Molecular Biomarkers for Gestational Diabetes Mellitus
Abstract
:1. Introduction
2. Overview of Gestational Diabetes Mellitus
3. Characteristics of Ideal Biomarkers
4. Single-Nucleotide Polymorphisms
4.1. Single-Nucleotide Polymorphisms and Gestational Diabetes Mellitus
4.2. Limitations of Single-Nucleotide Polymorphisms
5. DNA Methylation
5.1. DNA Methylation and Gestational Diabetes Mellitus
5.2. Limitations of DNA Methylation
6. MicroRNAs
6.1. MicroRNAs and Gestational Diabetes Mellitus
6.2. Limitations of Circulating microRNA Profiling
7. Current Perspectives and Future Recommendations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GDM | Gestational diabetes mellitus |
DNA | Deoxyribonucleic acid |
SNPs | Single-nucleotide polymorphisms |
OGTT | Oral glucose tolerance test |
T2D | Type 2 diabetes |
BMI | Body mass index |
HbA1c | Glycated hemoglobin |
qRT-PCR | Quantitative real-time PCR |
RFLP | Restriction fragment length polymorphism |
KASP | Kompetitive allele specific PCR |
LDR | Ligase detection reaction |
HRM | High-resolution melt-curve analysis |
TCF7L2 | Transcription factor 7 like 2 |
ADIPOQ | Adiponectin |
MTNR1B | Melatonin receptor 1b |
CAPN10 | Calpain 10 |
CD36 | Cluster of differentiation 36 molecule |
CDKAL1 | Cyclin-dependent kinase 5 regulatory subunit associated protein 1 like 1 |
CDKN2A/2B | Cyclin-dependent kinase inhibitor 2a/2b |
FTO | Fat mass and obesity-associated |
GC | Group-specific component |
GCK | Glucokinase |
GCKR | Glucokinase regulator |
IGF2BP2 | Insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 2 |
IRS1 | Insulin receptor substrate 1 |
KCNJ11 | Potassium voltage-gated channel subfamily J member 11 |
KCNQ1 | Potassium voltage-gated channel subfamily Q member 1 |
PPARG2 | Peroxisome proliferator-activated receptor gamma 2 |
RBP4 | Retinol-binding protein 4 |
SLC30A8 | Solute carrier family 30 member 8 |
STK11 | Serine/threonine kinase 11 |
VDR | Vitamin D receptor |
CDC123 | Cell division cycle 123 homolog |
CAMK1D | Calmodulin-dependent protein kinase 1D |
MIF | Macrophage migration inhibitory factor |
DNMT | DNA methyltransferase |
TET | Ten-eleven translocation |
IL-10 | Interleukin-10 |
IL-6 | Interleukin-6 |
COPS8 | Constitutive photomorphogenic homolog subunit 8 |
PIK3R5 | Phosphoinositide 3-kinase regulatory subunit 5 |
HAAO | 3-hydroxyanthranilate 3,4-dioxygenase |
CCDC124 | Coiled-coil domain containing 124 |
C5orf34 | Chromosome 5 open reading frame 34 |
UTR | Untranslated region |
mRNA | Messenger RNA |
NPM1 | Nucleophosphin 1 |
MAPK | Mitogen-activated protein kinase |
TGF-β | Transforming growth factor beta |
mTOR | Mammalian target of rapamycin |
Appendix A
Concept 1: | Synonyms to be searched |
Gestational diabetes mellitus | Gestational diabetes mellitus |
Hyperglycemia during pregnancy | |
Diabetes of pregnancy | |
Glucose intolerance during pregnancy | |
Maternal hyperglycemia | |
Maternal hyperglycaemia | |
Diabetes during pregnancy | |
Concept 2: | Synonyms to be searched |
microRNAs | MicroRNAs or miRNAs |
Circulating microRNAs or miRNAs | |
Circulating miRNAs | |
Cell free microRNAs or miRNAs | |
Small non-coding RNAs | |
Circulating biomarkers | |
Concept 3: | Synonyms to be searched |
DNA methylation | Global DNA methylation |
Gene-specific DNA methylation | |
Genome-wide DNA methylation | |
Concept 4: | Synonyms to be searched |
SNP | Single-nucleotide polymorphisms |
SNP genotyping | |
Genetic DNA variation | |
Genetic variants | |
Concept 5: | Synonyms to be searched |
Biological markers | Whole blood |
Peripheral blood mononuclear cells (PMBCs) | |
PMBCs | |
Blood | |
Serum | |
Plasma | |
Maternal blood |
References
- WHO. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications; World Health Organization: Geneva, Switzerland, 1999; Available online: http://apps.who.int/iris/handle/10665/66040 (accessed on 12 January 2018).
- International Diabetes Federation. IDF Diabetes Atlas—Across the Globe. 2017. Available online: http://diabetesatlas.org/across-the-globe.html (accessed on 6 July 2018).
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; Leive, A.; Hod, M.; et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar]
- Wu, L.; Cui, L.; Tam, W.H.; Ma, R.C.W.; Wang, C.C. Genetic variants associated with gestational diabetes mellitus: A meta-analysis and subgroup analysis. Sci. Rep. 2016, 6, 30539. [Google Scholar] [CrossRef] [PubMed]
- Pheiffer, C.; Dias, S.; Rheeder, P.; Adam, S. Decreased Expression of Circulating miR-20a-5p in South African Women with Gestational Diabetes Mellitus. Mol. Diagn. Ther. 2018, 22, 345–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbour, L.A.; McCurdy, C.E.; Hernandez, T.L.; Kirwan, J.P.; Catalano, P.M.; Friedman, J.E. Cellular Mechanisms for Insulin Resistance in Normal Pregnancy and Gestational Diabetes. Diabetes Care 2007, 30 (Suppl. S2), S112–S119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, B.C.; Ecker, J.L. Fetal macrosomia and shoulder dystocia in women with gestational diabetes: Risks amenable to treatment? Curr. Diabetes Rep. 2013, 13, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Mohammadbeigi, A.; Farhadifar, F.; Zadeh, N.S.; Mohammadsalehi, N.; Rezaiee, M.; Aghaei, M. Fetal macrosomia: Risk factors, maternal, and perinatal outcome. Ann. Med. Health Sci. Res. 2013, 3, 546–550. [Google Scholar] [PubMed]
- Alam, M.; Raza, S.J.; Sherali, A.R.; Akhtar, A.S.M.; Akhtar, S.M. Neonatal complications in infants born to diabetic mothers. J. Coll. Phys. Surg. Pak. 2006, 16, 212–215. [Google Scholar]
- Mitanchez, D.; Yzydorczyk, C.; Siddeek, B.; Boubred, F.; Benahmed, M.; Simeoni, U. The offspring of the diabetic mother-short- and long-term implications. Best Prac. Res. Clin. Obstet. Gynaecol. 2015, 29, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vargas, L.; Addison, S.S.; Nistala, R.; Kurukulasuriya, D.; Sowers, J.R. Gestational Diabetes and the Offspring: Implications in the Development of the Cardiorenal Metabolic Syndrome in Offspring. Cardiorenal Med. 2012, 2, 134–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.; Newton, K.M.; Knopp, R.H. Gestational diabetes and the incidence of type 2 diabetes: A systematic review. Diabetes Care 2002, 25, 1862–1868. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.; Sáenz, S.; Torrejón, M.J.; Bordiú, E.; Del Valle, L.; Galindo, M.; Perez, N.; Herraiz, M.A.; Izquierdo, N.; Rubio, M.A.; et al. Introduction of IADPSG criteria for the screening and diagnosis of gestational diabetes mellitus results in improved pregnancy outcomes at a lower cost in a large cohort of pregnant women: The St. Carlos Gestational Diabetes Study. Diabetes Care 2014, 37, 2442–2450. