.3 ± 1.9* | 0 | 12.8 ± 4.7 | 25.1 ± 0.02 | 43.9 ± 2.0 ***; a (p < 0.001) | 0 | 31.0 ± 2.0 ***; a (p < 0.001) | 34.1 ± 1.3 ***; b (p < 0.01); c (p < 0.05) | 50.3 ± 0.6 **, b (p < 0.01) | 0 | 15.6 ± 0.7 c (p < 0.01) | |
nNOS | Small cells | Small cells | Small cells | |||||||||
11.2 ± 0.6 | 68.8 ± 2.7 | 0 | 20.0 ± 2.6 | 15.9 ± 0.9 a (p < 0.05) | 73.6 ± 0.8 | 0 | 10.4 ± 0.6 a (p < 0.02) | 15.8 ± 0.4 b (p < 0.05) | 68.9 ± 1.1 | 0.7 ± 0.4 | 14.5 ± 1.8 | |
Large cells | Large cells | Large cells | ||||||||||
17.9 ± 1.9 ** | 62.8 ± 1.5 | 0 | 19.2 ± 1.0 | 11.4 ± 0.7 *, a (p < 0.01) | 53.6 ± 1.3 ***, a (p < 0.01) | 0 | 35.0 ± 1.6 ***, a (p < 0.001) | 11.7 ± 0.5 *** | 44.2 ± 0.7 ***; b (p < 0.001); c (p < 0.01) | 0 | 44.1 ± 0.8 ***; b (p < 0.001); c (p < 0.01) | |
SP | Small cells | Small cells | Small cells | |||||||||
21.9 ± 0.5 | 59.4 ± 0.8 | 0 | 18.7 ± 0.6 | 22.2 ± 0.9 | 57.7 ± 0.4 | 0 | 19.9 ± 0.5 | 35.1 ± 0.4 b ( p < 0.001) | 56.3 ± 1.0 | 0.5 ± 0.5 | 8.1 ± 0.9 b (p < 0.001); c (p < 0.001) | |
Large cells | Large cells | Large cells | ||||||||||
7.8 ± 0.3 *** | 70.8 ± 0.6 * | 0 | 21.4 ± 0.5 * | 0 | 56.2 ± 5.5 a ( p< 0.01) | 0 | 43.7 ± 5.5 ***; a(p < 0.001) | 12.1 ± 0.3 ***; b (p < 0.001) | 54.5 ± 0.7 b (p < 0.01) | 0 | 33.3 ± 0.4 ***; b (p < 0.05); c (p < 0.05) | |
VIP | Small cells | Small cells | Small cells | |||||||||
19.5 ± 1.1 | 70.0 ± 1.2 | 0 | 10.4 ± 0.4 | 20.0 ± 0.8 | 73.5 ± 0.4 | 0 | 6.5 ± 0.4 | 25.5 ± 1.5 b (p < 0.01); c (p < 0.05) | 64.9 ± 1.0 c (p < 0.01) | 0 | 9.6 ± 0.5 | |
Large cells | Large cells | Large cells | ||||||||||
3.6 ± 1.1 *** | 94.6 ± 2.1 ** | 0 | 1.8 ± 1.8 *** | 21.7 ± 0.6 a (p < 0.001) | 33.9 ± 3.2 ***, a (p < 0.001) | 0 | 44.4 ± 1.1 ***, a (p < 0.001) | 9.2 ± 0.8 ***, b (p < 0.01); c (p < 0.001) | 60.3 ± 0.8 b (p < 0.001); c (p < 0.001) | 0 | 30.5 ± 1.0 ***; b (p < 0.001); c (p < 0.001) | |
NPY | Small cells | Small cells | Small cells | |||||||||
37.6 ± 0.5 | 59.1 ± 1.4 | 0.2 ± 0.2 | 3.1 ± 0.7 | 26.9 ± 1.0 a (p < 0.01) | 68.9 ± 1.2 | 1.0 ± 1.0 | 2.7 ± 2.7 | 18.3 ± 0.2 b (p < 0.001); c (p < 0.05) | 70.8 ± 1.3 b (p < 0.001) | 0 | 10.8 ± 1.1 b (p < 0.05); c (p < 0.05) | |
Large cells | Large cells | Large cells | ||||||||||
21.8 ± 0.8 *** | 58.2 ± 0.9 | 2.7 ± 2.7 | 17.2 ± 2.2 *** | 55.8 ± 3.9 ***, a (p < 0.001) | 30.2 ± 1.1 ***; a (p < 0.001) | 2.7 ± 2.7 | 11.2 ± 0.7* | 32.9 ± 1.4 ***; b (p < 0.001); c (p<0.001) | 51.5 ± 0.8 ***; c (p < 0.001) | 0 | 15.4 ± 0.9 | |
LENK | Small cells | Small cells | Small cells | |||||||||
1.3 ± 0.6 | 88.8 ± 1.5 | 0 | 9.9 ± 0.8 | 3.4 ± 0.6 | 82.2 ± 1.2 | 0 | 14.1 ± 1.0 a (p < 0.05) | 1.8 ± 0.9 | 85.8 ± 2.4 | 0 | 12.4 ± 0.4 | |
Large cells | Large cells | Large cells | ||||||||||
1.6 ± 1.0 | 78.4 ± 3.7 * | 0 | 20.0 ± 0.6 *** | 11.4 ± 0.7 ***; a (p < 0.001) | 77.1 ± 0.4 | 0 | 11.4 ± 0.7 a (p < 0.001) | 0.5 ± 0.5 c (p < 0.001) | 87.8 ± 1.5 | 0 | 11.5 ± 1.2 | |