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, H.D.; Colagiuri, S.; Roglic, G.; Hod, M. Diagnosis of GDM: A suggested consensus. Best Prac. Res. Clin. Obstet. Gynaecol. 2015, 29, 194–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, S.; Rheeder, P. Screening for gestational diabetes mellitus in a South African population: Prevalence, comparison of diagnostic criteria and the role of risk factors. S. Afr. Med. J. 2017, 107, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Rawal, S.; Chong, Y.S. Risk factors for gestational diabetes: Is prevention possible? Diabetologia 2016, 59, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Miailhe, G.; Kayem, G.; Girard, G.; Legardeur, H.; Mandelbrot, L. Selective rather than universal screening for gestational diabetes mellitus? Eur. J. Obstet. Gynecol. Reprod. Boil. 2015, 191, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Smirnakis, K.V.; Plati, A.; Wolf, M.; Thadhani, R.; Ecker, J.L. Predicting gestational diabetes: Choosing the optimal early serum marker. Am. J. Obstet. Gynecol. 2007, 196, 410.e1–410.e7. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.; Savvidou, M.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat. Diagn. 2011, 31, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Rasanen, J.P.; Snyder, C.K.; Rao, P.V.; Mihalache, R.; Heinonen, S.; Gravett, M.G.; Roberts, C.T.; Nagalla, S.R. Glycosylated fibronectin as a first-trimester biomarker for prediction of gestational diabetes. Obstet. Gynecol. 2013, 122, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Renz, P.B.; Cavagnolli, G.; Weinert, L.S.; Silveiro, S.P.; Camargo, J.L. HbA1c Test as a Tool in the Diagnosis of Gestational Diabetes Mellitus. PLoS ONE 2015, 10, e0135989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Bao, W.; Rong, Y.; Yang, H.; Bowers, K.; Yeung, E.; Kiely, M. Genetic variants and the risk of gestational diabetes mellitus: A systematic review. Hum. Reprod. Update 2013, 19, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Haertle, L.; El Hajj, N.; Dittrich, M.; Müller, T.; Nanda, I.; Lehnen, H.; Haaf, T. Epigenetic signatures of gestational diabetes mellitus on cord blood methylation. Clin. Epigenet. 2017, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Guarino, E.; Poggi, C.D.; Grieco, G.E.; Cenci, V.; Ceccarelli, E.; Crisci, I.; Sebastiani, G.; Dotta, F. Circulating MicroRNAs as biomarkers of gestational diabetes mellitus: Updates and perspectives. Int. J. Endocrinol. 2018. [Google Scholar] [CrossRef]
- Strimbu, K.; Tavel, J.A. What are Biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P.; Pinkalwar, N.; Dubey, R.D.; Paroha, S.; Chatterjee, S.; Chatterjee, T. Biomarkers: An emerging tool for diagnosis of a disease and drug development. Asian J. Res. Pharm. Sci. 2011, 1, 9–16. [Google Scholar]
- Etheridge, A.; Lee, I.; Hood, L.; Galas, D.; Wang, K. Extracellular microRNA: A new source of biomarkers. Mutat. Res. 2011, 717, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standards for clinical use of genetic variants. Nat. Genet. 2014, 46, 93. [CrossRef] [PubMed]
- Mikeska, T.; Craig, J.M. DNA Methylation Biomarkers: Cancer and Beyond. Genes 2014, 5, 821–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hydbring, P.; Badalian-Very, G. Clinical applications of microRNAs. F1000Research 2013. [Google Scholar] [CrossRef]
- The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007, 449, 851–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachidanandam, R.; Weissman, D.; Schmidt, S.C.; Kakol, J.M.; Stein, L.D.; Marth, G.; Sherry, S.; Mullikin, J.C.; Mortimore, B.J.; Willey, D.L.; et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001, 409, 928–933. [Google Scholar] [PubMed]
- McCarthy, M.I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 2010, 363, 2339–2350. [Google Scholar] [CrossRef] [PubMed]
- Rankinen, T.; Zuberi, A.; Chagnon, Y.C.; Weisnagel, S.J.; Argyropoulos, G.; Walts, B.; Pérusse, L.; Bouchard, C. The human obesity gene map: The 2005 update. Obesity 2006, 14, 529–644. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.P.; Voight, B.F.; Teslovich, T.M.; Ferreira, T.; Segrè, A.V.; Steinthorsdottir, V.; Strawbridge, R.J.; Khan, H.; Grallert, H.; Mahajan, A.; et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 2012, 44, 981–990. [Google Scholar] [PubMed] [Green Version]
- Hattersley, A.T. Prime suspect: The TCF7L2 gene and type 2 diabetes risk. J. Clin. Investig. 2007, 117, 2077–2079. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Chavarro, J.; Olsen, S.; Lin, Y.; Ley, S.H.; Bao, W.; Rawal, S.; Grunnet, L.G.; Thuesen, A.C.B.; Mills, J.L.; et al. Genetic variants of gestational diabetes mellitus: A study of 112 SNPs among 8722 women in two independent populations. Diabetologia 2018, 61, 1758–1768. [Google Scholar] [CrossRef] [PubMed]
- Franzago, M.; Fraticelli, F.; Marchetti, D.; Celentano, C.; Liberati, M.; Stuppia, L.; Vitacolonna, E. Nutrigenetic variants and cardio-metabolic risk in women with or without gestational diabetes. Diabetes Res. Clin. Prac. 2018, 137, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Popova, P.V.; Klyushina, A.A.; Vasilyeva, L.B.; Tkachuk, A.S.; Bolotko, Y.A.; Gerasimov, A.S.; Pustozerov, E.A.; Kravchuk, E.N.; Predeus, A.; Kostareva, A.A.; et al. Effect of gene-lifestyle interaction on gestational diabetes risk. Oncotarget 2017, 8, 112024–112035. [Google Scholar] [CrossRef] [PubMed]
- Michalak-Wojnowska, M.; Gorczyca-Siudak, D.; Gorczyca, T.; Mosiewicz, B.; Kwaśniewska, A.; Filip, A.; Mosiewicz, J. Association between rs7901695 and rs7903146 polymorphisms of the TCF7L2 gene and gestational diabetes in the population of Southern Poland. Ginekol. Polska 2016, 87, 745–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagán, A.; Sabater-Molina, M.; Olza, J.; Prieto-Sánchez, M.T.; Blanco-Carnero, J.E.; Parrilla, J.J.; Gil, A.; Larqué, E. A gene variant in the transcription factor 7-like 2 (TCF7L2) is associated with an increased risk of gestational diabetes mellitus. Eur. J. Obstet. Gynecol. Reprod. Boil. 2015, 180, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Reyes-López, R.; Pérez-Luque, E.; Malacara, J.M. Metabolic, hormonal characteristics and genetic variants of TCF7L2 associated with development of gestational diabetes mellitus in Mexican women. Diabetes/Metab. Res. Rev. 2014, 30, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Lynch, K.F.; Shaat, N.; Håkansson, R.; Ivarsson, S.A.; Berntorp, K.; Agardh, C.D.; Lernmark, A. Gestational diabetes mellitus is associated with TCF7L2 gene polymorphisms independent of HLA-DQB1*0602 genotypes and islet cell autoantibodies. Diabet. Med. 2011, 28, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Huopio, H.; Hakkarainen, H.; Pääkkönen, M.; Kuulasmaa, T.; Heinonen, S.; Laakso, M. Association of risk variants for type 2 diabetes and hyperglycemia with gestational diabetes. Eur. J. Endocrinol. 2013, 169, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Anghebem-Oliveira, M.I.; Martins, B.R.; Alberton, D.; de Souza Ramos, E.A.; Picheth, G.; Rego, F.G.M. Type 2 diabetes-associated genetic variants of FTO, LEPR, PPARg, and TCF7l2 in gestational diabetes in a Brazilian population. Arch. Endocrinol. Metab. 2017, 61, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Stuebe, A.; Wise, A.; Nguyen, T.; Herring, A.; North, K.; Siega-Riz, A. Maternal Genotype and Gestational Diabetes. Am. J. Perinatol. 2013, 31, 069–076. [Google Scholar] [CrossRef]
- de Melo, S.F.; Frigeri, H.R.; dos Santos-Weiss, I.C.R.; Réa, R.R.; de Souza, E.M.; Alberton, D.; de Moraes Rego, F.G.; Picheth, G. Polymorphisms in FTO and TCF7L2 genes of Euro-Brazilian women with gestational diabetes. Clin. Biochem. 2015, 48, 1064–1067. [Google Scholar] [CrossRef] [PubMed]
- Pilgaard, K.; Jensen, C.B.; Schou, J.H.; Lyssenko, V.; Wegner, L.; Brøns, C.; Vilsbøll, T.; Hansen, T.; Madsbad, S.; Holst, J.J.; et al. The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. Diabetologia 2009, 52, 1298–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, L.; Hivert, M.-F.; Guay, S.-P.; St-Pierre, J.; Perron, P.; Brisson, D. Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes 2012, 61, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Baecker, A.; Song, Y.; Kiely, M.; Liu, S.; Zhang, C. Adipokine levels during the first or early second trimester of pregnancy and subsequent risk of gestational diabetes mellitus: A systematic review. Metabolism 2015, 64, 756–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlik, A.; Teler, J.; Maciejewska, A.; Sawczuk, M.; Safranow, K.; Dziedziejko, V. Adiponectin and leptin gene polymorphisms in women with gestational diabetes mellitus. J. Assist. Reprod. Genet. 2017, 34, 511–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltcheva, O.; Boyadzhieva, M.; Angelova, O.; Mitev, V.; Kaneva, R.; Atanasova, I. The rs266729 single-nucleotide polymorphism in the adiponectin gene shows association with gestational diabetes. Arch. Gynecol. Obstet. 2014, 289, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Takhshid, M.A.; Haem, Z.; Aboualizadeh, F. The association of circulating adiponectin and + 45 T/G polymorphism of adiponectin gene with gestational diabetes mellitus in Iranian population. J. Diabetes Metab. Disord. 2015, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Low, C.F.; Mohd Tohit, E.R.; Chong, P.P.; Idris, F. Adiponectin SNP45TG is associated with gestational diabetes mellitus. Arch. Gynecol. Obstet. 2011, 283, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zheng, Y.-L.; Fan, Y.-P.; Liu, M.-H.; Lu, X.-Y.; Tao, Q. Association of adiponectin gene polymorphism 45TG with gestational diabetes mellitus diagnosed on the new IADPSG criteria, plasma adiponectin levels and adverse pregnancy outcomes. Clin. Exp. Med. 2014, 15, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, X.; Chen, J.; Gusdon, A.M.; Song, K.; Li, L.; Qu, S. Melatonin Treatment Improves Insulin Resistance and Pigmentation in Obese Patients with Acanthosis Nigricans. Int. J. Endocrinol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Tarnowski, M.; Malinowski, D.; Safranow, K.; Dziedziejko, V.; Pawlik, A. MTNR1A and MTNR1B gene polymorphisms in women with gestational diabetes. Gynecol. Endocrinol. 2017, 33, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Rosta, K.; Al-Aissa, Z.; Hadarits, O.; Harreiter, J.; Nádasdi, A.; Kelemen, F.; Bancher-Todesca, D.; Komlósi, Z.; Németh, L.; Rigó, J.; et al. Association study with 77 SNPs confirms the robust role for the rs10830963/G of MTNR1B variant and identifies two novel associations in gestational diabetes mellitus development. PLoS ONE 2017, 12, e0169781. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, Y.; Qiao, B.; Xu, L.; Li, Y.; Li, C. Association Between a Melatonin Receptor 1B Genetic Polymorphism and Its Protein Expression in Gestational Diabetes Mellitus. Reprod. Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Cheong, H.S.; Park, B.-J.; Baik, S.H.; Park, S.; Lee, S.W.; Kim, M.H.; Chung, J.H.; Choi, J.S.; Kim, M.Y.; et al. Melatonin receptor 1 B polymorphisms associated with the risk of gestational diabetes mellitus. BMC Med. Genet. 2011, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nie, M.; Li, W.; Ping, F.; Hu, Y.; Ma, L.; Gao, J.; Liu, J. Association of six single nucleotide polymorphisms with gestational diabetes mellitus in a chinese population. PLoS ONE 2011, 6, e26953. [Google Scholar] [CrossRef] [PubMed]
- Prokopenko, I.; Langenberg, C.; Florez, J.C.; Saxena, R.; Soranzo, N.; Thorleifsson, G.; Loos, R.J.; Manning, A.K.; Jackson, A.U.; Aulchenko, Y.; et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 2009, 41, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iynedjian, P.B. Molecular physiology of mammalian glucokinase. Cell Mol. Life Sci. 2009, 66, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Cui, H.; Chen, X.; Xie, W.; Chang, Y. Association of the glucokinase gene promoter polymorphism -30G > A (rs1799884) with gestational diabetes mellitus susceptibility: A case-control study and meta-analysis. Arch. Gynecol. Obstet. 2015, 292, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Tarnowski, M.; Malinowski, D.; Pawlak, K.; Dziedziejko, V.; Safranow, K.; Pawlik, A. GCK, GCKR, FADS1, DGKB/TMEM195 and CDKAL1 Gene Polymorphisms in Women with Gestational Diabetes. Can. J. Diabetes 2017, 41, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Jamalpour, S.; Zain, S.M.; Mosavat, M.; Mohamed, Z.; Omar, S.Z. A case-control study and meta-analysis confirm glucokinase regulatory gene rs780094 is a risk factor for gestational diabetes mellitus. Gene 2018, 650, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Anghebem-Oliveira, M.I.; Webber, S.; Alberton, D.; de Souza, E.M.; Klassen, G.; Picheth, G.; Rego, F.G.D.M. The GCKR Gene Polymorphism rs780094 is a Risk Factor for Gestational Diabetes in a Brazilian Population. J. Clin. Lab. Anal. 2017, 31, e22035. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dong, S.; Xu, H.; Qian, J.; Yang, J. Genetic variants in FTO associated with metabolic syndrome: A meta- and gene-based analysis. Mol. Boil. Rep. 2012, 39, 5691–5698. [Google Scholar] [CrossRef] [PubMed]