GAL | Small cells | Small cells | Small cells | |||||||||
26.6 ± 3.6 | 63.0 ± 3.7 | 0 | 10.3 ± 1.3 | 9.0 ± 0.2 a ( p <0.001) | 80.7 ± 2.2 a ( p <0.001) | 0 | 10.0 ± 0.4 | 14.3 ± 0.2 b (p < 0.001) | 71.0 ± 0.4 b (p < 0.05); c (p < 0.05) | 0 | 14.5 ± 0.5 b (p < 0.05) | |
Large cells | Large cells | Large cells | ||||||||||
0 | 85.1 ± 1.1 *** | 0 | 14.8 ± 1.1 * | 13.5 ± 0.6 | 73.6 ± 0.9 a (p < 0.01) | 0 | 12.8 ± 0.4 | 11.5 ± 0.2) | 73.9 ± 0.9 b (p < 0.01) | 0 | 14.5 ± 0.9 |
Substances | Ganglia | |||||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | |||||||
FB+/DβH+/S+ | FB+/DβH+/S− | FB+/DβH−/S+ | FB+/DβH−/S− | FB+/DβH+/S+ | FB+/DβH+/S− | FB+/DβH−/S+ | FB+/DβH−/S− | |
PACAP | Small cells | Small cells | ||||||
34.4 ± 0.8 | 59.4 ± 1.6 | 0 | 6.2 ± 0.7 | 52.5 ± 1.2 a (p < 0.001) | 39.1 ± 0.5 a (p < 0.001) | 2.9 ± 1.6 | 5.4 ± 0.6 | |
Large cells | Large cells | |||||||
0 | 62.2 ± 1.0 *** | 0 | 37.7 ± 1.0 *** | 31.1 ± 0.9 *** | 54.2 ± 0.9 ***; a (p < 0.001) | 0 | 14.7 ± 0.3 ***; a (p < 0.001) | |
SOM | Small cells | Small cells | ||||||
32.1 ± 5.2 | 47.8 ± 2.2 | 0 | 19.9 ± 4.5 | 41.8 ± 0.6 a (p < 0.05) | 42.3 ± 0.7 | 2.2 ± 0.9 | 13.7 ± 0.7 | |
Large cells | Large cells | |||||||
57.1 ± 0.4 *** | 26.9 ± 0.7 *** | 0 | 15.9 ± 0.5 | 25.4 ± 0.7 ***; a (p < 0.001) | 55.3 ± 0.9 ***; a (p < 0.01) | 0 | 19.2 ± 0.2 | |
nNOS | Small cells | Small cells | ||||||
15.1 ± 0.7 | 75.0 ± 0.5 | 0 | 9.9 ± 0.3 | 4.5 ± 0.05 a (p < 0.001) | 76.4 ± 0.4 | 2.2 ± 0.4 | 16.9 ± 0.7 a (p < 0.001) | |
Large cells | Large cells | |||||||
0 | 100 | 0 | 0 | 49.8 ± 0.1 *** | 50.2 ± 0.1 *** | 0 | 0 | |
SP | Small cells | Small cells | ||||||
19.0 ± 1.3 | 66.8 ± 0.9 | 0 | 14.1 ± 0.9 | 20.8 ± 0.1 | 65.0 ± 1.6 | 0 | 14.2 ± 1.1 | |
Large cells | Large cells | |||||||
0 | 100 | 0 | 0 | 0 | 76.7 ± 1.1 *** | 0 | 23.2 ± 1.1 *** | |
VIP | Small cells | Small cells | ||||||
17.7 ± 0.5 | 64.7 ± 3.4 | 1.1 ± 1.1 | 16.5 ± 1.3 | 28.2 ± 0.7 a ( p< 0.05) | 57.8 ± 3.3 | 0.9 ± 0.9 | 13.1 ± 1.7 | |
Large cells | Large cells | |||||||
35.2 ± 0.8 *** | 50.6 ± 0.7 *** | 0 | 14.2 ± 0.8 | 13.6 ± 1.1 **; a (p < 0.001) | 86.3 ± 1.1 ***; a (p < 0.001) | 0 | 0 | |
NPY | Small cells | Small cells | ||||||
25.9 ± 1.5 | 62.7 ± 3.0 | 0 | 11.3 ± 3.9 | 27.3 ± 3.5 | 60.2 ± 4.5 | 0.3 ± 0.3 | 12.0 ± 1.1 | |
Large cells | Large cells | |||||||
33.3 ± 1.1 | 55.9 ± 0.5 | 0 | 10.7 ± 0.7 | 0 | 50.6 ± 0.6 | 0 | 49.3 ± 0.6 ***; a (p < 0.001) | |
LENK | Small cells | Small cells | ||||||
5.7 ± 2.6 | 67.5 ± 1.3 | 0.6 ± 0.6 | 25.9 ± 1.5 | 2.8 ± 1.4 | 74.4 ± 1.4 | 0 | 22.7 ± 1.6 | |
Large cells | Large cells | |||||||
0 | 52.5 ± 1.6 *** | 0 | 47.5 ± 3.1 *** | 0 | 79.0 ± 1.3 a (p < 0.001) | 0 | 21.0 ± 1.2 a (p < 0.001) | |
GAL | Small cells | Small cells | ||||||
23.0 ± 0.2 | 61.6 ± 0.9 | 0 | 15.3 ± 0.8 | 12.7 ± 0.9 a (p < 0.001) | 67.6 ± 1.2 a (p < 0.01) | 0 | 19.7 ± 1.0 a (p < 0.001) | |