- Merkestein, M.; Sellayah, D. Role of FTO in Adipocyte Development and Function: Recent Insights. Int. J. Endocrinol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Saucedo, R.; Valencia, J.; Gutierrez, C.; Basurto, L.; Hernandez, M.; Puello, E.; Rico, G.; Vega, G.; Zarate, A. Gene variants in the FTO gene are associated with adiponectin and TNF-alpha levels in gestational diabetes mellitus. Diabetol. Metab. Syndr. 2017, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Gual, P.; Le Marchand-Brustel, Y.; Tanti, J.-F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005, 87, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, K.K.; Khan, I.A.; Abotalib, Z.; Al-Hakeem, M.M. Insulin receptor substrate-1 (IRS-1) Gly927Arg: Correlation with gestational diabetes mellitus in Saudi women. BioMed. Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, K.; Miyake, K.; Horikawa, Y.; Hara, K.; Osawa, H.; Furuta, H.; Hirota, Y.; Mori, H.; Jonsson, A.; Sato, Y.; et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 2008, 40, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Fatima, S.S.; Chaudhry, B.; Khan, T.A.; Farooq, S. KCNQ1 rs2237895 polymorphism is associated with gestational diabetes in Pakistani women. Pak. J. Med. Sci. 2016, 32, 1380–1385. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.H.; Kim, T.H.; Cho, Y.M.; Choi, S.H.; Jang, H.C.; Park, K.S. Polymorphisms in KCNQ1 are associated with gestational diabetes in a Korean population. Horm. Res. Paediatr. 2010, 74, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Ao, D.; Wang, H.-J.; Wang, L.-F.; Song, J.-Y.; Yang, H.-X.; Wang, Y. The rs2237892 polymorphism in KCNQ1 influences gestational diabetes mellitus and glucose levels: A case-control study and meta-analysis. PLoS ONE 2015, 10, e0128901. [Google Scholar] [CrossRef] [PubMed]
- Flannick, J.; Thorleifsson, G.; Beer, N.L.; Jacobs, S.B.R.; Grarup, N.; Burtt, N.P.; Mahajan, A.; Fuchsberger, C.; Atzmon, G.; Benediktsson, R.; et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet. 2014, 46, 357–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dereke, J.; Palmqvist, S.; Nilsson, C.; Landin–Olsson, M.; Hillman, M. The prevalence and predictive value of the SLC30A8 R325W polymorphism and zinc transporter 8 autoantibodies in the development of GDM and postpartum type 1 diabetes. Endocrine 2016, 53, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Welter, D.; MacArthur, J.; Morales, J.; Burdett, T.; Hall, P.; Junkins, H.; Klemm, A.; Flicek, P.; Manolio, T.; Hindorff, L.; et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014, 42, D1001–D1006. [Google Scholar] [CrossRef] [PubMed]
- Andraweera, P.H.; Gatford, K.L.; Dekker, G.A.; Leemaqz, S.; Jayasekara, R.W.; Dissanayake, V.H.W.; McCowan, L.; Roberts, C.T. The INSR rs2059806 single nucleotide polymorphism, a genetic risk factor for vascular and metabolic disease, associates with pre-eclampsia. Reprod. BioMed. Online 2017, 34, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Noury, A.E.; Azmy, O.; Alsharnoubi, J.; Salama, S.; Okasha, A.; Gouda, W. Variants of CDKAL1 rs7754840 (G/C) and CDKN2A/2B rs10811661 (C/T) with gestational diabetes: Insignificant association. BMC Res. Notes 2018, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- Castro-Martínez, A.G.; Sánchez-Corona, J.; Vázquez-Vargas, A.P.; García-Zapién, A.G.; López-Quintero, A.; Villalpando-Velazco, H.J.; Flores-Martínez, S.E. Association analysis of calpain 10 gene variants/haplotypes with gestational diabetes mellitus among Mexican women. Cell. Mol. Boil. 2018, 6, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Leipold, H.; Knöfler, M.; Gruber, C.; Haslinger, P.; Bancher-Todesca, D.; Worda, C. Calpain-10 haplotype combination and association with gestational diabetes mellitus. Obstet. Gynecol. 2004, 103, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Lenin, M.; Ramasamy, R.; Kulkarani, S.; Ghose, S.; Srinivasan, A.R.S. Association of KCNJ11(RS5219) gene polymorphism with biochemical markers of glycemic status and insulin resistance in gestational diabetes mellitus. Meta Gene 2018, 16, 134–138. [Google Scholar]
- Saucedo, R.; Zarate, A.; Basurto, L.; Hernandez, M.; Puello, E.; Mendoza-Lorenzo, P.; Ostrosky-Wegman, P. RBP4 gene variants are associated with insulin resistance in women with previous gestational diabetes. Dis. Markers 2014. [Google Scholar] [CrossRef] [PubMed]
- Ping, F.; Xiang, H.-D.; Li, M.; Li, W.; Liu, J.-T.; Nie, M.; Hui, Y.-C. Effects of variation in retinol binding protein 4 gene and adipose specific expression of gestational diabetes in Beijing, China. Diabetes Res. Clin. Prac. 2012, 97, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, M.; Urschitz, J.; Sultan, O.; Ward, K. A polymorphism in the retinol binding protein 4 gene is not associated with gestational diabetes mellitus in several different ethnic groups. Hawaii Med. J. 2011, 70, 164–167. [Google Scholar] [PubMed]
- Shi, A.; Wen, J.; Liu, G.; Liu, H.; Fu, Z.; Zhou, J.; Zhu, Y.; Liu, Y.; Guo, X.; Xu, J. Genetic variants in vitamin D signaling pathways and risk of gestational diabetes mellitus. Oncotarget 2016, 7, 67788–67795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, O.; Li, W.; Ma, L.; Ping, F.; Chen, L.; Nie, M. Variants in Vitamin D binding protein gene are associated with gestational diabetes mellitus. Medicine 2015, 94, e1693. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, K.K.; Khan, I.A.; Eldesouky, M.H.; Al-Hakeem, M.M.; Abotalib, Z. The genetic polymorphism in the STK11 does not affect gestational diabetes. Acta Biochim. Pol. 2015, 62, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Bassols, J.; Megia, A.; Soriano-Rodríguez, P.; Díaz, M.; Prats-Puig, A.; Gifre, M.; Simón-Muela, I.; Torrent, S.; Borrel, A.C.; Riera-Socasau, J.C.; et al. A common gene variant in STK11 is associated with metabolic risk markers and diabetes during gestation. Fertil. Steril. 2013, 100, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Aslani, S.; Hossein-nezhad, A.; Maghbooli, Z.; Mirzaei, K.; Karimi, F. Genetic variation in macrophage migration inhibitory factor associated with gestational diabetes mellitus and metabolic syndrome. Horm. Metab. Res. 2011, 43, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Fei, Y.; Ling, Q.; Xu, W.; Zhang, Z.; Shu, J.; Li, C.; Dong, F. Polymorphisms in TCF7L2 gene are associated with gestational diabetes mellitus in Chinese Han population. Sci. Rep. 2016, 6, 30686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartáková, V.; Kuricová, K.; Zlámal, F.; Bělobrádková, J.; Kaňková, K. Differences in food intake and genetic variability in taste receptors between Czech pregnant women with and without gestational diabetes mellitus. Eur. J. Nutr. 2018, 57, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Luo, B.R.; Hu, M.; Zhao, D.M.; Jing, W.J. Association of CD36 gene single nucleotide polymorphism with gestational diabetes mellitus in Chinese Han population. Clin. Exp. Obstet. Gynecol. 2018, 45, 266–271. [Google Scholar]
- Tarnowski, M.; Malinowski, D.; Safranow, K.; Dziedziejko, V.; Pawlik, A. CDC123/CAMK1D gene rs12779790 polymorphism and rs10811661 polymorphism upstream of the CDKN2A/2B gene in women with gestational diabetes. J. Perinatol. 2017, 37, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.H.K.; Maher, E.R. DNA methylation: A form of epigenetic control of gene expression. Obstet. Gynaecol. 2010, 12, 37–42. [Google Scholar] [CrossRef]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, A.P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980, 8, 1499–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Zhang, Y. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat. Rev. Genet. 2017, 18, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Pheiffer, C.; Erasmus, R.T.; Kengne, A.P.; Matsha, T.E. Differential DNA methylation of microRNAs within promoters, intergenic and intragenic regions of type 2 diabetic, pre-diabetic and non-diabetic individuals. Clin. Biochem. 2016, 49, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, S.J.; Molloy, P.L.; Varinli, H.; Morrison, J.L.; Muhlhausler, B.S. Members of EpiSCOPE. Epigenetics and human obesity. Int. J. Obes. 2015, 39, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Toperoff, G.; Aran, D.; Kark, J.D.; Rosenberg, M.; Dubnikov, T.; Nissan, B.; Wainstein, J.; Freidlander, Y.; Levy-Lahad, E.; Glaser, B.; et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum. Mol. Genet. 2012, 21, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Long, T.I.; Arakawa, K.; Wang, R.; Yu, M.C.; Laird, P.W. DNA Methylation as a Biomarker for Cardiovascular Disease Risk. PLoS ONE 2010, 5, e9692. [Google Scholar] [CrossRef] [PubMed]
- Houde, A.-A.; Guay, S.-P.; Desgagné, V.; Hivert, M.-F.; Baillargeon, J.-P.; St-Pierre, J.; Perron, P.; Gaudet, D.; Brisson, D.; Bouchard, L. Adaptations of placental and cord blood ABCA1 DNA methylation profile to maternal metabolic status. Epigenetics 2013, 8, 1289–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finer, S.; Mathews, C.; Lowe, R.; Smart, M.; Hillman, S.; Foo, L.; Sinha, A.; Williams, D.; Rakyan, V.K.; Hitman, G.A. Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring. Hum. Mol. Genet. 2015, 24, 3021–3029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruchat, S.-M.; Houde, A.-A.; Voisin, G.; St-Pierre, J.; Perron, P.; Baillargeon, J.-P.; Gaudet, D.; Hivert, M.-F.; Brisson, D.; Bouchard, L. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics 2013, 8, 935–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, Y.; Lambertini, L.; Rialdi, A.; Lee, M.; Mystal, E.Y.; Grabie, M.; Manaster, I.; Huynh, N.; Finik, J.; Davey, M.; et al. Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod. Sci. 2014, 21, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Reichetzeder, C.; Dwi Putra, S.E.; Pfab, T.; Slowinski, T.; Neuber, C.; Kleuser, B.; Hocher, B. Increased global placental DNA methylation levels are associated with gestational diabetes. Clin. Epigenet. 2016, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Pinney, S.E. Metabolic disorders and developmental origins of health and disease. In The Epigenome and Developmental Origins of Health and Disease; Elsevier: Amsterdam, The Netherlands, 2015; pp. 267–289. [Google Scholar]
- Hajj, N.E.; Pliushch, G.; Schneider, E.; Dittrich, M.; Müller, T.; Korenkov, M.; Aretz, M.; Zechner, U.; Lehnen, H.; Haaf, T. Metabolic Programming of MEST DNA Methylation by Intrauterine Exposure to Gestational Diabetes Mellitus. Diabetes 2012, 120289. [Google Scholar] [CrossRef]
- Chim, S.S.C.; Shing, T.K.F.; Hung, E.C.W.; Leung, T.-Y.; Lau, T.-K.; Chiu, R.W.K.; Lo, Y.M.D. Detection and characterization of placental microRNAs in maternal plasma. Clin. Chem. 2008, 54, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Kurdyukov, S.; Bullock, M. DNA Methylation Analysis: Choosing the Right Method. Biology 2016, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.; Adam, S.; Wyk, N.V.; Rheeder, P.; Louw, J.; Pheiffer, C. Global DNA methylation profiling in South African women with Gestational diabetes mellites. Biomarkers 2018. Accepted for publication with minor revisions. [Google Scholar]
- Kang, J.; Lee, C.-N.; Li, H.-Y.; Hsu, K.-H.; Lin, S.-Y. Genome-wide DNA methylation variation in maternal and cord blood of gestational diabetes population. Diabetes Res. Clin. Prac. 2017, 132, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Enquobahrie, D.A.; Moore, A.; Muhie, S.; Tadesse, M.G.; Lin, S.; Williams, M.A. Early Pregnancy Maternal Blood DNA Methylation in Repeat Pregnancies and Change in Gestational Diabetes Mellitus Status—A Pilot Study. Reprod. Sci. 2015, 22, 904–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.; Farrell, W.E.; Haworth, K.E.; Emes, R.D.; Kitchen, M.O.; Glossop, J.R.; Hanna, F.W.; Fryer, A.A. Maternal genome-wide DNA methylation profiling in gestational diabetes shows distinctive disease-associated changes relative to matched healthy pregnancies. Epigenetics 2018, 13, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Lee, C.-N.; Li, H.-Y.; Hsu, K.-H.; Wang, S.-H.; Lin, S.-Y. Association of interleukin-10 methylation levels with gestational diabetes in a Taiwanese population. Front. Genet. 2018. [Google Scholar] [CrossRef] [PubMed]
- Levenson, V.V.; Melnikov, A.A. DNA Methylation as Clinically Useful Biomarkers—Light at the End of the Tunnel. Pharmaceuticals 2012, 5, 94–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinius, L.E.; Acevedo, N.; Joerink, M.; Pershagen, G.; Dahlén, S.-E.; Greco, D.; Söderhäll, C.; Scheynius, A.; Kere, J. Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility. PLoS ONE 2012, 7, e41361. [Google Scholar] [CrossRef] [PubMed]
- Dahl, C.; Guldberg, P. DNA methylation analysis techniques. Biogerontology 2003, 4, 233–250. [Google Scholar] [CrossRef] [PubMed]
- Brennecke, J.; Stark, A.; Russell, R.B.; Cohen, S.M. Principles of MicroRNA–Target Recognition. PLoS Biol. 2005, 3, e85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.M.; Thompson, J.A.; Ufkin, M.L.; Sathyanarayana, P.; Liaw, L.; Congdon, C.B. Common features of microRNA target prediction tools. Front. Genet. 2014, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [PubMed]
- Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, T. microPrimer: The biogenesis and function of microRNA. Development 2005, 132, 4645–4652. [Google Scholar] [CrossRef] [PubMed]