Large cells | Large cells | |||||||
0 | 100 | 0 | 0 | 0 | 85.0 ± 1.0 *** | 0 | 15.0 ± 1.0 * |
Size of the FB+ Neurons | Marker | L4 | L5 | L6 | S1 | S2 |
---|---|---|---|---|---|---|
small | DβH+ | 86.1 ± 6.6 | 87.4 ± 4.3 | 85.0 ± 6.2 | 83.1 ± 5.4 | 84.0 ± 4.5 |
DβH− | 13.8 ± 6.6 | 12.5 ± 4.3 | 14.9 ± 6.2 | 16.8 ± 5.4 | 15.9 ± 4.5 | |
large | DβH+ | 84.3 ± 6.9 | 75.1 ± 15.5 | 77.0 ± 11.1 | 84.2 ± 17.9 | 82.1 ± 15.5 |
DβH− | 15.6 ± 6.9 | 24.8 ± 15.5 | 22.9 ± 11.1 | 15.7 ± 17.9 | 17.8 ± 15.5 |
Primaryantisera | ||||
Antigen | AntibodyCode | HostSpecies | Dilution | Supplier |
DβH | MAB308 | Mouse | 1:1000 | Merck Millipore; Billerica, MA, USA |
NPY | NA1233 | Rabbit | 1:8000 | Enzo Life Sciences; Farmingdale, NY, USA |
VIP | VA1285 | Rabbit | 1:4000 | Enzo Life Sciences; Farmingdale, NY, USA |
PACAP | H-052-02 | Rabbit | 1:11,000 | Phoenix Pharmaceuticals, Inc., Belmont, CA |
SOM | AB5494 | Rabbit | 1:4000 | Merck Millipore, Billerica, MA, USA |
nNOS | AB5380 | Rabbit | 1:13,000 | Merck Millipore, Billerica, MA, USA |
LENK | EA1149 | Rabbit | 1:9000 | Enzo Life Sciences; Farmingdale, NY, USA |
SP | 8450-0004 | Rabbit | 1:3000 | Bio-Rad (formerly AbD Serotec); Langford, UK |
GAL | AB5909 | Rabbit | 1:16,400 | Merck Millipore; Billerica, MA, USA |
Secondary Reagents | ||||
Reagent | Conjugated to | Antibody Code | Dilution | Supplier |
Donkey anti-mouse IgG(H+L) | FITC | 715-095-151 | 1:1000 | Jackson I.R. Inc. West Baltimore Pike, West Grove, PA, USA |
Biotinylated goat anti-rabbit immunoglobulins | biotin | E0432 | 1:1500 | Dako; Glostrup, Germany |
Streptavidin | CY3 | 016-160-084 | 1:10,000 | Jackson I.R. Inc. West Baltimore Pike, West Grove, PA, USA |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowska, A.; Mikołajczyk, A.; Majewski, M. Detailed Characterization of Sympathetic Chain Ganglia (SChG) Neurons Supplying the Skin of the Porcine Hindlimb. Int. J. Mol. Sci. 2017, 18, 1463. https://doi.org/10.3390/ijms18071463
Kozłowska A, Mikołajczyk A, Majewski M. Detailed Characterization of Sympathetic Chain Ganglia (SChG) Neurons Supplying the Skin of the Porcine Hindlimb. International Journal of Molecular Sciences. 2017; 18(7):1463. https://doi.org/10.3390/ijms18071463
Chicago/Turabian StyleKozłowska, Anna, Anita Mikołajczyk, and Mariusz Majewski. 2017. "Detailed Characterization of Sympathetic Chain Ganglia (SChG) Neurons Supplying the Skin of the Porcine Hindlimb" International Journal of Molecular Sciences 18, no. 7: 1463. https://doi.org/10.3390/ijms18071463
APA StyleKozłowska, A., Mikołajczyk, A., & Majewski, M. (2017). Detailed Characterization of Sympathetic Chain Ganglia (SChG) Neurons Supplying the Skin of the Porcine Hindlimb. International Journal of Molecular Sciences, 18(7), 1463. https://doi.org/10.3390/ijms18071463