- Sliwinska, A.; Kasinska, M.A.; Drzewoski, J. MicroRNAs and metabolic Disorders—Where are we heading? Arch. Med. Sci. 2017, 13, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Iacomino, G.; Siani, A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, N.; Tousoulis, D.; Androulakis, E.; Siasos, G.; Briasoulis, A.; Vogiatzi, G.; Kampoli, A.-M.; Tsiamis, E.; Tentolouris, C.; Stefanadis, C. The role of microRNAs in cardiovascular disease. Curr. Med. Chem. 2012, 19, 2605–2610. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ding, Y.; Liang, B.; Lin, J.; Kim, T.-K.; Yu, H.; Hang, H.; Wang, K. A Systematic Study of Dysregulated MicroRNA in Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2017, 18, 456. [Google Scholar] [CrossRef] [PubMed]
- Creemers, E.E.; Tijsen, A.J.; Pinto, Y.M. Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 2012, 110, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Turchinovich, A.; Weiz, L.; Burwinkel, B. Extracellular miRNAs: The mystery of their origin and function. Trends Biochem. Sci. 2012, 37, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, W. Human Placental MicroRNAs and Preeclampsia. Boil. Reprod. 2013, 88, 130. [Google Scholar] [CrossRef] [PubMed]
- Poirier, C.; Desgagné, V.; Guérin, R.; Bouchard, L. MicroRNAs in Pregnancy and Gestational Diabetes Mellitus: Emerging Role in Maternal Metabolic Regulation. Curr. Diabetes Rep. 2017, 17, 35. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Dong, J.; Jiang, T.; Shi, Z.; Yu, B.; Zhu, Y.; Chen, D.; Xu, J.; Huo, R.; Dai, J.; et al. Early Second-Trimester Serum MiRNA Profiling Predicts Gestational Diabetes Mellitus. Zhang C, editor. PLoS ONE 2011, 6, e23925. [Google Scholar]
- Tagoma, A.; Alnek, K.; Kirss, A.; Uibo, R.; Haller-Kikkatalo, K. MicroRNA profiling of second trimester maternal plasma shows upregulation of miR-195-5p in patients with gestational diabetes. Gene 2018, 672, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Wander, P.L.; Boyko, E.J.; Hevner, K.; Parikh, V.J.; Tadesse, M.G.; Sorensen, T.K.; Williams, M.A.; Enquobahrie, D.A. Circulating early- and mid-pregnancy microRNAs and risk of gestational diabetes. Diabetes Res. Clin. Prac. 2017, 132, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tian, F.; Li, H.; Zhou, Y.; Lu, J.; Ge, Q. Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus. Int. J. Gynecol. Obstet. 2015, 130, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-L.; Jia, Y.-J.; Xing, B.-H.; Shi, D.-D.; Dong, X.-J. Plasma microRNA-16-5p, -17-5p and -20a-5p: Novel diagnostic biomarkers for gestational diabetes mellitus. J. Obstet. Gynaecol. Res. 2017, 43, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, G.; Guarino, E.; Grieco, G.E.; Formichi, C.; Poggi, C.D.; Ceccarelli, E.; Dotta, F. Circulating microRNA (miRNA) expression profiling in plasma of patients with gestational diabetes mellitus reveals upregulation of miRNA miR-330-3p. Front. Endocrinol. 2017, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Stirm, L.; Huypens, P.; Sass, S.; Batra, R.; Fritsche, L.; Brucker, S.; Abele, H.; Hennige, A.M.; Theis, F.; Beckers, J.; et al. Maternal whole blood cell miRNA-340 is elevated in gestational diabetes and inversely regulated by glucose and insulin. Sci. Rep. 2018, 8, 1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Bai, J.; Liu, P.; Dong, J.; Tang, Y.; Zhou, J.; Han, P.; Xing, J.; Chen, Y.; Yu, X. miR-494 protects pancreatic B-cell function by targeting PTEN in gestational diabetes mellitus. EXCLI J. 2017, 16, 1297–1307. [Google Scholar] [PubMed]
- Lamadrid-Romero, M.; Solís, K.H.; Cruz-Reséndiz, M.S.; Pérez, J.E.; Díaz, N.F.; Flores-Herrera, H.; Garcia-López, G.; Perichart, O.; Reyes-Muñoz, E.; Arenas-Huertero, F.; et al. Central nervous system development-related microRNAs levels increase in the serum of gestational diabetic women during the first trimester of pregnancy. Neurosci. Res. 2018, 130, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yuan, Y.; Cho, J.-H.; McClarty, S.; Baxter, D.; Galas, D.J. Comparing the MicroRNA Spectrum between Serum and Plasma. Ahuja SK, editor. PLoS ONE 2012, 7, e41561. [Google Scholar]
- Dias, S.; Hemmings, S.; Muller, C.; Louw, J.; Pheiffer, C. MicroRNA Expression Varies according to Glucose Tolerance, Measurement Platform, and Biological Source. BioMed. Res. Int. 2017, 2017, e1080157. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, H.; da Silva, A.M.; Calin, G.; Pantel, K. Which is the accurate data normalization strategy for microRNA quantification? Clin. Chem. 2015, 61, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Moen, G.-H.; Sommer, C.; Prasad, R.B.; Sletner, L.; Groop, L.; Qvigstad, E.; Birkeland, K.I. Mechanisms in endocrinology: Epigenetic modifications and gestational diabetes: A systematic review of published literature. Eur. J. Endocrinol. 2017, 176, R247–R267. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, H.M.; Lappas, M.; Georgiou, G.M.; Marita, A.; Bryant, V.J.; Hiscock, R.; Permezel, M.; Khalil, Z.; Rice, G.E. Screening for biomarkers predictive of gestational diabetes mellitus. Acta Diabetol. 2008, 45, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Shaat, N.; Groop, L. Genetics of gestational diabetes mellitus. Curr. Med. Chem. 2007, 14, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Krek, A.; Grün, D.; Poy, M.N.; Wolf, R.; Rosenberg, L.; Epstein, E.J.; MacMenamin, P.; da Piedade, I.; Gunsalus, K.C.; Stoffel, M.; et al. Combinatorial microRNA target predictions. Nat. Genet. 2005, 37, 495–500. [Google Scholar] [CrossRef] [PubMed]
Author | Gene | SNP Identification | Country | Detection Method | Case/Control | Associated Allele or Genotype | Risk for GDM |
---|---|---|---|---|---|---|---|
Ding et al., 2018 [37] | TCF7L2 | rs7903146 | Denmark and USA | qRT-PCR | 2636/6086 | T allele | Increased |
Franzago et al., 2018 [38] | Italy | HRM | 104/124 | T allele | Increased | ||
Popova et al., 2017 [39] | Russia | qRT-PCR | 278/179 | No association | - | ||
Michalak-Wojnowska et al., 2016 [40] | Poland | qRT-PCR | 50/26 | No association | - | ||
Pagán et al., 2014 [41] | Spain | Sequencing | 45/25 | No association | - | ||
Reyes-López et al., 2014 [42] | Mexico | RFLP | 90/108 | No association | - | ||
Papadopoulou et al., 2011 [43] | Sweden | qRT-PCR | 826/1185 | T allele | Increased | ||
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | T allele | Increased | ||
Ding et al., 2018 [37] | rs4506565 | Denmark and USA | qRT-PCR | 2636/6086 | T allele | Increased | |
Pagán et al., 2014 [41] | Spain | Sequencing | 45/25 | T allele | Increased | ||
Anghebem-Oliveira, et al., 2017 [45] | rs7901695 | Brazil | qRT-PCR | 127/125 | No association | - | |
Michalak-Wojnowska et al., 2016 [40] | Poland | qRT-PCR | 50/26 | No association | - | ||
Pagán et al., 2014 [41] | Spain | Sequencing | 45/25 | No association | - | ||
Stuebe et al., 2014 [46] | USA African American (AA) and Caucasian (C) | MassARRAY | 26/362 (AA) and 56/843 (C) | No association (AA) T allele (C) | - Increased | ||
Papadopoulou et al., 2011 [43] | Sweden | qRT-PCR | 805/1116 | C allele | Increased | ||
Popova et al., 2017 [39] | rs12255372 | Russia | qRT-PCR | 278/179 | No association | - | |
de Melo et al., 2015 [47] | Brazil | qRT-PCR | 200/200 | No association | - | ||
Pagán et al., 2014 [41] | Spain | Sequencing | 45/25 | No association | - | ||
Reyes-López et al., 2014 [42] | Mexico | RFLP | 90/108 | T allele | Increased | ||
Papadopoulou et al., 2011 [43] | Sweden | qRT-PCR | 826/1185 | T allele | Increased | ||
Pawlik et al., 2017 [51] | ADIPOQ | rs1501299 | Poland | qRT-PCR | 204/207 | No association | - |
Beltcheva et al., 2014 [52] | Bulgaria | qRT-PCR | 130/130 | No association | - | ||
Pawlik et al., 2017 [51] | rs266729 | Poland | qRT-PCR | 204/207 | G allele | Increased | |
Beltcheva et al., 2014 [52] | Bulgaria | qRT-PCR | 130/130 | G allele | Increased | ||
Takshid et al., 2015 [53] | rs2241766 | Iran | RFLP | 65/70 | G allele | Increased | |
Han et al., 2014 [55] | China | RFLP | 128/140 | G allele | Increased | ||
Beltcheva et al., 2014 [52] | Bulgaria | qRT-PCR | 130/130 | G allele | Increased | ||
Low et al., 2011 [54] | Malaysia | RFLP | 26/53 | G allele | Increased | ||
Ding et al., 2018 [37] | MTNR1B | rs10830963 | Denmark and USA | qRT-PCR | 2636/6086 | G allele | Increased |
Li et al., 2018 [59] | China | Sequencing | 215/243 | G allele | Increased | ||
Tarnowski et al., 2017 [57] | Poland | qRT-PCR | 204/207 | G allele | Increased | ||
Rosta et al., 2017 [58] | Hungary and Austria | KASP | 287/533 | G allele | Increased | ||
Popova et al., 2017 [39] | Russia | qRT-PCR | 278/179 | G allele | Increased | ||
Stuebe et al., 2014 [46] | USA African American (AA) and Caucasian (C) | MassARRAY | 26/362 (AA) and 56/843 (C) | No association (AA) G allele (C) | - Increased | ||
Wang et al., 2011 [61] | China | qRT-PCR | 725/1039 | No association | - | ||
Kim et al., 2011 [60] | South Korea | qRT-PCR | 928/990 | G allele | Increased | ||
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | G allele | Increased | ||
Ding et al., 2018 [37] | rs1387153 | Denmark and USA | qRT-PCR | 2636/6086 | T allele | Increased | |
Popova et al., 2017 [39] | Russia | qRT-PCR | 278/179 | T allele | Increased | ||
Kim et al., 2011 [60] | South Korea | qRT-PCR | 928/990 | T allele | Increased | ||
Tarnowski et al., 2017 [65] | GCK | rs1799884 | Poland | qRT-PCR | 204/207 | No association | - |
Popova et al., 2017 [39] | Russia | qRT-PCR | 278/179 | T allele | Increased | ||
Han et al., 2015 [64] | China | PCR Invader assay | 948/975 | A * allele | Increased | ||
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | No association | - | ||
Wang et al., 2011 [61] | rs4607517 | China | qRT-PCR | 725/1039 | No association | - | |
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | No association | - | ||
Jamalpour et al., 2018 [66] | GCKR | rs780094 | Malaysia | MassARRAY | 267/855 | C allele | Increased |
Tarnowski et al., 2017 [65] | Poland | qRT-PCR | 204/207 | No association | - | ||
Anghebem-Oliveira et al., 2017 [67] | Brazil | qRT-PCR | 127/125 | C allele | Increased | ||
Stuebe et al., 2014 [46] | USA African American (AA) and Caucasian (C) | MassARRAY | 26/362 (AA) and 56/843 (C) | No association C allele | - Increased | ||
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | No association | - | ||
Franzago et al., 2018 [38] | FTO | rs9939609 | Italy | HRM | 104/124 | No association | - |
Saucedo et al., 2017 [70] | Mexico | qRT-PCR | 80/80 | No association | - | ||
Popova et al., 2017 [39] | Russia | qRT-PCR | 278/179 | No association | - | ||
de Melo et al., 2015 [47] | Brazil | qRT-PCR | 200/200 | No association | - | ||
Pagán et al., 2015 [41] | Spain | Sequencing | 45/25 | T allele | Increased | ||
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | A allele | Increased | ||
Saucedo et al., 2017 [70] | rs8050136 | Mexico | qRT-PCR | 80/80 | No association | - | |
de Melo et al., 2015 [47] | Brazil | qRT-PCR | 200/200 | No association | - | ||
Saucedo et al., 2017 [70] | rs1421085 | Mexico | qRT-PCR | 80/80 | No association | - | |
Anghebem-Oliveira et al., 2017 [45] | Brazil | qRT-PCR | 127/125 | No association | - | ||
Popova et al., 2017 [39] | IRS1 | rs1801278 | Russia | qRT-PCR | 278/179 | No association | - |
Alharbi et al., 2014 [72] | Saudi Arabia | RFLP | 200/300 | T allele | Increased | ||
Huopio et al., 2013 [44] | rs7578326 | Finland | MassARRAY | 533/407 | No association | - | |
Rosta et al., 2017 [58] | Hungary and Austria | KASP | 287/533 | G allele | Decreased | ||
Fatima et al., 2016 [74] | KCNQ1 | rs2237895 | Pakistan | RFLP/sequencing | 208/429 | C allele | Increased |
Kwak et al., 2010 [75] | South Korea | qRT-PCR | 869/632 | No association | - | ||
Ao et al., 2015 [76] | rs2237892 | China | MassARRAY | 562/453 | C allele | Increased | |
Kwak et al., 2010 [75] | South Korea | qRT-PCR | 869/632 | C allele | Increased | ||
Rosta et al., 2017 [58] | SLC30A8 | rs13266634 | Hungary and Austria | KASP | 287/533 | T allele | Decreased |
Dereke et al., 2016 [78] | Sweden | RFLP | 776/511 | C allele | Increased | ||
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | No association | - | ||
Noury et al., 2018 [81] | CDKAL1 | rs7754840 | Egypt | qRT-PCR | 47/51 | No association | - |
Rosta et al., 2017 [58] | Hungary and Austria | KASP | 287/533 | C allele | Increased | ||
Popova et al., 2017 [39] | Russia | qRT-PCR | 278/179 | No association | - | ||
Wang et al., 2011 [61] | China | qRT-PCR | 725/1039 | No association | - | ||
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | No association | - | ||
Castro-Martinez et al., 2018 [82] | CAPN10 | SNP43 | Mexico | qRT-PCR & RFLP | 116/83 | No association | - |
Leipold et al., 2004 [83] | Austria | RFLP | 100/100 | No association | - | ||
Castro-Martinez et al., 2018 [82] | SNP63 | Mexico | qRT-PCR & RFLP | 116/83 | No association | - | |
Leipold et al., 2004 [83] | Austria | RFLP | 40/40 | C allele | Increased | ||
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | No Association | - | ||
Lenin et al., 2018 [84] | KCNJ11 | rs5219 | India | RFLP | 230/240 | T allele | Increased |
Popova et al., 2017 [39] | Russia | qRT-PCR | 278/179 | No association | - | ||
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | No association | - | ||
Saucedo et al., 2014 [85] | RBP4 | rs3758539 | Mexico | qRT-PCR | 100/100 | No association | - |
Ping et al., 2012 [86] | China | LDR | 505/687 | G allele | Increased | ||
Hiraoka et al., 2011 [87] | USA Caucasian (C), Filipino (F), and Pacific Islander (PI) | qRT-PCR | 88/315 (C), 82/286 (F), and 19/32 (PI) | No association | - | ||
Shi et al., 2016 [88] | GC | rs16847024 | China | MassARRAY | 964/1021 | T allele | Increased |
Wang et al., 2015 [89] | China | qRT-PCR | 692/802 | No association | - | ||
Alharbi et al., 2015 [90] | STK11 | rs8111699 | Saudi Arabia | RFLP | 200/300 | No association | - |
Bassols et al., 2013 [91] | Spain | qRT-PCR | 243/318 | G allele | Decreased | ||
Aslani et al., 2011 [92] | MIF | rs1007888 | Iran | PCR-SSP | 147/169 | G allele | Increased |
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | No association | - | ||
Noury et al., 2018 [81] | CDKN2A/2B | rs10811661 | Egypt | qRT-PCR | 47/51 | No association | - |
Ye et al., 2016 [93] | Poland | qRT-PCR | 204/207 | C allele | Decreased | ||
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | No association | - | ||
Popova et al., 2017 [39] | IGF2BP2 | rs4402960 | Russia | qRT-PCR | 278/179 | No association | - |
Wang et al., 2015 [89] | China | qRT-PCR | 725/1039 | T allele | Increased | ||
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | No association | - | ||
Bartákova et al., 2018 [94] | CD36 | rs1527479 | Czech Republic | qRT-PCR | 293/70 | No association | - |
Yang et al., 2018 [95] | China | qRT-PCR | 209/215 | No association | - | ||
Franzago et al., 2018 [38] | PPARG2 | rs1801282 | Italy | HRM | 104/124 | No association | - |
Anghebem-Oliveira et al., 2017 [45] | Brazil | qRT-PCR | 127/125 | No association | - | ||
Shi et al., 2016 [88] | VDR | rs739837 | China | MassARRAY | 964/1021 | No association | - |
Wang et al., 2015 [89] | China | qRT-PCR | 692/802 | No association | - | ||
Tarnowski et al., 2017 [96] | CDC123/CAMK1D | rs1277970 | Poland | qRT-PCR | 204/207 | No association | - |
Huopio et al., 2013 [44] | Finland | MassARRAY | 533/407 | No association | - |
Author | Study Design | Country | Detection Method | Main Finding |
---|---|---|---|---|
Dias et al., 2018 [114] | 63 GDM and 138 controls (~26 weeks gestation) | South Africa | Global DNA methylation using MDQ1 Imprint DNA Quantification Kit * | No difference in global DNA methylation between women with or without GDM. Global DNA methylation was associated with obesity and serum adiponectin concentrations. |
Enquobahrie et al., 2015 [116] | 6 women with 2 consecutive pregnancies with and without GDM (<20 weeks gestation) | United States | Illumina HumanMethylation27 BeadChip | 17 CpG sites were hypomethylated and 10 CpG sites were hypermethylated in relation to GDM status |
Kang et al., 2017 [115] | 8 GDM and 8 controls (end of pregnancy) | Taiwan | Illumina Infinium HumanMethylationEPIC BeadChip | 200 differentially methylated CpGs corresponding to 151 genes identified in women with GDM compared to controls |
Kang et al., 2018 [118] | 8 GDM and 24 controls (end of pregnancy) | Taiwan | MethyLight qRT-PCR assay | Decreased methylation of IL-10 during GDM, which was associated with increased serum IL-10 concentrations |
Wu et al., 2018 [117] | 11 GDM and 11 controls (12–16 weeks gestation) | United Kingdom | Illumina HumanMethylation450 BeadChip (450K) array and bisulfite pyrosequencing | 100 differentially methylated CpGs corresponding to 66 genes were identified. Differential DNA methylation at 5 CpGs were validated in 8 of the 11 GDM women |
Author | Study Design | Country | Biological Source | Detection Method | Upregulated | Downregulated | No Significant Change | Normalization Control |
---|---|---|---|---|---|---|---|---|
Zhao et al., 2011 [136] | 24 GDM and 24 controls (16–19 weeks gestation); 36 GDM and 36 controls (internal validation); 16 GDM and 16 controls (external validation) | China | Serum | Taqman low-density array, qRT-PCR | - | miR-29a, miR-132, miR-222 | - | Cel-miR-39 (exogenous control) |
Pheiffer et al., 2018 [5] | 28 GDM and 53 controls (13–31 weeks gestation) | South Africa | Serum | qRT-PCR | - | miR-20a, miR-222 | miR-16, miR-17, miR-19a, miR-19b, miR-29a, miR-132 | Cel-miR-39 (exogenous control) |
Tagnoma et al., 2018 [137] | 13 GDM and 9 controls (23–31 weeks gestation) | Estonia | Plasma | qRT-PCR | let-7e, let-7g, miR-100, miR-101, miR-146a, miR-8a, miR-195, miR-222, miR-23b, miR-30b, miR-30c, miR-30d, miR-342, miR-423, miR-92a | - | - | Cel-miR-39 (exogenous control) |
Wander et al., 2017 [138] | 36 GDM and 80 controls (7–23 weeks gestation) | USA | Plasma | qRT-PCR | miR-155, miR-21 | miR-146b, miR-517, miR-222, miR-210, miR-518a, miR-29a, miR-223, miR-126 | Cel-miR-39 (exogenous control) and miR-423 (endogenous control) | |
Zhu et al., 2015 [139] | 10 GDM and 10 controls (16–19 weeks gestation) | China | Plasma | Ion Torrent sequencing, qRT-PCR | miR-16, miR-17, miR-19a, miR-19b, miR-20a | - | - | miR-221 (endogenous control) |
Cao et al., 2017 [140] | 85 GDM and 72 controls (16–20, 20–24, and 24–28 weeks gestation) | China | Plasma | qRT-PCR | miR-16, miR-17, miR-20a | - | miR-19a miR-19b | RNU6 (endogenous control) |
Sebastiani et al., 2017 [141] | 21 GDM and 10 controls (24–33 weeks gestation) | Italy | Plasma | qRT-PCR | miR-330 | - | miR-548c | miR-374, miR-320 (endogenous control) |
Stirm et al., 2018 [142] | 30 GDM and 30 controls (24–32 weeks gestation) | Germany | Whole blood | qRT-PCR | miR-340 | - | - | RNU6B (endogenous control) |
He et al., 2017 [143] | 20 GDM and 20 controls | China | Whole blood | qRT-PCR | - | miR-494 | - | RNU6 (endogenous control) |
Lamadrid-Romero et al., 2018 [144] | 67 GDM and 74 controls (16–20, 20–24, and 24–28 weeks gestation) | Not reported | Serum | qRT-PCR | miR-183, miR-200b, miR-125b, miR-1290 | - | - | Cel-miR-39 (exogenous control) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, S.; Pheiffer, C.; Abrahams, Y.; Rheeder, P.; Adam, S. Molecular Biomarkers for Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 2926. https://doi.org/10.3390/ijms19102926
Dias S, Pheiffer C, Abrahams Y, Rheeder P, Adam S. Molecular Biomarkers for Gestational Diabetes Mellitus. International Journal of Molecular Sciences. 2018; 19(10):2926. https://doi.org/10.3390/ijms19102926
Chicago/Turabian StyleDias, Stephanie, Carmen Pheiffer, Yoonus Abrahams, Paul Rheeder, and Sumaiya Adam. 2018. "Molecular Biomarkers for Gestational Diabetes Mellitus" International Journal of Molecular Sciences 19, no. 10: 2926. https://doi.org/10.3390/ijms19102926
APA StyleDias, S., Pheiffer, C., Abrahams, Y., Rheeder, P., & Adam, S. (2018). Molecular Biomarkers for Gestational Diabetes Mellitus. International Journal of Molecular Sciences, 19(10), 2926. https://doi.org/10.3390/ijms19102926